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M O TAT ION 

The work "Helicopters, Calculation and Design11 i s  published i n  th ree  
volumes : 

Vol.1 - Aerodynamics; 
VoLI I  - Vibrations and Dynamic Strength;
Vol.111- Design. 

The second volume gives an  account of c e r t a i n  problems of t he  theory of 
v ibra t ions  and methods of ca lcu la t ing  stresses set up during such v ibra t ions  i n  
hel icopters  i n  f l i g h t ,  and, i n  pa r t i cu la r ,  i n  t he  r o t o r  blade.  

Methods are presented f o r  ca lcu la t ing  t h e  serv ice  l i f e  of a s t ruc tu re  and 
f o r  ca lcu la t ing  he l icopter  v ibra t ions  which permit determining t h e  amplitudes 
of these  vibrat ions and comparing them with t h e  noms of comfort. For t h e  
first t i m e  i n  Soviet literature, t h e  problem of coupled v ibra t ions  of r o t o r  and 
fuselage i s  examined. 

The theory of self-exci ted o s c i l h t i o n s  of a s p e c i a l  type known as '!ground 
resonance" i s  discussed i n  d e t a i l .  The cha rac t e r i s t i c s  of t h e  occurrence of 
such v ibra t ions  i n  a he l icopter  on t h e  ground, during takeoff  and landing run, 
and under f l i g h t  conditions are examined. 

Special  cases, l i t t l e  elucidated i n  t h e  general  Literature, of ca lcu la t ing  
bearings t h a t  operate under spec i f i c  conditions of r o l l i n g  a r e  examined i n  a 
separa te  chapter. The same chapter gives  an  account of t h e  theory and method of 
ca lcu la t ing  a new type  of thrust bearing of high load capaci ty  and bearings 
under compound loads. 

The book i s  intended f o r  engineers of design of f ices ,  s c i e n t i f i c  workers, 
graduate students,  and teachers  of higher i n s t i t u t e s  of learning. It might be 
usefu l  t o  engineers of hel icopter  manufacturers and t o  s tudents  f o r  fur ther ing  
t h e i r  knowledge of t h e  v ibra t ions  and d y d c  s t r eng th  of hel icopters .  Certain 
sec t ions  of t he  book w i l l  be use fu l  a k o  t o  f l i g h t  and t echn ica l  staffs of heli
copter f l i g h t  units. 

There are 35 tables, i l l u s t r a t i o n s ,  and 47 references.  

Cand. Tech. Sci.  R.A.Mikheyev, Reviewer 

%- Numbers i n  t h e  margin ind ica t e  paginat ion i n  t h e  fore ign  text. 
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PREFACE L2 

The first volume of t h e  work "Helicopters, Calculation and Designl, pub
l i shed  i n  1966, was  devoted t o  aerodynamics: theory and methods of ca lcu la t ing  
t h e  aerodynamic cha rac t e r i s t i c s  of r o t o r s  and an  aerodynamic ca lcu la t ion  of 
hel icopters  of various configurations.  

T h a t  volume included a n  account of t h e  theory of r o t o r  f l u t t e r  which usual
l y  belongs t o  t h e  category of a e r o e l a s t i c i t y  - an  area between aerodynamics and 
mechanical s t rength.  

The present ,  second volume i s  a log ica l  cont inuat ion of t h e  first and i s  
devoted t o  v ibra t ions  and dynamic s t rengths  of hel icopters .  

The problems of t he  s t a t i c  s t r eng th  of hel icopters  con-prise no fundamental
ly  new aspects  i n  comparison G t h  what i s  known i n  a i r c r a f t  construction. With 
respect  t o  v ibra t ions  and dynamic s t rength,  hel icopters  exhib i t  a number of pe
c u l i a r i t i e s  which were recognized when they  first appeared as a new type of f ly
ing  machine. These p e c u l i a r i t i e s  loomed la rge  during - i f  one may use t h e  ex
press ion  - the  "s t ruggle  f o r  existence11 of this new type of c r a f t  i n  the  ove ra l l  
system of a i r  t ranspor t  m e a n s  not requir ing a i r f i e l d s .  

The r e c i t a l  of t h e  problems of v ibra t ion  and dynaxdc s t rength  of t h e  heli
copter  begins with a descr ip t ion  of a method of ca lcu la t ing  the  e l a s t i c  v i b r a 
t i o n s  of i t s  r o t o r  blade, which are similar i n  fundamental equations and methods 
of so lu t ion  t o  those used i n  t h e  theory of f l u t t e r  but have a d i f f e ren t  t rend 
s ince  ul t imately t h e  ca lcu la t ion  reduces mainly t o  a so lu t ion  of t h e  purely me
chanical  s t r eng th  problem, namely t o  a determination of variable s t r e s ses  ac t ing  
i n  t h e  blade, and then, with t h e  use of da ta  on the  f a t igue  limits of a spec i f i c  
s t ruc ture ,  t o  a determination of se rv ice  l i f e ,  i.e., blade l i f e .  

Problems of v ibra t ions  and dynamic s t r eng th  are important not only from the  
viewpoint of r e l i a b i l i t y  of t h e  c r a f t .  Also t h e  serv ice  l i f e  of machines, and 
hence t h e i r  economy, depends on t h e  so lu t ion  of these problems. 

I n  pa r t i cu la r ,  this volume examines current methods of ca lcu la t ing  e l a s t i c  
v ibra t ions  of a blade, performed on high-speed e lec t ronic  computers which per
mits determining t h e  variable s t r e s s e s  set up i n  t h e  blade. 

Invest igat ions of t h e  Itground resonancelt mode of #bration, jus t  as a study 
of t h e  vibrat ions of a s t ruc tu re ,  cons t i t u t e  t h e  p r i n c i p a l  theme of t he  theory 
of hel icopter  vibrat ions.  

Elimination of Ifground resonance" Vibrations which, i f  they arise and de
velop fur ther ,  lead t o  des t ruc t ion  of t h e  c r a f t  on t h e  ground and, i n  t h e  case 
of mul t i ro tor  configurations,  a l s o  i n  t h e  air, has always been one of t h e  main 
problems confronting t h e  designer. The p,roblem of Vibrations of he l icopter  
pa r t s ,  examined from t h e  viewpoint of crew and passenger comfort, i s  a l s o  quite 
inportant .  It is  not  d i f f i c u l t  t o  estimate t h e  acuteness of this problem when 
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thinking of t h e  power of t h e  constant source of such v ibra t ions  - a huge r o t o r  
operating i n  a highly variable ve loc i ty  f ield.  

The last chapter of this volume is  devoted t o  a ca l cu la t ion  of s p e c i a l  
bearings,  a necessi ty  i n  designing many of t h e  he l icopter  components and thus  
representing a t r a n s i t i o n a l  chapter t o  t h e  t h i r d  volume on IIHelicopter Designrv. 

The volume "Design11 w i l l  g ive a brief s tudy of t h e  main problems i n  layout 
of hel icopters ,  s e l ec t ion  of t h e  bas ic  parameters of he l icopters  including 
winged types, and auxiliary propulsion units such as t r a c t o r  propel le rs  o r  sup
plementary je t  engines. Economic considerations of av ia t ion  engineering, of im
portance i n  designing, w i l l  also be presented. 

T h i s  volume a l s o  presents  a discussion of problems of balancing, control la
b i l i ty ,  and s tab iEty  from t h e  viewpoint of s e l ec t ing  parameters f o r  t h e  con t ro l  
system, a s  w e l l  as problems of designing ind iv idua l  components of t he  hel icopter .  

The second volume Wibra t ions  and Dynamic Strength11 was w r i t t e n  by: 
Introduction, M.L.Mil, ; Chapter I, A.V.Nekrasov, Chaipters I1 and 111, L.N. 
Grodko; Chapter IV ,  M.A.Leykand. Sect ion ll of Chapter I was  w r i t t e n  by A.V. 
Nekrasov i n  c o ~ b o r a t i o nwi th  engineer Z.Ye .Shnurov. 

I n  preparing t h e  manuscript t h e  authors were a s s i s t ed  by engineers F.L. 
Zarzhevskaya, V.M .Kostromin, and I .V.Kurov. 

I n  this volume, we made use of t h e  r e s u l t s  of ca lcu la t ions  performed by 
engineers Yu .A .Myagkov, 0. P .Bakhov, V .F. Khvostov, S. A. Gohbtsov, V.M .Pchelkin, 
S.Ye .Sno, V.G.Pashkin, N.F.Shevnyakova, N.M.Kiseleva, L.V.Artamonova, V.F.Semina, 
N.A.Matske#ch, V. I.Kiryushkina, and A.G .Orlova. 

The reviewer, R .A.Mikheyev, offered many valuable coments . 
Engineer L.G.Rudnitskiy w a s  i n  charge of t h e  f inal  preparat ion of t h e  manu

s c r i p t  f o r  publ icat ion.  

The authors express t h e i r  s incere  g ra t i t ude  t o  these  coworkers. 
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A s  soon as an  a i r c r a f t  engine of s u f f i c i e n t  power and l i g h t  i n  weight had 
been created and t h e  first hel icopter  took of f  from t h e  ground, problems of 
balancing, con t ro l l ab i l i t y ,  and s t a b i l i t y  of this c r a f t  arose.  These were main
l y  aerodynamic problems. If we consider t h e  first f l i g h t  of de l a  Cierva,ts 
autogiros  i n  1925-1926 t o  be t h e  s ta r t  of f l i g h t  of rotary-wing a i r c r a f t ,  then  
we can say t h a t  t h e  s t a t e d  problems w e r e  mainly solved i n  t h e  first decade 
(1926-1936) of t h e i r  development. The new type of f ly ing  machine w a s  thus  cured 
of i t s  1lchildhood diseases11 . 

However, as soon as t h e  f irst  series-produced machines appeared and they  
w e r e  placed i n  service,  more ser ious def ic ienc ies  of hel icopters  became apparent 
such as, f o r  example, f a t igue  due t o  i n s u f f i c i e n t  dynamic s t rength  of c e r t a i n  
s t r u c t u r a l  members. 

New dynamic problems arose with t h e  wider p r a c t i c a l  use of autogiros and 
espec ia l ly  of hel icopters ,  which entered t h e  scene a t  t h e  end of t h e  Th i r t i e s  
and beginning of t h e  For t ies  on a new improved t echn ica l  basis. These probhms 
per ta ined pr imari ly  t o  osc i l l a t ions  and v ibra t ions  of ind iv idua l  s t r u c t u r a l  ele
ments and of t h e  he l icopter  as a whole, which are harmful owing t o  t h e  stresses 
set up i n  t h i s  case, o r  are impermissible from the  viewpoint of necessary crew 
and passenger comfort, and a l so  include t h e  problem of se rv ice  l i f e  of s t ruc
tural  elements operating under high var iab le  s t r e s ses .  The la t te r  problem, 
namely the  increase i n  serv ice  l i f e ,  i s  constant ly  gaining in importance 
s ince  t h e  amortization and o v e r a l l  l i f e  of a hel icopter ,  determined by t h e  l i fe 
times of i t s  components, has an e f f ec t  on t h e  cost-effectiveness i n  i t s  use as 
a means of t ranspor ta t ion .  The serv ice  l i f e ,  i n  turn,  i s  determined mainly by 
t h e  l e v e l  of t h e  var iab le  stresses set up i n  t h e  s t ruc tu re ;  therefore ,  t he  accu
racy with which these  are calculated i s  one of t h e  basic  problems of a dynamic 
s t r eng th  analysis of hel icopters .  

A t r a c t o r  p rope l l e r  of a conventional a i r c r a f t  operates p r a c t i c a l l y  i n  an  
axial flow and, l i k e  an engine, sets up no noticeable var iab le  stresses i n  t h e  
s t r u c t u r a l  members. Only takeoff ,  landing, and f l i g h t  under conditions of atmo
spheric  turbulence (and, on m i l i t a r y  a i r c r a f t ,  maneuvers) c r ea t e  appreciable 
dynamic loads on t h e  a i r c ra f t  s t ruc ture ,  'but at  r e l a t i v e l y  f e w  load cycles (of 
t h e  order of t ens  and hundreds of thousands of cycles)  during t h e  l ifetime of 
t h e  a i r c r a f t .  I n  this case, one can speak about repeated s t a t i c  loads. 

The loads on t h e  he l icopter  are @te d i f f e ren t .  Its main s t r u c t u r a l  
members are loaded dynamically, t h e  number of loadings o f t en  exceeding t e n s  of 
mil l ions of cycles  during its lifetime. T h i s  i s  due pr imar i ly  t o  t h e  asymmetric 
flow p a s t  t h e  ro tor ,  which r o t a t e s  and simultaneously advances. I n  so  doing, /6
t h e  blade i s  subject  t o  variable aerodynamic loads as a consequence of t he  change
i n  relative flow ve loc i ty  and angles of a t t ack  of i t s  sect ions.  A l l  forces  and 
moments ac t ing  on t h e  blade are t ransmit ted t o  t h e  hub and r o t o r  controls.  The 
forces  and moments a r r iv ing  from d i f f e ren t  blades are mutually compensated, wi th  
t h e  exception of loads ac t ing  with frequencies whose r a t i o  t o  t h e  r o t o r  rpm is  
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a mult iple  of t h e  blade number. These loads are t ransmit ted t o  t h e  fuselage 
and t o  t h e  nonrotating p a r t  of t h e  r o t o r  con t ro l  system and t h e r e  set up notice
able variable stresses * 

Thus, t h e  problem of v ibra t ions  and dynamic s t rengths  i n  hel icopter  con
s t r u c t i o n  i s  not only much broader than  i n  a i r c r a f t  construct ion but, i n  many 
cases, has no d i r e c t  analogy i n  t h e  latter. 

Recognition of t h e  importance of t h e  problems of dynamic s t rength  was not 
immediately obvious. Thus, even t h e  causes of t h e  first accidents  of autogiros  
i n  1936-1937, during which these  c r a f t  overturned i n  t h e  air, were a t t r i b u t e d  
f o r  long t o  i n s u f f i c i e n t  dynamic s t a b i l i t y .  In tkis respect ,  i n  pa r t i cu la r ,  in
ves t iga t ions  of t h e  d y d c s  of a r o t o r  wi th  hinged blades a t  curv i l inear  motion 
of  t h e  c r a f t  w e r e  undertaken (see  Sect.2, Chapt.11 of Vol.1). T h i s  theory later 
found wide appl ica t ion  i n  t h e  e labora t ion  of problems of dynamic s t a b i l i t y  and 
c o n t r o l l a b i l i t y  of hel icopters .  However, i t  never uncovered t h e  t r u e  cause of 
t h e  above-mentioned accidents .  A s  was subsequently rea l ized ,  t h e  cause was  in
su f f i c i en t  dynamic s t r eng th  of t h e  r o t o r  blades.  

These problems w e r e  recognized l i t e r a l l y  by hit and miss. The first experi
mental autogiros  and he l icopters  w e r e  small and thus had a r a t h e r  high s t r u c t u r a l  
r i g i d i t y .  However, t h e  first increase i n  s i z e  immediately encountered consider
able d i f f i c u l t i e s .  For instance,  on t h e  A-4 autogiro,  which had a diameter 
somewhat l a rge r  t han  its predecessor t h e  2EA autogiro,  se r ious  d i f f i c u l t i e s  arose 
owing t o  i n s u f f i c i e n t  t o r s i o n a l  r i g i d i t y  of t h e  blade. The blade angle, i n  t h e  
first f l i g h t ,  increased so much due t o  t o r s i o n a l  deformation t h a t  au toro ta t ion  
was impossible and t h e  f l i g h t  a h o s t  ended i n  crackup. 

The inves t iga t ion  of this phenomenon was completed with t h e  publ ica t ion  of 
a paper on t h e  dynamic tw i s t ing  of a r o t o r  blade i n  f l i g h t  [see (Ref .2) 1, i n  
which t h e  first suggestions were made as t o  t h e  necess i ty  of matching t h e  center  
of g rav i ty  and t h e  center  of pressure,  and i n  which considerations of t h e  e f f e c t  
of blade p r o f i l e  on s t a t i c  s tabi l i ty  and c o n t r o l l a b i l i t y  of t h e  c r a f t  were ex
amined. T h i s  i nves t iga t ion  resu l ted  i n  a s y m e t r i c  p r o f i l e s ,  ensuring a la rge  
reserve of autorotat ion,  which were adopted i n  t h e  engineering p rac t i ce  of Soviet 
he l icopter  construction. A set of d i f f e r e n t  p r o f i l e s  was used f o r  t h e  blade 
arrangement. The recommendations i n  the  above paper were s u f f i c i e n t  t o  prevent 
f l u t t e r  i n  t h e  first Soviet hel icopters  which had a r o t o r  span of about I-!+ m. 

The development of t h e  Soviet hel icopter  indus t ry  i s  characterized by 
l a rge r  s t eps  than  that of t h e  he l icopter  indus t ry  i n  o ther  countr ies  ( t h i s  a l s o  
enabled Soviet designers,  who had s t a r t e d  la ter  t o  build hel icopters ,  t o  c rea t e  
machines vas t ly  superior  t o  modern fo re ign  he l icopters  wi th  respect  t o  l i f t  
capacity and s i ze ) .  Whereas, after t h e  first successfu l  f l i g h t  of t h e  Sikorsky 
S-5l  with  a r o t o r  span of I-!+ m b u i l t  i n  1947, t he  Americans, i n  1950-1951, began 
working on a c r a f t  wi th  a r o t o r  of 15.5 m diameter ( S - 5 5 ) ,  t h e  Soviet designers,  
after c rea t ing  t h e  M i - 1  hel icopter  wi th  a &m ro tor ,  constructed as e a r l y  as 
1952 t h e  Mi-4 and Yak-& he l icopters  wi th  21-m ro to r s .  It i s  not surpr i s ing  
that such a jump i n  s i z e  led  t o  a new previously unencountered phenomenon: I n  
both c r a f t ,  t h e  r o t o r  began t o  f l u t t e r  during t h e  first takeoff .  We read i ly  
coped wi th  this problem, but problems of t h e  theory of f l u t t e r  had t o  w a i t  a 
long t i m e  f o r  solut ion.  
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We first encountered this new phenomenon i n  Apr i l  1952 with t h e  Mi-4 he=-
copter, when it was ready f o r  i ts  maiden takeoff .  A t  onset of overspeeding, 
t h e  blades began t o  f l a p  i n  a random manner, bending t o  an  ever increasing ex
t e n t  and threatening t o  s t r i k e  t h e  airframe. The test crew rea l ized  t h a t  this 
was a new phenomenon never before encountered. T h i s  cons t i tu ted  so-called 
f l u t t e r  of t h e  r o t o r  blades. A t  that t h e ,  no one thought of t h e  f a c t  t h a t  this 
was  t he  very same type of f l u t t e r  under study by many s c i e n t i s t s  i n  t h e  USSR and 
o ther  countr ies .  According t o  t h e  da t a  available a t  that time, f l u t t e r  was not 
expected s ince  it w a s  thought t o  arise at about 500 r p m  r a t h e r  than  a t  a r o t o r  
r p m  of 100-110, as ac tua l ly  happened i n  t h e  Mi-& hel icopter .  The dec is ive  
f a c t o r  f o r  t h e  occurrence of f l u t t e r  i n  this case w a s  t h e  f a c t  t h a t  t h e  la rge  
forces  generated on a r o t o r  of such a diameter produced appreciable deformation 
of t h e  swashplate of t h e  automatic p i t c h  contro1,which i s  equivalent t o  a de
crease i n  t o r s i o n a l  r i g i d i t y  of t h e  blades, and also t h e  f a c t  that a l a rge  
value of t h e  coef f ic ien t  of t h e  f lapping compensator ( c lose  t o  uni ty)  had been 
se lec ted  f o r  these  machines; this poin t  had been disregarded i n  e a r l i e r  inves t i 
gat ions of f l u t t e r .  A s  a r e s u l t  t he re  was no reason t o  th ink  of hel icopter  
f l i g h t s ,  s ince  f l u t t e r  set i n  appreciable before t h e  operating r p m  of t h e  r o t o r  
was reached, 

It became c lear ,  i n  studying the  p a t t e r n  of f l u t t e r  (flapping, bending, and 
twis t ing  of t h e  blades) t h a t  this phenomenon could be prevented only by u t i l i z 
ing  t h e  torques from t h e  i n e r t i a  forces  generated during displacement of the  
blade sec t ions  on flapping. Without associat ing r o t o r  f l u t t e r  with wing f l u t t e r  
where - as known f o r  long - t h e  mutual pos i t i on  of center  of gravi ty ,  f l e x u r a l  
axis, and center  of pressure i s  of prime importance, we simply attached counter
weights t o  seve ra l  po in ts  along t h e  blade length t o  c rea te  moments of i n e r t i a  
of opposite s i g n  during v ibra t ions  and then  repeated start-up of t h e  ro to r ;  we 
h e d i a t e l y  understood t h a t  we had i n  hand a reliable means of stopping f l u t t e r .  

Thus, wi th in  a shor t  t i m e  this problem was  p r a c t i c a l l y  solved, and by May
1952 t h e  first f l i g h t s  with t h e  Mi-4 hel icopter  w e r e  made. 

A t  t h e  same time, f l u t t e r  occurred a l s o  on the  Yak-& hel icopter  which had 
t h e  same hub and automatic p i t c h  con t ro l  a s d i d  theMi-4 hel icopter  but t he  
blades w e r e  of d i f f e ren t  design (with l a rge r  flexural and t o r s i o n a l  r i g i d i t y ) .  
However, as a consequence of t h e  f a c t  that t h e  r i g i d i t y  of t h e  automatic p i t c h  
con t ro l  and t h e  parameters of t h e  f lapping compensator were decis ive i n  t h e  oc
currence of f l u t t e r ,  we a l s o  encountered f l u t t e r  of t h e  very same form and a t  
t h e  same r p m  on t h e  blades of t h e  Yak-& hel icopter  as w e l l  as on t h e  Mi-& hel i 
copter. 

Thus, wi th in  seve ra l  weeks a p r a c t i c a l  so lu t ion  was  found f o r  preventing
flutter, which is  used even now. The s c i e n t i f i c  theory, however, t o  determine 
whether f l u t t e r  w i l l  o r  Will not occur and - i f  it did  OCCUT - a t  what rpm and 
i n  w h a t  form, was  developed by us during t h e  subsequent four  years.  

It should be s t a t e d  tht, after completion of s tud ie s  of f lutter on t h e  
ground (by shifting t h e  center ing of t h e  blade forward it was poss ib le  t o  tldrivef1 
it beyond t h e  M t s  of t h e  working r p m  and even beyond t h e  maxi” permissible 
rpm of t h e  engine on t h e  ground), t h e r e  s t i l l  ex is ted  t h e  p o s s i b i l i t y  of i t s  
occurrence i n  f l i g h t .  T h i s  l ed  t o  detr imental  happenings. I n  January 1953, 
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crash of a M i - 4  hel icopter  took place,  whose causes were not s a t i s f a c t o r i l y  /8
defined f o r  almost three years.  Inspection revealed t r a c e s  of impact of t h e  
blades on t h e  cockpit .  T h i s  had never been observed before. We should note 
that, during normal f lapping motion, t h e  blade does not come i n t o  contact with 
t h e  cabin unless t h e  lower r e s t r i c t o r s  of blade overhang o r  coning s tops  are 
ruptured i n  t h e  air. 

It i s  obvious t h a t  our search f o r  t h e  cause of this accident was d i l i gen t ,  
when r ea l i z ing  t h a t  t h e  c rash  d id  not stop e i t h e r  a c t u a l  f l i g h t s  o r  series pro
duction of this prototype. 

During 1954, a number of p i l o t s  observed an  unusual phenomenon i n  f l i g h t ,
which came t o  be known as IXalibernyy effect!! ( a f t e r  t h e  p i l o t  who was t h e  first 
t o  not ice  it). Kaliberqyy establ ished that i n  a power descent a t  a blade set
t i n g  angle of about 6 - yo,  t h e  blades began t o  f l a p  out of t h e i r  coning angle. 
T h i s  stopped after r e s e t t i n g  t h e  blades t h a t  had a somewhat d i f f e ren t  t ransverse  
centering. However, two years  later, when f l i gh t - t e s t ing  a set of blades f o r  
absence of t h e  IlKalibernyy ef fec t" ,  i.e., during a power descent with an  angle 
of p i t c h  of 6 - 703', this phenomenon became so  predominant, a t  such s t rong flap
ping of t h e  blades, t h a t  it was d i f f i c u l t  t o  make a forced landing with t h e  
c ra f t .  It should be mentioned here t h a t  c lose  t o  t h e  ground, upon changing t o  
another regime, t h e  blade f lapping stopped and t h e  c r a f t  behaved normally. A 
v i sua l  inspec t ion  of t h e  he l icopter  after t h e  f l i g h t  revealed ruptured blade 
foot ings (so-called movable s l o t t e d  t r a i l i n g  edge of t h e  blade),  which indicated 
bending of t h e  blade i n  t h e  plane of ro ta t ion .  Everything e l s e  was i n  good 
working order.  It was decided t o  make a de ta i l ed  checkout of this he l icopter  
wi th  t h e  same set of blades. Fl ight  tests were ca r r i ed  out t o  check and study 
this phenomenon. 

Measurements of t h e  blades showed t h a t  t h e  center ing had sh i f t ed  by about 
l$ of t h e  chord more rearward than  i ts  pos i t i on  a t  t h e  t h e  of t h e  blades leav
ing  t h e  manufacturer. T h i s  can be explained as follows: The blades were  
sheathed with plywood. The center  of g rav i ty  of plywood i s  about a t  50% of t h e  
chord. Therefore, as soon as t h e  wood s w e l l s  and increases  i n  weight due t o  t h e  
absorbed moisture, t h e  center  of g rav i ty  of t h e  e n t i r e  blade Will s h i f t  toward 
t h e  t r a i l i n g  edge. The above happening wi th  t h e  he l icopter  occurred i n  autumn 
when t h e  humidity was high. 

During these  tests it was a l s o  conclusively establ ished t h a t  t he  character  
of blade f lapping and t h e  motions of t h e  con t ro l  s t i c k  during f l i g h t  i n  a 
l%libernyy effect11 regime a r e  completely analogous t o  t h e  f lapping and motion 
of t h e  s t i c k  recorded i n  ground tests where blades are caused t o  f l u t t e r  by a n  
a r t i f i c i a l l y  created tail-heaviness.  T h i s  complex procedure made it poss ib le  t o  
e s t a b l i s h  t h a t  t he  phenomenon occurring i n  f l i g h t  was i d e n t i c a l  with t h a t  noted 
on the  ground. Thus it w a s  es tabl ished t h a t  t h e  IIKalibernyy e f f ec t "  i s  none 
other  t han  t h e  onset of f l u t t e r  i n  f l i g h t .  On t h e  basis of this conclusion it 
was conjectured t h a t  t h e  earlier unexplained f l i g h t  accident i n  which the  blades 
s t ruck  t h e  cockpit  was  a l s o  nothing else than  f l u t t e r  of t h e  blades i n  f l i g h t  
a r i s i n g  at a r o t o r  rpm a t  which it did not appear when operat ing on t h e  ground. 

4; On the Mi-& hel icopter ,  f l u t t e r  sets i n  pr imar i ly  i n  t h i s  regime. 
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The vibrat ions of a hinged blade i n  f l u t t e r ,  unlike t h e  v ibra t ions  of a 
conventional a i r c r a f t  Wing, are capable of a f lapping motion whose amplitude 
builds up u n t i l  t h e  blade impacts on t h e  coning s tops  and, after breaking these,  
strikes t h e  cabin. 

That this phenomenon w a s  not uncovered f o r  a long t ime can be a t t r i b u t e d  La 
t o  t h e  erroneous assumption based onmodel tests t h a t ,  if f l u t t e r  on t h e  ground 
is  e l imina ted , i t  cannot occur i n  air during forward motion. However, p r a c t i c a l  
experience and, later, more rigorous experiments with hel icopters  and, f i n a l l y ,  
corresponding theo r i e s  have shown t h a t  t h e r e  are f l i g h t  regimes i n  which f l u t t e r  
a t  the  operating rpm of t h e  r o t o r  Will not occur on t h e  ground but may occur i n  
f l i g h t .  

It should be s t a t ed  t h a t ,  as establ ished i n  invest igat ions,  t he  phenomenon 
of f l u t t e r  a l s o  had been observed earlier on hel icopters .  Already i n  1949, t h e  
Mi-1 hel icopter  was equipped with a r o t o r  wi th  wider blades t o  increase t h e  
s a f e t y  f a c t o r  r e l a t i v e  t o  flow separation. I n  f l i g h t ,  this r o t o r  produced buf
f e t i n g  which could not be eliminated. After t h e  theory of f l u t t e r  had been 
worked out and a l l  aspects  of this phenomenon had been c l a r i f i e d ,  it became pos
s i b l e  not only t o  a t t r i b u t e  t h e  j o l t i n g  of t h e  M i - 1  hel icopter  with wide blades 
t o  an  approach of t h e  regime t o  f l u t t e r  but also,and without fu r the r  d i f f i c u l t y ,  
t o  design and construct ( i n  1956) a 35-meter r o t o r  f o r  t h e  Mi-6 and Mi-10 hel i 
copters.  Perfect ion of this r o t o r  was  confirmed by t h e  f a c t  t h a t  a week af ter  
t h e  i n i t i a l  takeoff t h e  new heavy Mi-6 he l icopter  was  able t o  complete t h e  t r a in 
ing  f l i g h t  f o r  p a r t i c i p a t i o n  i n  t h e  Air Parade on Aviation Day a t  Tushino. 
Neither then  nor l a t e r  d id  anything detrimental ,  associated with f l u t t e r ,  occur 
with these  c r a f t .  T h i s  cons t i t u t e s  t h e  h i s t o r i c a l  aspect of t h e  f l u t t e r  problem. 

Of no less importance i s  t h e  problem of determining var iab le  s t r e s s e s  i n  
blades, which i s  solved by studying t h e i r  forced v ibra t ions .  

During t h e  first decade of t h e i r  development, hel icopter  rotors were actual
l y  designed without preca lcu la t ion  of variable s t r e s s e s  a r i s i n g  i n  f l i g h t .  A t  
t h a t  t i m e ,  ca lcu la t ion  was cumbersome and inaccurate  and o f t en  completed only 
after t h e  c r a f t  w a s  a t  t h e  a i r f i e l d .  It was only t h e  development of computa
t i o n a l  methods f o r  var iab le  stresses, allowing t h e  use of high-speed d i g i t a l  
computers, t h a t  permitted designing blades wi th  de l ibe ra t e  s e l ec t ion  of r i g i d i t y  
and mass d i s t r i b u t i o n  so as t o  avoid harmful resonance, reduce t h e  stress leve l ,  
and thus ensure long serv ice  l i f e  and blade r e l i a b i l i t y .  

It should be noted t h a t  refinement of stress ana lys is  f o r  blades led  t o  
f u r t h e r  development i n  depth and e labora t ion  of t h e  aerodynamic theory. As 
s h m  i n  t h e  first volume, refinement of t h e  ca l cu la t ion  of f l i g h t  da t a  d id  not 
make it necessary t o  develop t h e  c o q l e x  and cumbersome vortex theory of a ro to r .  
Nevertheless, it i s  only t h e  vortex theory t h a t  permits determining t h e  nonuni
formity of t he  induced ve loc i ty  f ield,  causing variable blade loading a t  fre
quencies that exc i t e  f l e x u r a l v i b r a t i o n s  of t h e  blades of second, t h i rd ,  and 
higher harmonics. Therefore, i n  stress analysis, only t h e  vortex theory can 
give r e s u l t s  c lose t o  those observed i n  reality. 

Vibrations cons t i tu ted  another no less important problem. This problem has 
always been one of t h e  most d i f f i c u l t  i n  t h e  development of r o t a r y  wing a i r c r a f t .  

5 



Dozens of Soviet and fo re ign  designs, i n t e r e s t i n g  from t h e  Viewpoint of concep
t i o n  and f l i g h t  data,  never came t o  completion owing t o  t h e  high level of vi
bra t ion .  

I n  conventional a i r c r a f t ,  t h e  sources of v ib ra t ion  are not as powerful as 
i n  hel icopters .  Furthermore, both engines and p rope l l e r s  which are t h e  main 
v ib ra t ion  e x c i t e r s  i n  conventional a i r c r a f t  can be adequately i so l a t ed  from t h e  
s t r u c t u r e  by means of s p e c i a l  shock absorbers.  High-frequency resonance
produced by such e x c i t e r s  can be eliminated quite e a s i l y  by comparatively minor

/Ip 
modifications of t h e  s t ruc tu re .  I n  a hel icopter ,  i n  add i t ion  t o  t h e  f a c t  t h a t  
t h e  per turbing forces  produced by t h e  r o t o r s  are appreciably grea te r  than i n  a 
conventional a i r c r a f t ,  t h e  frequencies from the  slowly ro t a t ing  r o t o r  are r a t h e r  
l o w  and, i n  combination wi th  t h e  n a t u r a l  o s c i l l a t i o n  frequencies of t h e  fuselage,  
engine, wing, or t a i l  un i t ,  give rise t o  resonance leading t o  appreciable vibra
t i o n s  with an  amplitude of displacement which, i n  s teady f l i g h t  regimes, reaches 
magnitudes of t h e  order  of 0.3 - 0.4 rmn and i n  short-time regimes, p r i o r  t o  
landing of t h e  hel icopter ,  even 1 - 2 mm i n  t h e  crew cabin. 

Resonance wi th  fundamental tones of t h e  natural fuse lage  vibrat ions o f t e n  
are p r a c t i c a l l y  impossible t o  damp out by changing t h e  r i g i d i t y  of t h e  s t r u c t u r e  
i n  an  already bui l t  machine. Therefore, it i s  w o r t a n t  t o  make a cor rec t  esti
mate of t h e  natural v ib ra t ion  frequency of t h e  fuselage and t o  ca lcu la te  t h e  
v ib ra t ion  amplitude i n  designing t h e  c ra f t .  

I n  overcoming v ibra t ions ,  main emphasis m u s t  be on reducing t h e  magnitudes 
of variable forces  produced by t h e  r o t o r  and ac t ing  on t h e  fuselage.  These 
forces  are caused by blade vibrat ion.  31 turn,  such blade vibrat ions may be 
l a r g e r  or smaller depending on t h e  closeness of t h e i r  natural frequencies t o  t h e  
frequencies of t h e  external exc i t a t ion  sources. 

I n  a l l  cases, closeness t o  resonance w i l l  lead t o  an increase i n  blade 
stresses. However, i f  t h e  v ibra t ions  occur with t h e  harmonic frequency zb + 1 
( o r  zb- 1 for vibra t ions  i n  t h e  plane of r o t a t i o n  of t h e  r o t o r )  o r  with t h e  
harmonic frequency zb f o r  v ibra t ions  i n  t h e  f lapping plane (where zb i s  t h e  
number of blades),  t hen  t h e  forces  are s m e d  and t ransmit ted over t h e  hinges 
t o  t h e  hub and t h r o u g h ' i t  t o  t h e  fuselage,  causing v ibra t ion .  

Ver t i ca l  vibrat ions,  which are t h e  type most disagreeably perceived by man, 
are l a rge ly  caused by fo rces  ac t ing  i n  t h e  plane of r o t a t i o n  of t h e  ro tor ,  s ince  
these  forces,  applied high above t h e  center  of g rav i ty  of t h e  helicopter,  c r ea t e  
appreciable moments that exc i t e  flexural v ibra t ions  of t h e  fuselage.  I n  this 
case, it i s  natural t h a t  t h e  g rea t e s t  Vibration amplitudes (antinodes) are 
reached at t h e  ends of t h e  fuselage and hence i n  t h e  cockpit .  

It was  found that, i n  determining t h e  natural v ibra t ion  frequencies of 
hel icopter  blades, it must be considered t h a t  t h e  r o t o r  hub does not remain 
f ixed  during t h e  v ib ra t ion  s ince  it i s  at tached t o  an  e l a s t i c  fuselage.  Thus, 
i n  an  ana lys i s  of vibrat ions,  t h e  c r a f t  should be t r e a t e d  as a s ing le  dynamic 
sys temwith  e l a s t i c  blades hinged t o  a hub at tached t o  an  e l a s t i c  fuselage.  

It i s  obvious that it i s  only lately that such a ca l cu la t ion  scheme could 
be developed and made available f o r  study. A s  far as we know, we are t h e  first, 
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i n  this book, t o  present a method of ca lcu la t ing  he l icopter  vibrat ions i n  t h e  
design s tage,  

Later i n  this volume, we w i l l  d iscuss  self-exci ted osc i l l a t ions  of a heli
copter, general ly  known as Itground resonance" 

Designers first encountered t h e  phenomenon of ground resonance more than 
30 years ago when one of t h e  first Soviet autogiros,  t h e  A-6 (designed by V.A. 
Kuznetsov), was equipped wi th  low-pressure t i res  which w e r e  new at that t i m e .  
The oleo s t r u t s  were removed from this hel icopter .  An unexpected v ibra t ion  oc
curred i n  t h e  first takeoff  attempt. The he l icopter  rocked from wheel t o  wheel 
at constant ly  increasing amplitude, f inally jumping upward so t h a t  t h e  wheels 
broke contact with t h e  ground. The takeoff ended i n  failure. 

Since t h e  tests w e r e  recorded by a motion-picture camera, it was possible  /11 
t o  e s t a b l i s h  t h a t  t h e  blades had executed increas ingly  s t ronger  v ibra t ions  about 
t h e  drag hinge. These vibrat ions,  which occurred i n  a cent r i fuga l  force  f i e l d ,  
produced a per iodic  displacement of t h e  center  of g rav i ty  of t h e  e n t i r e  l i f t i n g  
system r e l a t i v e  t o  t h e  center  of t h e  hub and thus exci ted vibrat ions of t h e  heli
copter  standing on t h e  ground. It i s  obvious that, if t h e  frequency of dis
placements of t h e  r o t o r  center  of g rav i ty  coincides with t h e  frequency of mtu
r a l  v ibra t ions  of t h e  he l icopter  on pneumatic tires, such vibrat ions a r e  able 
t o  increase.  It would seem t h a t  t h e  phys ica l  aspect of t h e  phenomenon i s  c lear .  
The energy that fed  these  increasing v ib ra t io r s  w a s  e i t h e r  t h e  energy of t h e  
engine turn ing  t h e  r o t o r  or,  wi th  t h e  engine cut out, t h e  k ine t i c  energy of t h e  
ro t a t ing  ro to r .  

However, numerous inves t iga t ions ,  which are s t i l l  i n  progress, were needed 
t o  develop t h e  theory of ground resonance and t o  s tudy i ts  new manifestations, 
poss ib ly  i n  new bas i ca l ly  d i f f e r i n g  configurations and s t ruc tu res .  

The first t h e o r e t i c a l  work explaining t h e  nature of se l f -osc i l la t ions  of 
t h e  "ground resonancell type was done as ea r ly  as 1936 by 1.P.Bratukhin and B.Ya. 
Zherebtsov. I n  pa r t i cu la r ,  t h e  r e s u l t s  of t h e i r  inves t iga t ions  made it poss ib le  
t o  eliminate ground resonance i n  t h e  world's l a rges t  autogiro,  t h e  A-15 wi th  a 
r o t o r  span of 18 m which was constructed i n  1936 from t h e  design by V.A.Kuznetsov 
and M.L.Milf. In t h e  design of t h e  hub of this autogiro,  spr ings mounted t o  t h e  
bhde-v ibra t ion  r e s t r i c t o r  around t h e  drag hinge were used. The spr ings were 
given t h e  na tu ra l  v ib ra t ion  frequency of t h e  blades i n  t h e  plane of rotat ion,  
which eliminated Itground resonancelt. 

There i s  no doubt that, a t  t h e  t i m e ,  t h e  phenomenon of ground resonance was 
a l s o  known i n  the  Western Countries and had undergone some study there ,  s ince  
even t h e  first successful  de la Cierva autogiros,  f o r  example the  C-19, had 
e l a s t i c  couplings (shock absorbers) connected t o  t h e  blades over f r i c t i o n  
dampers. 

However, many designers continued f o r  some time t o  produce autogiros with
out dampers i n  t h e  drag hinges. A model of such a machine was t h e  A-7 autogiro 
developed i n  1937 by N.I.Kamov. It made successful  f l i g h t s  without dampers on 
t h e  r o t o r  hub. The sec re t  of t h e  success w a s  t h e  f a c t  that this was  t he  first 
t i m e  a t r i c y c l e  landing gear  was used, which ensured a p r a c t i c a l l y  v e r t i c a l  
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pos i t i on  of t h e  r o t o r  ax is  during engine r e w i n g  before takeoff  and after t h e  
landing stop. This caused small i n i t i a l  per turba t ions  due t o  de f l ec t ion  of t h e  
blades i n  t h e  plane of ro ta t ion ,  s ince  t h e  in i t ia l  def lec t ions  of t h e  blades are 
produced by t h e  p ro jec t ion  of t h e  force of g rav i ty  onto t h e  plane of ro t a t ion .  
Another important po in t  was t he  f r i c t i o n  force  i n  t h e  hinges (at t h a t  tine, 
bronze bushings were used i n  t h e  hinges), which cannot be disregarded i n  t h e  
presence of appreciable cent r i fuga l  forces;  i n  this case they  produced suffi
c i e n t l y  la rge  damping. On one occasion, t he  p i l o t  S.A.Korzinshchikov after one 
of t h e  f l i g h t s  forgot  t o  push t h e  con t ro l  s t i c k  immediately after landing and 
thus  did not change t h e  c r a f t  from a three-point landing ( t a i l  skid and main 
landing gear) t o  a standard pos i t i on  (with support on t h e  f r o n t  leg) ;  ground 
resonance occurred after subsequent decrease i n  r o t o r  rpm aJing t o  t h e  la rge  
i n i t i a l  disturbance i n  blade def lec t ions  i n  t h e  plane of r o t a t i o n  ( the  axis of 
r o t o r  r o t a t i o n  w a s  inc l ined  at an angle of 14." t o  t h e  ground), causing t h e  
blades t o  break and t h e  hel icopter  t o  be damaged. 

Thus, t he  problem assumed constant ly  newer aspects  from one experimental 
model t o  another. 

Since, a t  t h a t  time, no exact ca lcu la t ion  of t h e  required damping of blade 
vibrat ions exis ted ( i n  t h e  presence of ground resonance vibrat ions,  t h e  damping 
of vibrat ions of t h e  c r a f t  by shock absorbers on t h e  landing gear i s  of equal /12
importance), designers attempted t o  s e l e c t  a minimum value of t h e  f r i c t i o n  
moment of t h e  hub damper. T h i s  w a s  d ic ta ted  by t h e  d e s i r e  t o  reduce var iab le  
bending moments set  up i n  t h e  presence of a damper during forced v ibra t ions  of 
t h e  blades i n  f l i g h t .  

A s  i s  known, f r i c t i o n  dampers cause v ibra t ions  a t  threshold exc i ta t ion .  
If t h e  exc i t a t ion  i s  small, %.e., t h e  exc i ta tory  moment i s  smaller than  t h e  
f r i c t i o n  mment, no v ibra t ions  Will appear. However, v ibra t ions  may suddenly 
arise i n  a hel icopter  which i s  fail-proof with respect  t o  ground resonance and 
had already been i n  a c t u a l  service.  This can be a t t r i b u t e d  t o  t h e  f a c t  t h a t ,  
i n  a given case, t he  i n i t i a l  per turbat ions may be g rea t e r  than  usual. This case 
occurred i n  t h e  M i - 1  hel icopter  when tax i ing  obl iquely across  deep r u t s  made by 
a t ruck.  I n  t h i s  case, a random disturbance of tilt s t rongly  rocked t h e  c r a f t  
on i t s  pneumatic tires, causing it t o  acquire such l a rge  v ib ra t ion  amplitudes 
t h a t  t he  ava i lab le  damping i n  t h e  hub became inadequate and ground resonance 
arose. The p i l o t  G.A.Tinyakov remedied this i n  a simple manner by taking o f f ;  
this stopped t h e  v ibra t ions  s ince  t h e  e l a s t i c  coupling, i.e., t h e  coupEng with 
t h e  ground, w a s  broken. 

This case suggested t h e  need f o r  making use of viscous f r i c t i o n ,  i.e., in
s t a l l i n g  hydraulic blade v ibra t ion  dampers i n  t h e  hub, f o r  which t h e  moment of 
f r i c t i o n  does not remain constant but increases  wi th  t h e  vibration amplitude. 

However, p rac t i ce  constant ly  required improvement and development of t h e  
theory i n  this area.  One merely need r e c a l l  t h e  generat ion of ground resonance 
when t h e  he l icopter  i s  attached t o  i t s  moorings, wi th  t h e  engine operating. 

Several  cases  of ground resonance were observed a l s o  when t h e  wheels of t h e  
helicopter,  i n  t d i n g  during takeoff o r  landing, had only s l i g h t  ground contact, 
so that t h e  propulsive force  of t h e  r o t o r  cane c lose  t o  t h e  weight of t h e  c r a f t  
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and t h e  shock s t r u t s  w i th  t h e  usua l  pret igMening w e r e  f u l l y  extended. The dif
ference between t h e  weight and t h e  propulsive force of t h e  c r a f t  was absorbed 
only by t h e  pneumatic tires. 

It i s  obvious tha t ,  i n  this case, not only W i l l  t h e  v ibra t ion  frequencies 
of t h e  c r a f t  change but t he re  a l s o  W i l l  be no damping of t h e  s t r u t s .  Thus, 
ground resonance occurred here which had never been observed i n  a hel icopter  
t h a t  was  not moored o r  was  not taxiing, a t  very small wheel loading. 

To avoid such cases, we began using so-called two-chamber landing-gear 
s t r u t s ,  which were shock s t r u t s  provided with a second low-pressure chamber f o r  
absorbing t h e  v ib ra t ion  energy of t h e  c r a f t  when it made only s l i g h t  ground con
t a c t  with t h e  pneumatic tires w h i l e  t h e  main s t r u t s  were not operative.  

Problems of t h e  theory of ground resonance are espec ia l ly  important f o r  
twin-rotor configurations when t h e  e l a s t i c  system coupling both rotors ,  be it 
t h e  fuselage i n  t h e  fore-and-aft o r  t h e  Wing i n  t h e  side-by-side configuration, 
has low natural v ib ra t ion  frequencies.  In t h e  presence of such vibrat ions,  ap
prec iab le  displacements of the  ro to r  hub may take  place,  creat ing t h e  poss ib i l i t y  
of energy t r a n s f e r  between blade osc i l l a t ions  and o s c i l l a t i o n s  of t he  l i f t i n g  
s t ruc tu re .  Vibrations of this type are poss ib le  not only on the  ground but a l s o  
i n  f l i g h t .  

A similar problem arises i n  designing t a i l  ro to r s  wi th  drag hinges mounted 
t o  a f l e x i b l e  t a i l  boom. 

The development of harmonic and improved c r a f t  i s  poss ib le  only if t h e  de
s igner  i s  s u f f i c i e n t l y  competent not only i n  general  problems of design but  a l s o  
i n  s p e c i a l  problems having t o  do wi th  t h e  theory and ca l cu la t ion  of t h e  ind i - ,&3
vidual  elements. 

A modern he l icopter  contains many e s s e n t i a l  highly loaded mechanical com
ponents whose r e l i a b i l i t y  and serv ice  l i f e  depend i n  many respects  on the  per
formance of t h e  bearing assemblies. Consequently, he l icopter  designers should 
be familiar with t h e  theory and ca lcu la t ion  of roller bearings. This p e r t a i n s  
s p e c i f i c a l l y  t o  cases of t h e  work of r o l l e r  bearings i n  complex combinations of 
ex te rna l  loads and i n  t h e  presence of rocking motion of low amplitude. 

For this reason, we included a chapter giving answer t o  problems of t h e  
theory and ca lcu la t ion  of bearing assembPies of hubs, cyc l i c  p i t c h  control,  and 
o ther  un i t s .  One of t h e  most i n t e r e s t i n g  problems described i n  Chapter I V  i s  
t h e  theory of s p e c i a l  t h r u s t  r o l l e r  bearings i n  which, owing t o  t h e  pos i t ion ing  
of t h e  r o l l e r s  a t  an  angle t o  t h e  r a d i a l  d i rec t ion ,  t h e  cage - during t h e  rock
ing  motion - not only v ibra tes  along w i t h  t h e  movable c o l l a r  but a l s o  continu
ously r o t a t e s  i n  one d i rec t ion .  This prevents l o c a l  wear of t h e  raceways and 
increases  t h e  l ifetime of t h e  bearing. 

It should be noted t h a t  t h e  use of such bearings i n  t h e  feather ing hinge 
of r o t o r  hubs r e su l t ed  i n  a n  appreciable increase  i n  se rv i ce  Life. 

Hellcopter engineering requires a high general  level of t h e o r e t i c a l  and 
s c i e n t i f i c  training of t h e  design engineer, s ince  dynamic problems a r e  of much 
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g r e a t e r  importance f o r  he l icopters  ( r o t a r y  wing a i r c r a f t )  than  f o r  regular  air
craft (pro to t  es wi th  f ixed  wing, although l a t e l y  a l s o  including tilt wings and 
variable sweq?. T k i s  i s  confirmed by t h e  fact t h a t  t h e  f e w  designers who made 
notable contr ibut ions t o  t h e  development of he l icopter  engineering and especial
l y  those who had p r a c t i c a l  success, were simultaneously outstanding s c i e n t i f i c  
t h e o r i s t s .  These include B.N.Yurtyev, Prof.  A.M.Cheremukhin, and Prof.  I.P. 
b a t u k h i n  who, i n  t h e  Thirties, w e r e  t h e  developers of t h e  first Soviet hel i 
copters  from t h e  lEA t o  t h e  I lEA prototypes;  Prof.  Focke, t h e  designer of t h e  
FW-61 and FA-223 he l icopters  i n  Germany; one of t h e  pioneers  of av ia t ion  Louis 
Breguet; Prof. Doran who created t h e  first f iench  hel icopters ;  and many others .  

It should be noted t h a t  t h e  present  level of t h e o r e t i c a l  t r a in ing  of de
s igners  working for t h e  foremost he l icopter  engineering firms of t he  world i s  
very high, as far as can be judged from t h e  l i t e r a t u r e .  For this reason, ne i the r  
t h e  engineer-calculator nor t h e  designer working i n  he l icopter  engineering should 
have any d i f f i c u l t y  i n  ass imi la t ing  t h e  material presented below. 

The authors hope t h a t  this second volume w i l l  f i n d  readers  and be found 
useful.  

+$ +$ 
K 

The i n s e r t s  show photographs of t h e  main Soviet  hel icopters  i n  series pro
duction. These are t h e  first Soviet series-produced hel icopters  with p i s t o n  
engines M i - 1  and Mi-4, developed i n  1949 and 1952. Having been produced i n  
la rge  numbers, t hese  prototypes range now among t h e  most widespread var ian ts  of 
hel icopters .  

Other photographs show t h e  Mi-6 hel icopter  wi th  two turboprop engines /uc
developed i n  1957 and t h e  Mi-10 hel icopter  (1962) which i s  a f ly ing  crane wi th  
a high landing gear,adapted f o r  l i f t i n g  and t ranspor t ing  heavy s t o r e s  r i g i d l y  
mounted on t h e  underbelly. I n  1965, a world l i f t i n g  record f o r  hel icopters  w a s  
es tabl ished with this cargo c r a f t :  25 tons  were l i f t e d  t o  a height of 2830 m. 

The next p i c tu re s  give t h e  Mi-2 and Mi-$ he l icopters  which are a second 
generation of Soviet l i g h t  and medium versions.  The l i f t i n g  systems of t he  
M i - 1  and Mi-4 were re ta ined  on these,  but t h e  s ing le  p i s t o n  engine was  replaced 
by two turboprop engines. 
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CHAPTER I /15 
ELASTIC VIBRATIONS AND BLADE STFENGTH 

Calculation of e l a s t i c  Vibrations i s  a necessary element i n  t h e  process of 
developing new blade designs. It forms an inseparable  p a r t  of t h e  ca lcu la t ion  
of blade s t rength.  

To develop he l icopter  blades it i s  necessary t o  solve many preserrtly quite 
complex technological  and designproblems. I n  t h e i r  solut ion,  account must be 
taken of t h e  most d iverse  requirements and pr imar i ly  of t h e  requirement of high 
fa t igue  s t r eng th  of t h e  s t ruc tu re .  

The work of designing blades usual ly  involves t h e  following basic  s teps:  
Select ion of materials f o r  ind iv idua l  s t r u c t u r a l  members,  determination 
of optimal parameters, and design of t h e  blade. 
Se lec t ion  of t h e  best technological  processes ensuring highest f a t igue  
s t r eng th  of i t s  main s t ressed  elements, and manufacture of t h e  blade. 
Fl ight  t e s t s  wi th  ana lys i s  of stresses set up i n  f l i g h t .  
Dynamic tests and evaluat ion of t h e  blade serv ice  l i f e .  
Performance of t h e  complex of f ina l i z ing ,  including work on reduction 
of ac t ive  s t r e s s e s  and increase  i n  fa t igue  s t r eng th  of t h e  s t ruc tu re .  
Acceptance tests and start of series production. 
Analysis of operat ion of series-produced blades under various high-load 
and endurance conditions and layout of f i n a l  designs f o r  blade s e r i e s  
based on t h e  a n a l y t i c a l  da ta .  

Calculations of e l a s t i c  blade vibrat ions are required a t  many s tages  of 
this work, but pr imar i ly  a t  t h e  i n i t i a l  s tage  which terminates with t h e  a c t u a l  
blade design. 

I n  se l ec t ing  t h e  blade parameters and i t s  s t r u c t u r a l  materials,  one of t h e  
main c r i t e r i a  i s  t h e  magnitude of a l t e rna t ing  stresses s e t  q~ i n  f l i g h t  and t h e  
co r re l a t ion  between these  s t r e s s e s  and others  character iz ing t h e  f a t igue  s t r eng th  
of t h e  s t ruc ture .  It i s  only by ca lcu la t ions  t h a t  t h e  magnitude of these  
s t r e s s e s  can be determined and an  estimate made of t h e  s t r eng th  of t h e  s t ruc tu re  
a t  this stage.  To design t h e  blade wi th in  t h e  required - usual ly  r a the r  shor t  -
period,  t he  designer should have ava i lab le  modern methods and computational 
means t o  obta in  a rapid so lu t ion  t o  any number of poss ib le  problems. 

O f  similar importance i s  t h e  ca lcu la t ion  i n  t h e  f i n a l i z i n g  s tage.  A s  a 
ru le ,  i n  new blade designs t h e  variable stresses are excessive, confronting t h e  
designer with t h e  problem of t h e i r  reduction. For this, the  occurrence pat- /16
t e r n  of s t r e s s e s  measured i n  f l i g h t  must be confirmed by calculat ion,  followed 
by devising means f o r  t h e i r  reduct ion by varying sme of t h e  parameters. To 
attempt a so lu t ion  of this problem without ca lcu la t ion  general ly  means excessive 
loss  of t i m e  i n  checking unverif ied assumptions and w a s t e  of considerable funds 
i n  manufacturing a blade that might be re jec ted  after f l i g h t  t e s t i n g .  
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A reduction of a l t e rna t ing  stresses i s  extremely important and permits not 
only an increase i n  t h e  r e l i a b i l i t y  and serv ice  l i f e  of t h e  blade but a l s o  a n  
improvement inmechan ica l  and f l y i n g  cpalities of a he l icopter  such as, f o r  
example, f l y ing  speed and l i f t  capacity,  which i n  modern he l icopters  are o f t e n  
l imi ted  because of s t r eng th  conditions.  

Solution of a l l  t hese  problems would not be excessively d i f f i c u l t  i f  t h e  
ca lcu la t ion  r e s u l t s  would s u f f i c i e n t l y  w e l l  coincide With those observed during 
in- f l igh t  stress ana lys is .  Unfortunately, this i s  not always t h e  case s ince  
ca l cu la t ion  does not necessar i ly  give r e s u l t s  s a t i s f a c t o r y  f o r  p rac t i ce .  

Calculations f o r  determining t h e  na tu ra l  v ib ra t ion  frequencies a r e  most 
reliable. Usually, an  accuracy of t h e  order of *2% i s  achieved. Therefore, a l l  
ca lcu la t ions  on t h e  exclusion of resonance y i e ld  high r e l i a b i l i t y .  C a l c u l a  
t i o n s  of a l t e rna t ing  stresses a t  c ru is ing  and maxi" f l y i n g  speeds are notice
ably l e s s  r e l i a b l e .  The stress values obtained i n  these  ca lcu la t ions  usua l ly  
a re  15-25% lower than  stresses measured i n  f l i g h t .  Consequently, t h e  s t r e s s  
analyses i n  these  regimes do not always s a t i s f y  t h e  designer.  Nevertheless, t h e  
e r r o r  can be compensated t o  a c e r t a i n  extent by introducing i n t o  t h e  ca l cu la t ion  
a correct ion allowing f o r  a constant divergence from experiment. 

A s t i l l  g rea t e r  e r r o r  i s  poss ib le  i n  ca lcu la t ions  of a l t e rna t ing  stresses 
a t  low flying speeds. 

It i s  obvious from t h e  above that t h e  ca l cu la t ion  methods f o r  a l t e rna t ing  
blade stresses require f u r t h e r  e laborat ion.  Nevertheless, p rac t i ce  has shown 
t h a t  parameter s e l e c t i o n  and blade f in i sh ing  without even these  imperfect methods 
i s  r a the r  i ne f f ec t ive .  Therefore, this Chapter W i l l  g ive a de ta i l ed  account of 
various ca l cu la t ion  methods. In  our opinion, this W i l l  give t h e  reader an  idea  
of a l l  f ea tu res  of blade loading i n  f l i g h t ,  sharing poss ib le  approaches f o r  
calculat ion,  f o r  determining and estimating t h e  advantages and shortcornings of 
various methods and, f i n a l l y ,  providing engineers concerned with such problems 
bases f o r  extension of s tud ie s  and improvements of ca l cu la t ion  methods. 

Along wi th  a descr ip t ion  of various methods of ca lcu la t ing  e l a s t i c  blade 
vibrat ions,  on which main emphasis i s  placed, this Chapter a l s o  presents  t h e  
bas i c  p r inc ip l e s  of stress analysis f o r  blades and of se rv ice  l i f e  determination 
(Sect .1I.). 

With respect  t o  spec i f i c  da ta  on t h e  s e l e c t i o n  of blade parameters, we 
thought it preferab le  t o  include this problem i n  t h e  Sect ion :!Blade Design11 
forming p a r t  of t h e  third volume of this book. 

Sect ion 1. Problems of Calculation, Basic Assumptions, and 
Derivation of D i f f e req t i a l  Equations of Blade 
BendinE Deformations 

1. Ultimate Pumose of Calculating E l a s t i c  Blade Vibrations 

The ca l cu la t ion  of e l a s t i c  blade v ibra t ions  i s  necessary i n  solving a 
number of problems created i n  t h e  designing and debugging of a hel icopter .  The 
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most important of these  i s  t h e  problem of determining a l t e rna t ing  blade bending 
stresses. Determination of t hese  stresses forms t h e  major p a r t  of t h e  s t r eng th  
calculat ion.  Therefore, t h e  main problem i n  this Chapter i s  t o  determine t h e  /1-7
elastic v ibra t ions  of a blade f o r  ca lcu la t ing  i t s  s t rength.  

A determination of blade v ibra t ions  i s  necessary a l s o  f o r  solving many 
o ther  problems. Without ca lcu la t ing  these  v ibra t ions  it i s  impossible t o  deter
mine t h e  loads ac t ing  on t h e  hel icopter ,  t h e  hub, i t s  controls ,  and on t h e  
transmission of t h e  engine dr ive .  A determination of alternate loads exerted 
on t h e  hel icopter  by t h e  r o t o r  blades l a rge ly  solves t h e  problem of analyqing 
he l icopter  vibrat ions.  

Also of i n t e r e s t  is t h e  problem of t h e  e f fec t  of blade vibrat ions on t h e  
handling qualities of t h e  hel icopter .  The l imi ta t ions  inposed on t h e  f l y i n g  
qualities by f l o w  separat ion due t o  t h e  r o t o r  blades are determined pr imari ly  
by t h e  permissible amplitude of blade v ibra t ions .  With a n  increase  i n  these  
amplitudes, t h e  variable forces  i n  t h e  cont ro ls  and t h e  v ibra t ions  of t h e  hel i 
copter  increase.  Therefore, a ca lcu la t ion  of e l a s t i c  blade vibrat ions permits 
t h e  most accurate  estimate of t h e  limits of hel icopter  f l i g h t  regimes with re
spect  t o  f low-separation conditions.  

To some extent,  blade v ibra t ions  - and pr imar i ly  t o r s i o n a l  vibrat ions - af
f e c t  t h e  aerodynamic c h a r a c t e r i s t i c s  of t h e  r o t o r  even when f a r  removed from 
regimes wi th  flow separat ion.  

We w i l l  d iscuss  t h e  f irst  of t h e  above problems i n  g rea t e r  d e t a i l .  

2. Calculation of Blade Strength 

Calculation of blade s t r eng th  involves a determination of t h e  constant and 
variable stresses a t  a l l  po in ts  of t h e  blade s t ruc ture ,  under d i f f e ren t  loading 
conditions.  The most dangerous of t hese  w i l l  be s ingled out as t y p i c a l  cases 
calculated f o r  s t r u c t u r a l  s t rength.  

Usually, i n  t h e  development of new blades, when t h e  time a l lo t ed  f o r  per
forming and processing t h e  ca lcu la t ions  i s  limited,  it i s  des i rab le  t o  reduce 
t h e  number of calculated cases t o  a m i n i " .  EXperience has shown t h a t  it suf
f i c e s  t o  examine a s ing le  case of blade loading under ground operating conditions 
of t h e  hel icopter  and seve ra l  cases i n  f l i g h t  at d i f f e ren t  f l i g h t  regimes. 

The first case necess i ta tes  ca lcu la t ing  a blade supported on the  v e r t i c a l  
r e s t r i c t o r  of t h e  hub a f t e r  f u l l  o r  p a r t i a l  stoppage of t h e  e f f e c t  of cen t r i fuga l  
forces .  T h i s  occurs when t h e  r o t o r  i s  not ro t a t ing  or i s  i n  t h e  i n i t i a l  s tage  
of overspeeding o r  else is  stopped after t h e  f l i g h t .  I n  t h e  absence of cent r i 
f u g a l  forces ,  t he  g rav i t a t iona l  forces  o r  i n e r t i a  forces  a r i s i n g  upon hipact of 
t h e  blade against  t h e  coning s top set up appreciable bending s t r e s ses .  I n  t h i s  
case, compressive stresses are espec ia l ly  dangerous f o r  blade s t rength.  Experi
ments show t h a t  ind iv idua l  blade overloads, at which considerable compressive 
s t r e s s e s  are s e t  up, my a f f e c t  t h e  f a t igue  s t r eng th  of t h e  s t ruc tu re  and hence 
i t s  serv ice  l i f e .  Usually, s t a t i c  stresses due t o  bending of t h e  blade under 
t h e  e f f e c t  of i ts  own weight are l imi ted  t o  values of crG = 25 - 28 k g / d  f0r.a 
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blade wi th  a s teel  spar  and of oG = 7.0 - 7.5 kg/mm2 f o r  a blade wi th  a duralumin 
spar. 

From t h e  computational viewpoint, this case presents  no d i f f i c u l t i e s ;  
therefore ,  we w i l l  not f u r t h e r  discuss  it here. 

Other cases p e r t a i n  t o  d i f f e r e n t  he l icopter  f l i g h t  regimes when constant 
and var iab le  stresses from blade bending are added t o  t h e  permanent stresses 
due t o  cen t r i fuga l  forces .  T h i s  combination of loads i s  highly detr imental  t o  
t h e  f a t igue  s t r eng th  of t h e  blade s t ruc tu re .  

3. 	Fl ight  Regimes Detrimental t o  t h e  Fatigue Strength /18
of t h e  S t ruc ture  

In-f l ight  stress analyses have shown t h a t  he l icopter  blades are subject  t o  
appreciable alternate loads having a detr imental  e f f e c t  on t h e  s t r u c t u r a l  
s t r eng th  i n  two d i f f e r e n t  types of f l i g h t  regimes. 

The first type of f l i g h t  regime includes low-speed modes,when t h e  f ly ing  
speed i s  3 - 8%of t h e  blade t i p  speed (1-1 = 0.03 - 0.08). In these  regimes 
t h e r e  i s  a marked increase i n  the  flexural v ib ra t ion  amplitudes of t h e  blades, 
causing a corresponding increase i n  t h e  va r i ab le  stresses. 

The he l icopter  uses t h e  above range of f l y i n g  speeds i n  accelerat ion,  hori
zonta l  f l i g h t  at s teady low speed, and i n  t h e  braking regime. Usually t h e  
g rea t e s t  var iab le  s t r e s s e s  arise i n  t h e  braking regime. Appreciable stresses 
may arise a l s o  i n  a s teep descent at low hor izonta l  speed. 

With respect  t o  t h e  conditions of loading of t h e  s t ruc ture ,  f l i g h t s  a t  low 
speeds general ly  are short-term regimes, a t  least f o r  he l icopters  used f o r  
t ranspor t  missions. However, because of t h e  high stresses present ,  it i s  pre
c i s e l y  these  regimes t h a t  o f t en  determine t h e  serv ice  l i f e  of t h e  blade with 
respect  t o  fa t igue .  

The second type of regime detr imental  t o  f a t i g u e  s t r eng th  has t o  do with 
high-speed modes. These comprise pr imar i ly  f l i g h t s  at c ru is ing  and maxi” 
speeds. A f l i g h t  a t  c ru is ing  speed i s  usual ly  t h e  longest f l i g h t  mode and thus 
imposes considerable f a t igue  s t r e s s e s  on t h e  s t ruc tu re .  

A marked increase  i n  var iab le  stresses at low speeds can be a t t r i bu ted  
pr imar i ly  t o  t h e  appreciable nonunifomkty of t h e  induced ve loc i ty  f i e l d  created,  
during these  regimes, i n  t h e  flow through t h e  ro to r .  Moreover, i n  absolute  
magnitude, t h e  induced v e l o c i t i e s  here reach “um values i n  comparison wi th  
a l l  o ther  f l i g h t  modes. Therefore, t h e i r  inf luence on t h e  magnitude of stresses 
increases  g r e a t l y  at low speeds. The var iab le  induced ve loc i ty  f i e l d  leads t o  
var iab le  aerodynamic blade loading. Urder t h e  e f f e c t  of these  loads t h e  blade 
executes flexural Vibrations which set up considerable var iab le  stresses. 

A t  high f l y i n g  speeds, var iab le  aerodynamic loads are generated mainly as a 
consecpence of f luc tua t ions  i n  t h e  relative flow ve loc i ty  and changes i n  angles 
of a t t ack  of t h e  blade sec.tions wi th  respect  t o  t h e  r o t o r  azimuth. The var iab le  
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induced ve loc i ty  f ie ld  i n  these  regimes has l i t t l e  e f f ec t  on t h e  magnitudes of 
t h e  aerodynamic load. 

I n  s t r eng th  ca lcu la t ions  it i s  sometimes necessary t o  allow f o r  r o t o r  over-
speeding which might occur i n  f l i g h t  a t  a s teep rise i n  cent r i fuga l  forces .  
T h i s  W i l l  a l s o  cause an  increase  i n  t h e  constant component of stresses i n  t h e  
blade.  

4.. A s s w t i o n  of a Uniform Induced Velocity Field 

It i s  obvious from t h e  above that a ca lcu la t ion  of var iable  aerodynamic 
loads a t  low speeds i s  impossible without considerat ion of t h e  variable induced 
ve loc i ty  f ie ld .  

On a n  increase  i n  f l y i n g  speed, t h e  absolute  magnitude of induced veloci
t i e s  decreases. The e f f e c t  of t h e i r  nonuniformity on t h e  magnitudes of aerody
namic loads a l s o  diminishes. Therefore, beginning with average f ly ing  speeds, 
when p 2 0.2, it can be approximately assumed i n  ca lcu la t ing  var iab le  blade 
stresses that t h e  induced ve loc i ty  f ie ld  i s  uniform, <.e., t h a t  t h e  induced ve
l o c i t i e s  are constant over t h e  r o t o r  d i sk  area. T h i s  assumption leads t o  /19
s ign i f i can t  s impl i f ica t ions  of a l l  computations and t o  a marked decrease i n  
ca lcu la t ion  time. For this reason, it i s  widely used i n  p r a c t i c a l  ca lcu la t ions .  

However, t h e  accuracy of t h e  r e su l t s ,  with considerat ion of this assump
t ion ,  o f t e n  i s  unsa t i s fac tory  t o  t h e  designer. Thus, it is  o f t en  necessary t o  
abandon this assumption when ca lcu la t ing  moderate and high-speed modes. 

5. 	A s s m t i o n s  i n  C a l c u l a t i w  Aerod.vnamic Loads on t h e  
Blade P r o f i l e  

In a l l  methods of ca l cu la t ion  presented i n  t h i s  Chapter it i s  assumed t h a t  
aerodynamic forces  ac t ing  on t h e  blade p r o f i l e  can be determined by making use 
of aerodynamic coe f f i c i en t s  f o r  s teady flow p a s t  a n  i n f i n i t e l y  long wing i n  a 
plane-paral le l  stream. An unsteady state of t h e  flow is  taken i n t o  account only 
a t  values of t h e  p r o f i l e  angles of a t t ack  at which downwash i s  introduced. 

Consequently, t o  determine fo rces  ac t ing  on a p r o f i l e  member,  it is  suffi
c i e n t  t o  determine i t s  angle of a t t ack  CY and t h e  r e l a t i v e  ve loc i ty  U of t h e  flow 

p a s t  it. Then, knowing CY and M = -U (where a,, i s  t h e  ve loc i ty  of sound), we
a80 

can determine from t h e  p r o f i l e  p o l a r  t h e  coe f f i c i en t s  cy and c, and hence t h e  
forces  ac t ing  on t h e  p r o f i l e .  If necessary, one can a l s o  determine t h e  coeff i 
c i en t  m, . 

If, i n  t h e  f l i g h t  mode under study, t h e  p r o f i l e  angle of a t t ack  does not 
exceed CY LJ 9' and i f  t h e  Mach number i s  not higher than  M LJ 0.5, then  we can dis
regard i t s  inf luence and assume t h a t  

c,=c;a, 
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where cy" i s  t h e  tangent of t h e  angle of s lope f o r  t h e  r e l a t i o n  cy = f ( a ) .  

T h i s  a s s q t i o n  is used i n  ca lcu la t ing  loads i n  f l i g h t  m o d e s  s u f f i c i e n t l y  
far from separa t ion  i n  which, furthermore, we can disregard t h e  c o q r e s s i b i l i t y  
e f f e c t  of t h e  flow 

The p o s s i b i l i t y  of using various assumptions i n  t h e  method of determining 
aerodynamic forces  i s  of grea t  value i n  se l ec t ing  t h e  method of stress ana lys is  
t o  be used i n  t h e  case i n  question. As a consequence, it is suggested t o  use 
d i f f e ren t  methods of ca l cu la t ion  f o r  d i f f e ren t  regimes. Below, we w i l l  d i f f e r 
e n t i a t e  between three types Of regimes f o r  each of which optimum r e s u l t s  can be 
obtained by d i f f e r e n t  methods of calculat ion.  These are low-,moderate-, and 
high-speed modes. 

I n  t h e  low-speed mode, it i s  unavoidable t o  t ake  account of t h e  var iab le  
induced ve loc i ty  field but l i n e a r  aerodynamics can be used at average blade load
ing. A t  moderate f l y i n g  speeds, t h e  variable induced ve loc i ty  field need be 
considered only i n  solving s p e c i a l  problems r a i sed  by t h e  necess i ty  of differ
en t i a t ing  ind iv idua l  high harmonics of t h e  aerodynamic loads.  It i s  almost 
always unnecessary at these  speeds t o  consider nonlinear r e l a t i o n s  i n  determin
i n g  t h e  aerodynamic coef f ic ien ts .  Finally, i n  t h e  high-speed mode which i s  
close t o  t h e  separa t ion  limit, consideration of t hese  nonl inear i t ies  becomes 
mandatory, whereas t h e  v a r i a b i l i t y  of t h e  induced ve loc i ty  f i e l d  can be disre
garded i n  most cases.  

The above considerations r e s u l t  i n  ind iv idua l  methods of ca lcu la t ion  t i e d m  
i n  with spec i f i c  f l i g h t  regimes. 

6 .  	Relation of Deformations due t o  Bending i n  Two MutuaLly 
Pewendicu l a r  Directions  and Corresp onding A s s  mptions 
f o r  Calculation 

Usually, a hel icopter  blade is  designed such t h a t  t h e  p r i n c i p a l  e l a s t i c  
moments of i n e r t i a  of i t s  sec t ions  differ subs t an t i a l ly  i n  magnitude. Therefore, 
t h e  blade i s  considered as a bar extended by cen t r i fuga l  forces ,  each por t ion  of 
which has d i f f e r e n t  r i g i d i t i e s  i n  two mutually perpendicular d i rec t ions .  To 
character ize  these  d i rec t ions ,  let  us lay planes through t h e  axis of t h e  bar 
along t h e  d i r ec t ion  of t h e  p r i n c i p a l  axes of t h e  sec t ion  which w i l l  be desig
nated as planes of ma,ximum and minimum r i g i d i t y  (Fig.l.11. 

Frequently, t o  produce aerodynamic blade t w i s t  not only t h e  frame forming
i t s  contour i s  twisted but a l s o  i ts  spar. I n  t h i s  case, t h e  d i r ec t ions  of t h e  
p r i n c i p a l  e l a s t i c  axes of t h e  sec t ion  vary over t h e  length of t h e  blade, chang
i n g  it i n t o  a geometrically twisted bar. I n  o ther  cases, aerodynamic tw i s t  i s  
obtained on ly  by turning t h e  frame of t h e  blade r e l a t i v e  t o  the  spar. 

I n  f l i g h t ,  external forces  a c t  on t h e  blade p r o f i l e  i n  widely d i f f e r i n g  
d i rec t ions .  T h i s  changes t h e  problem of blade bending i n t o  a highly complex 
three-dimensional problem. 

In  addi t ion,  t h e  degree of geometric twist of he l icopter  blades i s  only 
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P l a n e  of 
chord P l a n e  of minimum 

r i g i d i t y  

P l a n e  of 
rotat ion'  , 

Fig.l .1 Pos i t ion  of t h e  Spar a t  
Geometric Twist Obtained by Turning 
t h e  Frame Relat ive t o  t h e  Spar 

(cpb = const) .  

moderate (of t h e  order  of 6 - 12') and 
appreciably less than i s  feasible i n  
a i r c r a f t  p rope l le rs  o r  i n  compressor
and turb ine  blades. A s  shown by various 
estimates, t h e  e f f e c t  of such twist on 
t h e  ca lcu la t ion  r e s u l t s  is  only s l i g h t .  
Therefore, i n  a l l  t h e  methods of calcu
l a t i o n  presented here we w i l l  disregard 
t h e  degree of twist of t h e  e l a s t i c  axes 
of t h e  blade spar  and w i l l  assqe that 
t h e  d i r ec t ion  of t h e  plane of maximum 
and m i n i "  blade r i g i d i t y  i s  constant 
over i t s  length.  

T h i s  assumption permits pro jec t ing  
a l l  ex te rna l  forces  onto these  planes 
and solving two e l a s t i c a l l y  unrelated 
two-dimensional problems of blade bend
ing i n  two mutually perpendicular direc

t i o n s .  After performing t h e  stress analyses f o r  various po in t s  of t he  blade 
sect ion,  t h e  r e s u l t s  of both ca lcu la t ions  can be summed. 

The blade sec t ion  p r o f i l e  permits increasing the  s i z e  of t h e  spar  i n  the  
chord plane and limits the  chords i n  a perpendicular d i r ec t ion .  Thus, the plane 
of max imum r i g i d i t y  i s  usual ly  c lose t o  a plane passing through the  blade chord. 
T h i s  circumstance, as w e l l  as the  f a c t  t h a t  t he  magnitude of t h e  aerodynamic 
forces  i n  the chord plane i s  usual ly  smaller than i n  the  plane perpendicular t o  
it, causes the  magnitude of t h e  bending s t r e s s e s  t o  be g rea t e r  i n  t h e  plane of 
m i n i m u m  r i g i d i t y  and lower i n  t h e  plane of maximum r i g i d i t y .  A study of modern 
blade designs, where t h e  f a t igue  s t r eng th  i s  approximately i d e n t i c a l  i n  omnidi
r ec t iona l  bending, i nd ica t e s  t h a t  bending i n  t h e  plane of minimum r i g i d i t y  i s  (21
considerably more dangerous. I n  prac t ice ,  a l l  d i f f i c u l t i e s  usual ly  have t o  do 
with the  need of ensuring adequate bending s t r eng th  i n  this plane.  Therefore, 
we w i l l  here discuss  methods of ca lcu la t ing  blade v ibra t ions  only i n  the  plane 
of m i n i m u m  r i g i d i t y .  For ca lcu la t ions  i n  this plane, we can use the  addi t iona l  
assumptions t h a t  t he  plane of m i n i m u m  r i g i d i t y  coincides wi th  the  plane going 
through t h e  r o t o r  axis .  Below, we will designate this plane as t h e  f lapping 
plane. 

7. m i d e r a t i o n  of Torsional Deforma3ion of a Blade-
_ -i n  Calculations of _Flexural Vibrations 

Torsional deformations change t h e  angles of a t tack  of t h e  blade sec t ions  
and hence t h e  a e r o d y d c  forces  ac t ing  on them. Therefore, these  deformations 
should be taken i n t o  account i n  the  ca l cu la t ion  of aerodynamic loads and vibra
t i o n s  of a blade. However, t h e  considerat ion of t o r s iona l  blade v ibra t ions  en
t a i l s  considerable d i f f i c u l t i e s  and g rea t ly  complicates t h e  ca lcu la t ion .  

A t  t h e  same time, this does by no means always lead  t o  subs t an t i a l ly  im
proved r e s u l t s .  Therefore, t o r s i o n a l  deformation should be taken i a t o  account 
only i n  cases of a c t u a l  need, f o r  e x q l e  whenever t h e  f l e x u r a l  blade vibrat ions 

17 


IIIIII lllllIlllllIl IIIII Ill I1 IIIII I 



I I I I I 111111l1111l111l1l1llll11ll111l 

a r e  amplified on approach t o  bending f l u t t e r ;  however, this implies  an inade
quate margin of s a f e t y  wi th  respect  t o  f l u t t e r  and m u s t  be considered imper
missible.  

To allow f o r  t o r s i o n a l  deformations, a system of d i f f e r e n t i a l  equations of 
bending-torsional blade v ibra t ions  m u s t  be solved. Its so lu t ion  i s  obtained by 
ca lcu la t ion  of f l u t t e r .  Such a method of calculat ion,  known as t h e  general  
method of c a h d a t i o n  of blade f l u t t e r  and bending stress, has been given i n  
the  first volume of this book (Sect.7, Chapt.IV). 

Here, we Will descr ibe only methods of ca l cu la t ing  f r e e  t o r s i o n a l  (Sect .5) 
and bending-torsional v ibra t ions  (Sect .6). 

8 .  	Two Calculation Steps i n  Blade DesiKn: Calculat ion of 
Natural Vibration Frequency and Calculation of S t resses  

If a newly designed he l icopter  blade does not d i f f e r  excessively i n  geo
metr ic  and mass cha rac t e r i s t i c s  from an  already manufactured and t e s t e d  blade, 
it can be asser ted  t h a t  i n  i d e n t i c a l  f l i g h t  regimes t h e  var iab le  blade s t r e s ses  
w i l l  be approximately the  same as i n  the  prototype blade. However, this r u l e  i s  
violated when, as a consequence of some change i n  i t s  parameters, t he  blade i s  
i n  resonance wi th  some harmonic of t h e  ex terna l  forces .  

Blade-design p rac t i ce  shows t h a t  s u f f i c i e n t l y  reliable blades can be de
veloped only i f  none of i t s  na tu ra l  frequencies coincides wi th  the  frequencies 
of t he  ex te rna l  forces  and ac tua l ly  these are far  apar t .  This per t a ins  t o  b h d e  
vibrat ions both i n  the  plane of minimum r i g i d i t y  and i n  t h a t  of maximum r i g i d i t y .  
Naturally, it i s  obvious t h a t  not a l l  harmonics of ex te rna l  forces ,  but only 
those whose magnitude i s  s u f f i c i e n t  t o  s e t  q~ high s t r e s ses ,  a r e  detr imental  t o  
the  s t r eng th  of material. Usually, absence of resonance i s  mandatory f o r  
harmonics not higher than  t h e  8 t h  r e l a t i v e  t o  t h e  ro to r  rpm. Higher harmonics 
of ex terna l  forces  have l i t t l e  e f f ec t .  

Thus, i f  a rough e r r o r  i n  se lec t ing  t h e  blade cha rac t e r i s t i c s  i s  impermis
s ib l e ,  var iab le  stresses can be kept within permissible  limits by preventing 
t h e  occurrence of resonance. I n  this case, t he re  i s  no need t o  ca l cu la t e  t h e  
variable stress amplitudes. Thus, t h e  experimental designer can o f t en  U t  him
self t o  t he  f irst  s tage  of blade calculat ion:  determination of i t s  natural v i 
b ra t ion  frequencies and p l o t t i n g  of t h e  resonance diagram. 

It follows from the  above t h a t  t h e  ca l cu la t ion  of blade frequencies and 
na tu ra l  v ib ra t ion  modes i s  not only an auxiliary s t ep  i n  stress ana lys is  but  has 
an  independent value as a preliminary s t ep  i n  blade s t rength  calculat ions.  

9 .  Idealized Blade Models Used i n  Calculation 

In p e r f o d n g  t h e  calculat ion,  the  blade must be represented as some ideal
ized mechanical model f o r  which a l l  adopted i n i t i a l  a s s q t i o n s  would hold, so  
t h a t  later - during t h e  ca lcu la t ions  - t he re  would be no need t o  use approximate 
mathematical operations 
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With ca lcu la t ion  on computers, t h e  problem should be programmed such t h a t  
i ts  so lu t ion  becomes poss ib le  wi th  any prescribed accuracy a t t a inab le  by t h e  
computer 

A s  shown by p r a c t i c a l  experience, ca lcu la t ion  m e t  hods u t i l i z i n g  approximate 
mathematical operations o f t en  lead t o  other  misconcepts. I n  m a q y  cases, it i s  
impossible t o  complete t h e  ca l cu la t ion  because of some inaccuracy i n  the  compu
t a t ions .  For example, i n  ca lcu la t ing  t h e  natural v ibra t ion  modes by the  method 
of successive approximations an  e n t i r e  s e r i e s  of i n t e g r a l s  must be calculated.  
T h i s  i s  o f t en  done by t h e  t rapezoida l  method. A t  a l imited number of integra
t i o n  in t e rva l s ,  this method r e s u l t s  i n  such a l a rge  e r r o r  t h a t ,  i n  ca lcu la t ing  
t h e  v ib ra t ion  modes of higher harmonics whose ordinates  are calculated i n  t h e  
form of small di f fe rences  of l a rge  quant i t ies ,  t h e  method of successive approxi
mations ceases t o  converge. 

This f a c t  necess i ta tes  s p e c i a l  caut ion i n  using approximate methods of 
ca lcu la t ion .  Consequently, i t  i s  preferab le  t o  introduce a s implif ied ideal ized 
blade model which could be calculated a t  maximum permissible accuracy on t h e  
computer. 

Three d i f f e ren t  types of mechanical models a r e  known, which a r e  frequently 
used i n  ca lcu la t ions .  

Beam model wi th  continuously d i s t r ibu ted  Darameters. In this model, t he  
blade i s  represented as a beam wi th  continuously d i s t r ibu ted  r i g i d i t i e s  EI ,  
l i n e a r  mass m, and parameters determining t h e  magnitude of the  l i n e a r  aerody
namic load. 

Such a model i s  highly convenient i n  der iving i n i t i a l  d i f f e r e n t i a l  equa
t i o n s  and i n  applying known approximate so lu t ion  methods t o  them t u t  i s  unsuit
able f o r  performing numerical ca lcu la t ions .  Below, we w i l l  f requent ly  r e f e r  t o  
such a model i n  der iving working formulas s o  tha t ,  i n  the  s tage of numerical 
calculat ion,  we can use formulas derived by analogy and per ta in ing  t o  a model 
with d i s c r e t e  parameters. I n  these  formulas, a l l  i n t e g r a l s  of funct ions depend
i n g  on t h e  blade radius  a r e  replaced by the  sums of d i s c r e t e  quant i t ies  per ta in
ing  t o  a series of f ixed  blade r a d i i .  

__Beam model wi th  concentrated weights. In this model, t he  blade i s  repre
sented as a system of coupled concentrated weights. The coupling between these 
weights i s  accomplished by small weightless beams having a longi tudina l  constant 
f l e x u r a l  r i g i d i t y  equal  t o  t h e  r i g i d i t y  of t he  corresponding blade elements. 

I n  determining t h e  aerodynamic forces ,  it i s  assumed t h a t  t o  each weight 
i s  attached a separate  s m a l l  Wing whose area i s  equal  t o  the  area of t h e  /23
corresponding blade element. Usually, it i s  assumed that the  area is  

where tl-l,l and t l , i+ l  = lengths  of adjacent segments i n t o  which t h e  blade i s  
divided i n  t h e  ca lcu la t ion ;  

bi  = blade chord i n  t h e  sec t ion  between these  segments. 
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T h i s  model most accura te ly  r e f l e c t s  t h e  p rope r t i e s  of a real  blade. For 
this reason, it w i l l  be used i n  p r a c t i c a l  ca lcu la t ions  i n  almost a l l  cases.  

However, we should mention t h a t  t h e  beam model has these  favorable proper
t i e s  only i f  the  number of p a r t s  z i s  equal  t o  25 - 30 o r  more. A s  soon as this 
number decreases, t h e  type of deformations of t h e  beam model begins d i f f e r i n g  
g r e a t l y  from t h a t  of t h e  deformations of t h e  blade. T h i s  will be i l l u s t r a t e d  
i n  more d e t a i l  i n  Sect ion 10, Subsection 3. Furthermore, t h e  use of t h e  beam 
model of ten  leads t o  a r a t h e r  complicated system of equations and a t  times even 
i n t e r f e r e s  with t h e  calculat ion.  In such cases, t h e  simpler hinge blade model 
can be used. 

f inge model of blade. In this model, t h e  blaue i s  represented as a multi
hinge chain consis t ing of absolutely r i g i d  weightless l i n k s  whose masses are 
concentrated i n  t h e  hinges. The flexural r i g i d i t y  of t he  blade i s  simulated by 
e l a s t i c  members concentrated i n  t h e  hinges. Under t h e  ac t ion  of external forces ,  
t h e  a x i s  of this chain takes  the  form of a broken l i n e  r a the r  than  of a smooth 
l i n e  as i n  t h e  beam-type model. T h i s  f ac t ,  j u s t  as t h e  t a s k  of se lec t ing  t h e  
r i g i d i t y  of t he  e l a s t i c  members ,  introduces a c e r t a i n  e r r o r  when changing from 
a blade t o  a mechanical model. 

A t  t h e  same time, t h e  use of t h e  hinge model leads t o  such grea t  sirqlifi
ca t ion  of t h e  working formulas t h a t  it o f t en  becomes poss ib le  t o  use improved 
methods of ca l cu la t ion  which were not f e a s i b l e  when using t h e  beam model. T h i s  
compensates t h e  f a u l t s  inherent  t o  this model. 

It should be mentioned t h a t ,  on a decrease i n  t h e  number of segments i n t o  
which the  blade i s  separated i n  t h e  calculat ion,  t h e  p rope r t i e s  of t h e  models 
begin t o  d i f f e r  markedly from t h e  proper t ies  of a real  blade. However, f o r  t h e  
hinge model these  e r r o r s  do not increase as rap id ly  as f o r  t h e  beam model. A s  
a consequence, t he  hinge model may be more suitable i n  rough methods of calcula
t ion ,  when t h e  blade i s  divided i n t o  a small number of segments, say of t h e  
order of 10 - 12. 

10. 	Derivation of th.e D i f f e ren t i a l  Eguation of-Blade Bending
in a C e n t r i f w a l  Force Field a t  Vibrations i n  the  
Flaming Plane 

Let us represent  t h e  blade as a beam wi th  continuously d i s t r ibu ted  para
meters. For our study, l e t  us i s o l a t e  an  element of t h e  beam of length d r .  The 
forces  act ing on this element are p lo t t ed  i n  Fig.l.2. 

Let us then  construct  t h e  equation of equilibrium of this element, l imi t ing  
t h e  ca lcu la t ion  t o  values of t h e  first order of smallness. Then, t he  sum of the  
project ions of t h e  forces  onto t h e  y-axis can be w r i t t e n  as 

YYdr +- clQ =0, (1.3) 

and t h e  sum of t h e  moments of a l l  forces  relative t o  t h e  poin t  A 
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where 
W = l i n e a r  external load on t h e  

blade ;
Q = shearing force  i n  the  blade 

sect ion;  
M = bending moment; .L&
N = cent r i fuga l  fo rce  i n  the  

blade sec t ion .  

*om eq.(1.3) we ob ta in  

W=-Q'. (1.5) 

Here and below t h e  prime denotes 
d i f f e r e n t i a t i o n  with respect  t o  t h e  
blade radius .  

Fig.l.2 Diagram of Forces Acting 
on a Blade Element. After d i f f e r e n t i a t i o n  of eq.( l4), 

we obta in  

Q' =-1M" $.[Ng'j'. (1.6) 

Set t ing  M = EIy" and subs t i t u t ing  eq.( 1.6) i n t o  eq.( 1.5), we obtain the  
known d i f f e r e n t i a l  equation of bending deformations of a blade i n  a cen t r i fyga l  
force  f i e l d :  

Let us represent  t h e  external load W, consis t ing of aerodynamic and i n e r t i a  
loads, i n  t he  form 

where 
T = l i n e a r  aerodynamic load; 
m = l i n e a r  mass of t h e  blade. 

Here, t h e  two do t s  denote d i f f e r e n t i a t i o n  wi th  respect  t o  t i m e .  

After subs t i t u t ing  eq.(1.8) i n t o  eq,( 1 . 7 ) ,  we obta in  t h e  d i f f e r e n t i a l  
equation of blade v ibra t ions  

l.Y!y'1'-!.4'y'&-mlj .... I/'. (1.9) 

I n  a vacuum, when t h e  aerodynamic load T i s  equal  t o  zero, eq.(1.9) will 
descr ibe free blade v ibra t ions  i n  a cen t r i fuga l  force  field: 

The so lu t ion  of this equation o f f e r s  c e r t a i n  d i f f i c u l t i e s .  For this reason, 
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Sect ion 2 will first give i t s  so lu t ion  f o r  t h e  case N = 0 per ta in ing  t o  a now 
ro ta t ing  blade. 

ll. Di f fe ren t i a l  Equation of Blade Bending i n  t h e  
Rotor Plane of Rotat ion 

On bending of t h e  blade i n  t h e  plane of ro ta t ion ,  owing t o  concent r ic i ty
of t h e  cen t r i fuga l  fo rce  f ield,  t h e  blade element W i l l  be subjec t  t o  an add.5
t i o n a l  force  which d id  not en ter  t h e  equations i n  t h e  f lapping plane.  With con
s ide ra t ion  of this, eq.(1.8) should be r ewr i t t en  i n  t h e  form 

W =Q -!-dmx-mx, (1 .U 

where 
Q = aerodynamic fo rce  i n  t h e  plane of ro t a t ion ;  
x = displacement of t h e  blade elements i n  the  plane of ro ta t ion .  

After subs t i t u t ing  eq.(l.U.) i n t o  an equation analogous t o  eq.(1.7) but 
w r i t t e n  f o r  t h e  plane of ro ta t ion ,  we ob ta in  t h e  d i f f e r e n t i a l  equation of blade

/25 
bending i n  t h i s  plane 

[ E / s " ] "-[Nx']'-w2mx+nix= Q.  (1.12) 

This equation d i f f e r s  from eq.( 1.9) only by t h e  add i t iona l  term w'mx. 

Sect ion 2. Free Vibrations of t h e  Blade of a Nonrota t iw Rotor 

1. Method of Calculation f o r  Solution of t h e  I n t e g r a l  
Equation of Blade Vibrations 

Calculation of t h e  na tu ra l  v ibra t ion  modes and frequencies of t h e  blade of 
a nonrotating ro to r  has been extensively described i n  the  l i terature [see, f o r  
example (Ref .1)]. I n  this Section, we W i l l  b r i e f l y  repeat  c e r t a i n  fundamental 
premises and somewhat r e f i n e  t h e  formulas used f o r  p r a c t i c a l  ca lcu la t ions .  

Let us e x e n e  t h e  d i f f e r e n t i a l  equation of Vibrations derived f o r  t h e  model 
of a blade with continuous* d i s t r ibu ted  parameters. If we set  N = 0 i n  
eq.(l.lO), it Will t ake  t h e  form 

Set t ing  
-

y =y sin pf 
(2.2) 

and subs t i t u t ing  i n t o  eq.(2.1), we obta in  

I n  our f u r t h e r  computations, we W i l l  omit t h e  Vinculum over y. Let us 
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i n t e g r a t e  eq.( 2.3) wi th  considerat ion Of t h e  boundary conditions of t h e  blade 
attachment. For s implici ty ,  l e t  us take t h e  case of a blade r i g i d l y  at tached 
a t  t h e  root ,  wi th  t h e  folloWing boundary conditions:  

a t  r = 0 ;  y = 0; y' = 0 ;  
at r = R; M = 0 ;  Q = 0 .  

By quadruple in tegra t ion ,  eq.( 2.3) is  transformed i n t o  an  i n t e g r a l  equation 
of t h e  form 

r r  R R  

y= p 2  5 ( 5mydr2.
J 

0 0  r r  

Equation (2.4) i s  solved by t h e  conventional method of successive approxi
mations. Prescribing an  a r b i t r a r y  form Of y, normalized i n  some manner, for 
exampl e  

l e t  us s u b s t i t u t e  it i n t o  t h e  right-hand s ide  of eq.(2.4). 

After in tegra t ion ,  we obta in  a funct ion 
r r  R R  

such t h a t  y = p2u. 

From this, using t h e  condi t ion (2.5),  we obtain 

p2"u 1 

R 

where uR i s  t h e  value of u a t  r = R. 

We then  repeat  t h e  same operation, taking t h e  new value 

y =p2u. (2.8) 

After carrying out t h e  above operations several t i m e s ,  it W i l l  be found 
t h a t  t h e  v ib ra t ion  mode y and t h e  frequency p converge t o  d e f i n i t e  values which 
cons t i t u t e  t h e  so lu t ion  of t h e  i n t e g r a l  equations (2.4). 

The method of successive a p p r o ~ m a t i o n s ,  applied i n  t h i s  manner, yields a 
determinable mode y converging t o  t h e  mode of t h e  lower harmonic of t h e  natural 
blade vibrat ions.  

To determine t h e  subsequent harmonics, it is  necessary t o  s a t i s f y  t h e  con
d i t i o n  of or thogonal i ty  of t h e  na tu ra l  v ib ra t ion  overtones. T h i s  condi t ion wi l l  
be discussed i n  Subsection 3. 

I n  p r a c t i c a l  appl ica t ion  of t h e  ca l cu la t ion  method presented here, it is  
important t o  s e l e c t  a su f f i c i en t ly  exact method f o r  ca lcu la t ing  t h e  i n t e g r a l  
equation (2.6). If t h e  blade parameters are given i n  t h e  form of continuous 
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funct ions,  t hen  t h e  simplest  method of ca l cu la t ion  of t h e  i n t e g r a l s  (2.6) i s  t h e  
t rapezoida l  method genera l ly  employed i n  such cases. However, as already indi
cated above, i n  ca lcu la t ing  higher v ibra t ion  overtones t h e  uncertainty introduced 
by this operat ion leads t o  such extensive e r r o r s  t h a t  t h e  method becomes useless  
f o r  p r a c t i c a l  urposes. T h i s  drawback i s  eliminated i f ,  i n  ca lcu la t ing  t h e  
i n t e g r a l s  (2.67, we use t h e  method obtained from a s tudy of t h e  mechanical model 
of a blade wi th  d i s c r e t e l y  d i s t r ibu ted  parameters. 

2. 	 Calculation of t h e  Natural Vibration Modes and 
Frequencies of a Blade Model wi th  Discretelx 
Distr ibuted Parameters 

For t h e  calculat ion,  we w i l l  use a beam-type model wi th  concentrated loads 
( see  Sect.1, Subsect.9). For this, let  us divide t h e  blade i n t o  z segments. 
The length of t h e  ind iv idua l  segments can be d i f f e r e n t .  The weight of t h e  blade 
i s  concentrated along t h e  edges of these  segments i n  t h e  form of ind iv idua l  dis
c r e t e  loads with mass m i .  The flexural r i g i d i t y  of t h e  blade i s  represented by 
a stepped curve, so that it remains constant over t h e  length  of each segment 
(Fig J .3 ) .  

Jus t  as i n  Subsection 1, we w i l l  first examine t h e  case of a blade f ixed  
a t  t h e  root .  The operat ion defined by eq.(2.6) can be car r ied  out exac t ly  here. 

Actually, l e t  us use an  a r b i t r a r y  form of displacement of t h e  loads of t h e  
model yl . Here, t h e  system of d i s c r e t e  values of yl ( i  = 0, 1 2, 3, ... z 
being t h e  serial number of  t h e  concenkrated loads of t h e  model) W i l l  be desig
nated as t h e  mode of displacement. As above [see eq.(2.5)], we set yz = 1. If 
t h e  displacements yi are known, we can deter.nine t h e  i n e r t i a  forces  of t h e  loads 
on t h e i r  v ibra t ions  wi th  a frequency p = 1. These are determined by t h e  expres
s i o n  

Fi=miyi. ( 2 - 9 )  

Knowing t h e  i n e r t i a  forces ,  we can d e t e h n e  a l l  bending moments by a system 
of simple recursive formulas of t h e  form 

Mi= k ,  <+I [Fi+l-ui+lMi+l-6i+lM<+~], (2.10) 

where h,l+l is t h e  length of t h e  blade sec t ion  between t h e  i - t h  and i + l - t h  c o b  
centrated mass. 

The coe f f i c i en t s  ai and bl are determined by t h e  formulas La2 

A ca lcu la t ion  of t h e  bending moments by eqs.(2.10) should start fron: t h e  
end of t h e  blade, first pu t t ing  i = z - 1 and then  equating t h e  bending moments 
.Mz and M,+l t o  zero. 
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After def ining t h e  bending moments, it i s  easy t o  determine t h e  blade de
formations. A s  above, t h e  blade d e f o m t i o n s  during v ibra t ions  with a frequency 
p = 1 w i l l  be denoted by t h e  symbol U. 

Fig.l.3 Calculation Model of Blade. 

recursive formulas of 

( 2 . W  

(2.12) 
Here, 

(2.13) 

Calculation of t h e  deformation ui should begin from t h e  blade root, after 
s e t t i n g  uo = 0, i n  conformity wi th  t h e  boundary conditions adopted here. All 
quant i t ies  with negative subscr ip t  should a l s o  be equated t o  zero. 

Thus, carrying out t h e  operations (2.10) and (2.11), appl icable  t o  a beam 
model with a d i s c r e t e  d i s t r i b u t i o n  of parameters, leads t o  ca lcu la t ion  of exact 
values of u i .  

After determining p2 i n  t h e  same manner as before [see eq.(2.7)] 
p2=- 1 

uz 
and using t h e  new values 

i. 
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we repeat a l l  operations u n t i l  t h e  method of successive approxjmations con- J28 
verges. Usually, t h e  ca lcu la t ion  i s  considered completed as soon as t h e  d i f 
ference i n  t h e  values of y i ,  i n  two successive approximations, i s  l e s s  than the  
prescribed accuracy e y  . 
3. 	Condition of Orthogonality and Calculation of Successive 

Natural  Vibration Harmonics 

The above method of successive approximations permits a de te rmimt ion  of 
t h e  lower harmonic of na tu ra l  vibrat ions.  I n  determining t h e  higher harmonics, 
it i s  necessary t o  s a t i s f y  t h e  conditions of independence of t h e  vibrat ions with 
respect t o  d i f f e ren t  harmonics. 

Iet us imagine that f r e e  blade vibrat ions ' i n  vacuum occur simultaneously 
with respect t o  two modes dj) and dm). The v ibra t ion  energy f o r  each of t he  
modes can be determined separately from the  amplitude values of t h e  k ine t i c  
energy'? : 

On t h e  other  hand, t h e  t o t a l  energy of t h e  system vibrat ing simultaneously 
with respect t o  two modes can be determined from the  amplitude value of t h e  
t o t a l  k ine t i c  energy: 

The system has this k ine t i c  energy at t h a t  i n s t a n t  of time when the  blade, 
during vibrat ion,passes  t h e  neut ra l  pos i t i on  simultaneously with respect t o  t h e  
two modes h J )and dm). Owing t o  t h e  difference i n  t h e  values of t he  na tu ra l  
v ibra t ion  frequency, such a pos i t ion  a r i s e s  r e l a t i v e l y  sekiom, but can be e a s i l y  
created a r t i f i c i a l l y  by prescr ibing t h e  appropriate v ibra t ion  phases a t  t h e  
in i t ia l  instant. 

If t h e  amplitudes with respect t o  each of t h e  component modes of vibrat ion 
do not change i n  time, then t h e i r  energy, determined by eqs.(2.16), a l s o  remains 
constant. 

The t o t a l  v ibra t ion  energy should always be equal t o  t h e  sum of t h e  ener
gies  of t h e  component motions, i .e. ,  

45 For s implici ty ,  here and belm t h e  constant 1/2 i s  omitted i n  t h e  values of t h e  
k ine t i c  and p o t e n t i a l  energy of vibrat ions . 
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A s  follows from eq.(2.17), this is  poss ib le  only i f  

zm,y p y p )=0. 
I 

This condition i s  known as t h e  condi t ion of or thogonal i ty  of t h e  natural 
v ib ra t ion  harmonics. A more rigorous der iva t ion  of this condition will be given 
i n  Section 2 of Chapter 11. 

In c a l c u h t i n g  any j- th harmonic, a l l  previous harmonics t o  which the  sub
s c r i p t  m = 0, 1, 2, ..., j - 1 corresponds, should already have been calculated.  

To s a t i s f y  t h e  condi t ion of or thogonal i ty  i n  determining t h e  mode of t h e  
j - th  harmonic by t h e  method of successive approximations, we w i l l  represent  t h e

/29 

unknown mode y $ j )  as 

(2.20) 


where yjm) are previously determined natural v ib ra t ion  modes. 

The constants C, are determined from t h e  condi t ion of or thogonal i ty  (2.19) 
by t h e  formulas 

(2.21) 


The value of t h e  frequency of t h e  j- th harmonic i s  calculated from 

1
P:' ,,1-j-1 * 

ug- 	 3 c, (2.22) 
m-0 

Knowing p2, we can determine the  v ib ra t ion  mode from eq.( 2.x)) .  

4 .  	Charac ter i s t ics  of Calculation of Natural Vibration 
-_Frecruencies and Modes of a Hlwed Blade 

A l l  above-presented computations per ta in ing  t o  a r i g i d l y  f ixed blade can 
e a s i l y  be extended t o  a blade with hinge attachment at t h e  root .  

For this case, t h e  i n t e g r a l  equation (2.4) takes  t h e  following form: 
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where t h e  constant C, i s  determined from t h e  condi t ion of equating t o  zero t h e  
sum of t h e  moments of a l l  i n e r t i a  forces  relative t o  t h e  hinge. For a model 
wi th  a d i s c r e t e  d i s t r i b u t i o n  of t h e  parameters, this condi t ion can be w r i t t e n  as 

It i s  obvious t h a t  this condi t ion satisfies t h e  condi t ion of or thogonal i ty  
t o  the  v ib ra t ion  mode, which we W i l l  tentatively c a l l  t h e  fundamental v ibra t ion  
mode. If this mode i s  normalized i n  conformity wi th  t h e  condi t ion (2.5),  t hen  
it can be w r i t t e n  as 

Thus, i n  ca lcu la t ing  a hinged blade it must be taken  i n t o  account t h a t  t h e  
mode of i ts  fundamental is  known beforehand and i s  prescr ibed by means of 
eq.(2.25) and, i n  ca lcu la t ing  a l l  subsequent harmonics beginning wi th  t h e  first, 
it i s  a l s o  necessary t o  s a t i s f y  t h e  condi t ion of or thogonal i ty  t o  t h e  funda
mental (2.a). Here, we can determine t h e  funct ions ui by t h e  same formulas as 
those  given i n  Subsection 2. 

5. 	Calcuk t ion  of t h e  Natural Vibration Modes and Frequencies
of a Blade as a Simply Surmorted Beam 

It frequent ly  i s  necessary t o  ca lcu la te  t h e  frequency of synchronous vi
bra t ions  of t h e  blade and hel icopter  fuselage.  I n  this case the  r o t o r  hub it
self, being t h e  po in t  of attachment of t h e  blade, may be displaced together  with 
t h e  hel icopter  fuselage.  The ca lcu la t ions  of such v ibra t ions  are very easy t o  
perform when using a blade model representing a simply supported beam. Then, 
i n  d e t e d d n g  t h e  synchronous v ibra t ions  of r o t o r  and fuselage,  it su f f i ces  t o  
ca l cu la t e  t h e  mass of t h e  fuselage m, reduced t o  t h e  r o t o r  ( see  f ig . l .3)  and 
then ca lcu la te  t h e  natural v ibra t ion  frequencies of t h e  blade. 

Calculation of t h e  blade as a simply supported beam can be performed by the  
formulas given i n  Subsection 2, except t h a t  a l l  n a t u r a l  v ib ra t ion  modes should 
be addi t iona l ly  orthogonalized t o  t h e  mode of t h e  second fundamental: 

y p =  1rcol -s t ,  (2.26) 

which i s  equivalent t o  sa t i s fy ing  t h e  condi t ion of equating t o  z r o  t h e  sum of 
a l l  i n e r t i a  forces  ac t ing  during t h e  vibrat ions.  

T h i s  method of calculat ion,  wi th  s l i g h t  refinements, can be used a l s o  f o r  
ca lcu la t ing  t h e  natural v ibra t ion  modes and frequencies of t he  fuselage,  which 
will be taken up i n  Chapter 11. 



Sect ion 3. 	Approximate Method of Determining t h e  
Natural Blade Vibration Frequencies i n  
a- CGjtirifwal Force Field 

1. Use of B..G,GalerUnfs-Method f o r  Determining t h e  
Natural-Blade Vibration Freauencies 

The method of B.G.Galerkin is  widely used f o r  solving various problems of 
e l a s t i c  blade vibrat ions.  

The idea  of Galerk infs  method and i t s  appl ica t ion  t o  t h e  so lu t ion  of dif
ferential equations i s  r a t h e r  thoroughly covered i n  t h e  literature [seej f o r  
example, t h e  manual Washinostroyeniyel1 (Mechanical Engineering), Vol.1, Book 1, 
Mashgiz, 19473. 

Here, we will not repeat  conclusions t h a t  can be found i n  other  sources 
but  will i l l u s t r a t e  t h e  use of this method on a number of simple examples. 

I n  Subsection 10 of Section 1i n  this Chapter, we derived a d i f f e r e n t i a l  
equation of blade v ibra t ions  i n  a cen t r i fuga l  force  f i e l d .  On subs t i t u t ing  i n t o  
it t h e  quant i ty  y i n  the  form of eq.(2.2), then this equation takes  t h e  following 
form (we have omitted here t h e  vinculum of y) : 

[E/yf’]”-[Ny’]‘-p2my =0. (3.1) 

Let us assume t h a t  t h e  natural blade v ibra t ion  modes i n  a cen t r i fuga l  force  
f i e l d  do not d i f f e r  from t h e  corresponding modes calculated f o r  t h e  case N = 0. 
Then, taking i n t o  account that t h e  v ibra t ion  modes y‘j) are known, l e t  us sub 
s t i t u t e  some mode y‘j) (3.1) and, after multiplying a l l  terms of the  
equation by this same m:z:oy‘Js’, i n t eg ra t e  t h e  obtained expressions over t h e  
blade length. 

The obtained equation, after c e r t a i n  transformations,  can be represented 
i n  t h e  form 

The i n t e g r a l s  enter ing this equation L11 

have a well-defined phys ica l  meaning, namely: 
CEI = e l a s t i c  p o t e n t i a l  energy accumulated by t h e  blade as soon as,

during flexural v ibra t ions  wi th  respect  t o  t h e  mode of t h e  j - th  
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harmonic, t h e  blade shows extreme def lec t ions  from t h e  equilibrium 
positiorr:+; 

CN = p o t e n t i a l  energy accumulated by t h e  blade w h i l e  bending i n  a 
cen t r i fuga l  force  f i e l d .  Here, j u s t  as i n  eq.(3.3), d i f f e r e n t  
harmorjlcs of t h e  natural Vibrations can be studied. 

The t o t a l  p o t e n t i a l  energy accumulated by t h e  blade w h i l e  bending i n  a 
cen t r i fuga l  fo rce  f i e l d  according t o  t h e  formula of y‘j) can be w r i t t e n  as 

cz =c,, -+CN. (3.5) 

In f l e x u r a l  v ibra t ions  when t h e  blade passes  through t h e  equilibrium posi
t ion ,  t h e  rate of displacement of i t s  po in t s  reach maxi” values: 

(3  06)=p y ( j ) .  

I n  this case, t h e  k i n e t i c  energy of t h e  blade can be determined by t h e  
formula 

R 
K,=p2 J 171 [y ( j ) I2dr .  (3.7)

0 

In  free vibrat ions,  t h e  p o t e n t i a l  energy accumulated by t h e  blade w h i l e  
bending wi th  respect  t o  t h e  mode y‘J) i s  converted i n t o  k i n e t i c  energy when t h e  
blade passes  t h e  equilibrium pos i t ion .  The equa l i ty  of t h e  amplitude values of 
t h e  p o t e n t i a l  and k i n e t i c  energy of t h e  blade i s  expressed by eq.(3.2). 

From eq.(3.2), t h e  freqgency of t h e  j - th  harmonic of natural blade vibra
t i o n s  i n  a cen t r i fuga l  force  f i e l d  can be obtained. T h i s  frequency i s  deter
mined by t h e  formula 

where 
po j  = n a t u r a l  v ibra t ion  frequency of t h e  blade without considerat ion of 

cen t r i fuga l  forces ;  
k, = a coef f ic ien t  allowing f o r  t h e  e f f e c t  of cen t r i fuga l  forces .  

Here, 

36 This holds wi th  an  accuracy t o  wi th in  a constant equal t o  1/2, which i s  
omitted i n  e q ~ ~ ( 3 . 3 1 ,(So&).,ani (3 .7) .  
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I n  eq.(3.lO), N,, i s  t h e  cen t r i fuga l  force  i n  t h e  blade sec t ion  a t  u) = 1. ,& 
Equation (3.9) f o r  t h e  natural v ibra t ion  frequency without consideration of 

cent r i fuga l  forces  can be obtained i f  t h e  method of B.G.Galerkin i s  applied t o  
eq.(2.3) i n  t h e  same manner. 

The expressions derived here f o r  t h e  natural blade v ibra t ion  frequency i n  
a cent r i fuga l  force  f i e l d  are approximate. However, ca lcu la t ions  show t h a t ,  i n  
many cases, these  expressions give an  accuracy completely s a t i s f a c t o r y  f o r  
p r a c t i c a l  purposes. A more thorough evaluat ion of t h e  accuracy of t h e  r e s u l t s  
of these  ca lcu la t ions  w i l l  be given i n  Section 4.. 

Resonance_Dia-q%i& of Blade Vibrations2. ~..~ 

As mentioned above, i n  blade designing ca lcu la t ions  are required t o  pre
clude poss ib le  resonances of natural blade v ib ra t ion  frequencies with t h e  
harmonics of external forces ,  which might set  up appreciable variable stresses. 
A s  s t a t e d  before, t h e  harmonic components of aerodynamic forces  ac t ing  on a 
blade i n  f l i g h t  a r e  of s u b s t a n t i a l  magnitude, up t o  harmonics not exceeding t h e  
8th.  Higher harmonics of aerodynamic forces  are so  small i n  magnitude t h a t  they 
can be disregarded. 

The frequencies of forced vibrat ions,  which are a source of concern i n  
blade calculat ions,  can be determined by means of t h e  formula 

where n = 1, 2, 3, ..., 8. 

Equation (3.8) permits construct ing t h e  dependence of natural v ibra t ion  
frequencies of various harmonics on the  angular ve loc i ty  of r o t a t i o n  of t h e  
ro tor .  Equations (3.8) and (3.11), p lo t t ed  j o i n t l y  on one graph, are usual ly  
ca l led  t h e  blade resonance diagram. Figures 1.4 and 1.5 give resonance diagrams 
constructed f o r  blades wi th  d i f f e r e n t  parameters encountered i n  p rac t i ce .  These 
diagrams are p lo t t ed  i n  relative values. Both t h e  natural v ibra t ion  frequency p 
and t h e  r o t o r  r p m  refer t o  a c e r t a i n  operating value of t h e  rpm,q,, . 

The resonance diagram permits  t racing,  i n  graphic form, the  d i r e c t i o n  
toward which t h e  blade parameters should be changed so as t o  eliminate resonance 
i n  t h e  e n t i r e  range of operating r o t o r  rpm.  



3.  	Selec t ion  of Blade Parameters t o  Eliminate Resonance 
during Vis ra t ion  i n  t h e  Flapping Plane 

A s c ru t iny  of t h e  resonance diagrams, constructed f o r  t h e  d iverse  blades, 
shows that they  do not d i f f e r  grea t ly ,  The e x i s t i n g  d i f fe rence  can mostly be 
a t t r i b u t e d  t o  t h e  d i f fe rence  i n  t h e  f l e m a l b l a d e  r i g i d i t y .  Less of t en  and t o  
a lesser degree, t h e  cause i s  a devia t ion  i n  the  blade mass cha rac t e r i s t i c s .  
T h i s  can be explained i n  a simple manner. Actually, t h e  designer m u s t  be guided 
by a l a rge  number of various requirements, which l i m i t  t h e  p o s s i b i l i t i e s  of vary
i n g  t h e  blade parameters and ultimately 1-d t o  t h e  c rea t ion  of blades with 
c lose ly  adjacent cha rac t e r i s t i c s .  

The following conditions p lace  t h e  main r e s t r i c t i o n  on extensive var ia t ions  
i n  blade parameters: 

1. The height of t h e  spar  i s  l imi ted  by t h e  blade p r o f i l e  and cannot be 
increased much, s ince  an  increase  i n  r e l a t i v e  p r o f i l e  thickness  will automatical
l y  de t e r io ra t e  t h e  L/D r a t i o  of t h e  ro tor .  T h i s  p laces  an upper limit on the  
magnitude of flexural r i g i d i t y  of t h e  blade. L22 

2. 	 The bending de f l ec t ion  of t h e  blade under i t s  own weight should not be 
excessive, s ince  it w i l l  lead 
t o  d i f f i c u l t i e s  i n  laying out 
t h e  hel icopter .  Bending 
stresses i n  t h e  spar,  set up 
by dead weight, should not 
exceed known magnitudes which 
are se lec ted  from s t rength  
conditions wi th  considerat ion 
of poss ib le  dynamic overload
ings  . These considerations 
limit t h e  p o s s i b i l i t i e s  of 
reduction i n  blade r i g i d i t y .  

3. The weight of t h e  
blade is  confined wi th in  even 
c loser  limits. The endeavor 
t o  increase t h e  weight f a c t o r  
of a he l icopter  forces  t h e  
designer  t o  reduce t h e  blade 
weight t o  a migimum. However, 
this leads t o  an  increase i n  
var iab le  stresses due t o  bend
ing, ac t ing  i n  t h e  blade during
f l i g h t  and hence leading t o  a 
decrease i n  i t s  serv ice  Life. 
Therefore, t h e  blade weight 
usual ly  is  decreased u n t i l  t h e  
spar  starts being subject  t o  

Fig.l.4 Resonance Diagrams of Various Types increasing variable stresses. 
of Blades i n  t h e  Flapping Plane. 	 A s  a r e s u l t ,  blade weight i s  

s t r i c t l y  dependent on r o t o r  
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s i z e  and on t h e  s t r eng th  cha rac t e r i s t i c s  of t h e  material from which t h e  r o t o r  
spar  i s  fabricated.  

As a consequence, t h e  resonance diagrams of d i f f e ren t  blades vary i n  
p rac t i ce  wi th in  limits that are bounded on one hand by t h e  f e a s i b i l i t y  of a 
highly r i g i d  blade and on t h e  o ther  by t h e  f e a s i b i l i t y  of. an  adequate serv ice  
life of low-rigidity blades.  

For a given t o t a l  s t r u c t u r a l  weight, a blade of " a 1  r i g i d i t y  i s  ob- & 
t a ined  i f  t h e  spar material i s  arranged along t h e  contour of t h e  p ro f i l e ,  i.e., 
i f  t h e  spar i s  inscr ibed i n  t h e  blade p r o f i l e .  I n  this case a l a rge  percentage 
of t h e  blade weight can be put  i n t o  i t s  power member, t h e  spar. Such blades 
usua l ly  are most advantageous from t h e  aspect of magnitude of e f f ec t ive  stresses, 
but  they  are d i f f i c u l t  t o  manufacture. Blades with a free form of t h e  spar 
cross  sec t ion  ( f o r  exanple, of tubular  shape) which are not inscr ibed i n  the  
blade p r o f i l e  are simpler t o  manufacture. However, such blades have l i t t l e  
res i s tance  t o  bending and provide t h e  least favorable  resonance diagram during 
v ibra t ions  i n  t h e  f lapping plane.  

The following blade types can be dis t inguished with respect t o  dynamic 
cha rac t e r i s t i c s  i n  the  f lapping plane: 

Blades-of- low r i a i d i t s  i n  the  flaming plane.  Such blades are usual ly  em
p l o y e d i n  a s t ruc tu re  made of tubular  s t e e l  spars ,  with a frame not subject  t o  
bending. In Fig.l.4 t h e  broken l i n e  shows t h e  resonance diagrams f o r  a blade 
whose r i g i d i t y  i n  t h e  f lapping plane i s  a t  t h e  lower Emit of r i g i d i t y  encount
ered i n  prac t ice .  With such parameters, t h e  blade en ters  i n t o  resonance of t h e  
second tone wi th  t h e  fou r th  harmonic and of t h e  t h i r d  tone with t h e  s i x t h  har
monic of t he  exc i t ing  forces ,  which i s  t h e  reason f o r  t he  c rea t ion  of appreciable 
s t r e s s e s  of t h e  same frequencies ( see  a l s o  Fig.1.66). These resonances are 
espec ia l ly  manifest a t  low speeds where t h e  s t r e s s e s  of a blade of this type are 
even higher than  a t  maximum speed (Fig.l.64). Therefore t h e i r  se rv ice  l i fe ,  as 
a rule ,  i s  l imited by t h e  length  of t h e i r  s t a y  i n  low-speed modes. 

Blades of low r i g i d i t y  are usual ly  unfavorable wi th  respect  t o  s t r eng th  and 
serv ice  l i f e  but  are o f t en  used s ince  they a r e  t h e  e a s i e s t  t o  manufacture. 

Blades of moderate r i a i d i t s  i n  t h e  flaming plane.  With an  increase i n  
r i g i d i t y ,  t he  natural v ib ra t ion  frequencies of t h e  blade move away from these  
resonances. T h i s  permits t he  designing of r a t h e r  successful  blades. I n  Fig.l.4 
t h e  resonance diagram of this blade i s  shown as a s o l i d  l i ne .  A s  follows from 
the  diagram, t h e  second tone of v ibra t ions  of such a blade has s t i l l  not ap
proached t h e  f i f t h  harmonic, w h i l e  t h e  t h i r d  tone was  somewhere between t h e  
seventh and e ighth  harmonics. Designwise, t hese  are usual ly  blades wi th  a con
tou r  ( o r  c lose  t o  this shape) spar inscr ibed  i n  t h e  p r o f i l e .  The spar  can be 
e i t h e r  s teel  o r  duralumin. 

It i s  impossible t o  obta in  a f u r t h e r  increase  i n  r i g i d i t y  without increasing 
t h e  blade weight. Moreover, even a s l i g h t  increase  i n  r i g i d i t y  may lead t o  
resonance of t h e  second tone wi th  t h e  f i f t h  harmonic of t h e  external forces .  
Therefore, only heavy blades of g r e a t l y  increased r i g i d i t y  can be t h e  next pos
sible type i n  t h e  sequence of increasing r i g i d i t y .  
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Heaw blades of high r i a i d i t s  i n  t h e  f lapping plane.  I n  increasing t h e  
weight of a given blade, pu t t i ng  this weight i n t o  t h e  s t ruc tu re  of t h e  spar, t h e  
r i g i d i t y  can be increased s o  much that t h e  frequency of t h e  second tone w i l l  be 
above t h e  f i f t h  harmonic. In this case, t h e  resoriance diagram shown i n  Fig.l.4 
by t h e  dot-dash l i n e  is possible .  Lower variable stresses w i l l  a c t  i n  t h e  spar 
of a blade wi th  this resonance diagram, but t h e  blades w i l l  be somewhat heavier 
i n  comparison with blades of moderate r i g i d i t y .  However, f o r  small hel icopters  
i n  which t h e  r e l a t i v e  r o t o r  weight i s  low, such a n  increase i n  blade weight i s  
f e a s i b l e  . 

It should be noted t h a t ,  i n  evaluating t h e  dynamic cha rac t e r i s t i c s  of vari
ous blades i n  the  f lapping plane, t h e  p o s i t i o n  of t h e  first tone of blade vibra
t i o n  has been completely disregarded. Usually t h e  first tone l i es  between.the 
second and t h i r d  harmonics and i t s  loca t ion  can be changed subs t an t i a l ly  only & 
i n  s t ruc tu res  d i f f e r i n g  by some s p e c i a l  fea tures ,  f o r  example, j e t  ro tors  with 
engines on t h e  blade t i p  o r  ro to r s  wi th  nonhinged blades.  The negl igible  dis
placement i n  na tu ra l  frequency of t he  first tone observed f o r  ordinary r o t o r s  
general ly  does not g rea t ly  a f f ec t  t h e  magnitudes of t h e  e f f ec t ive  variable 
stresses. 

4.. Selec t ion  of B~kde.Par.a!neters_ to-El&n$+&e- =Reso.w.nces. .  

i n  t h e  Plane. o f .  Rotati-on 

In designing a blade, absence of resonance must be ensured a l s o  i n  t h e  
plane of maximum blade r i g i d i t y ,  which can be approximately considered t o  coin
cide wi th  t h e  plane of r o t a t i o n  of t h e  ro to r .  The plane of maximum blade r i g i d i 
t y  usual ly  coincides wi th  t h e  plane of t h e  chord. Therefore, t h e  r i g i d i t y  char
a c t e r i s t i c s  of a blade i n  this plane may vary i n  wider limits than i n  t h e  f lap
ping plane. 
increase t o  a s i z e  occupying p r a c t i c a l l y  t h e  e n t i r e  p r o f i l e  from the  leading t o  

Beginning wi th  a c i r c u l a r  tube, t h e  cross sec t ion  of t h e  spar  can 

t h e  trail ing edge. 

Thus, an  increase i n  t h e  width of t h e  spar  wi th  respect  t o  t h e  chord i s  c e r t a i n  


However, t he re  are c e r t a i n  l imi ta t ions  a l s o  i n  this plane.  

t o  lead t o  a shift i n  blade centering toward t h e  t r a i l i n g  edge, which i s  usual ly  
impermissible from t h e  viewpoint of requirements f o r  t h e  prevention of f l u t t e r .  
Furthermore, an  increase i n  width of t h e  spar  may be accompanied by an  increase  
i n  variable stresses. A decrease i n  r i g i d i t y  of t h e  spar  by reduction of i t s  
width automatically leads t o  a decrease i n  t o r s i o n a l  r i g i d i t y  of t h e  blade. 
T h i s  cons t i t u t e s  one of t h e  f a c t o r s  preventing t h e  c rea t ion  of blades of low 
r i g i d i t y  i n  t h e  plane of ro t a t ion .  

I n  evaluating t h e  resonance cha rac t e r i s t i c s  i n  t h e  plane of r o t a t i o n  it i s  
mainly necessary t o  inves t iga t e  t h e  first and sometimes a l s o  t h e  second har
monic of blade vibrat ion.  The exc i t a t ion  of v ibra t ions  by higher harmonics is  
not as l i ke ly .  

Blades can be subdivided i n t o  the  following types,  based on t h e i r  dynamic 
cha rac t e r i s t i c s  i n  t h e  plane of maximum r i g i d i t y :  

Blades of min i , ”  r i g i d i t s  i n  t h e  p-lane. of ro t a t ion .  T h i s  type of blade 
usual ly  includes those wi th  a tubular spar and a frame not subject  t o  bending. 
The natural v ib ra t ion  frequencies of t M s  type of blade i n  t h e  plane of r o t a t i o n  
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are approximately t h e  same as i n  t h e  t h r u s t  plane or even somewhat lower, due t o  
t h e  f a c t  that t h e  value of t h e  coef f ic ien t  k j  [see eq.(3.8)] i n  t h e  plane i n  
question is somewhat lower ( t h i s  w i l l  be taken up i n  Sect .4,Subsect .4). The 
first harmonic v ibra t ions  i n  this case i s  general ly  somewhat higher than  t h e  
second harmonic of ex te rna l  forces  so that m ser ious  t rouble  i s  created by this 
resonance. The s i t u a t i o n  becomes worse f o r  t h e  second harmonic. T h i s  might 
en te r  i n t o  resonance wi th  t h e  fou r th  harmonic of external forces .  Generally, 
this leads t o  a s u b s t a n t i a l  increase  i n  stresses of this p a r t i c u l a r  frequency 
i n  t h e  plane of ro ta t ion .  In Fig.l.5 t he  dashed l i n e  represents  t he  resonance 
diagram f o r  a blade whose r i g i d i t y  i n  t h e  plane of r o t a t i o n  l i es  a t  t h e  lower 
l i m i t  of r i g i d i t y  encountered i n  prac t ice .  T h i s  blade i s  c lose  t o  resonance of 
t h e  second harmonic wi th  t h e  fou r th  harmonic of external forces .  

~~Blades of lo? r-i-gidLt.y-int h e  p-l+ne of ro ta t ion .  If t h e  r i g i d i t y  of a 
blade i n  t h e  plane of r o t a t i o n  i s  somewhat increased, s o  t h a t  i t s  first tone re
mains between t h e  second and t h i r d  harmonics and t h e  second tone ge t s  out of 
resonance wi th  t h e  fou r th  harmonic., then  t h e  blade w i l l  be adequate with respect 
t o  s t r e s s e s  i n  t h e  plane of ro t a t ion .  It should be noted t h a t ,  wi th  an  increase  
i n  r i g i d i t y ,  resonance of t h e  second tone wi th  t h e  f i f t h  harmonic t o  t h e  r o t o r  ,& 

rpm must be prevented. 
PI" 	 Prac t i ce  has shown t h a t ,  a t  

this resonance, t h e  s t r e s s e s  
i n  t h e  plane of r o t a t i o n  in
crease r a the r  strongly,  
which might even a f f e c t  t h e i r  
se rv ice  l i f e .  The resonance 
diagram of blades of low 
r i g i d i t y  i n  t h e  plane of ro
t a t i on ,  for which t h e  second 
tone i s  between the  f i f t h  
and s i x t h  harmonics, i s  
shown i n  Fig.l.5 by s o l i d  
l i nes .  

Blades of low r i g i d i t y  
i n  t h e  plane of r o t a t i o n  are 
widely used i n  prac t ice ,  and 
as a ru le ,  cause no t roubles  
associated with v ibra t ions  
i n  this plane. However, 
t h e i r  r i g i d i t y  cha rac t e r i s t i c s  
i n  t h e  plane of f lapping are 
o f t en  c lose  t o  those f o r  
blades of law r i g i d i t y  i n  t h e  
f lapping  plane, which are 
dis t inguished by high 

0 0.2 0.4 0.6 0.8 1.0 n/nq 	 stresses at low f l y i n g  
speeds. On increasing t h e  

Fig.l.5 Resonance Diagrams of Various Types of blade r i g i d i t y  i n  t h e  f lap-
Blades i n  t h e  Plane of Rotation. ping plane,  t h e  r i g i d i t y  i n  

t h e  plane of r o t a t i o n  o f t en  
i s  simultaneously increased. 
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This makes it necessary t o  use blades of even g rea t e r  r i g i d i t y  i n  t h e  plane of 
r o t a t i  on. 

Blades of moderate and high r i g i d i t y  i n  t h e  plane of ro ta t ion .  Blades of 
moderate r i g i d i t y  i n  t h e  plane of r o t a t i o n  usua l ly  include those  whose funda
mental l ies  between t h e  t h i r d  and fou r th  harmonics of external forces,  w h i l e  t h e  
second tone i s  located i n  a frequency range wi th  such weak exc i ta t ions  that it 
can be disregarded. I n  Fig.l.5, t he  frequency of t h e  fundamental of these  blades 
is shown by a double l i n e .  

Blades of high r i g i d i t y  i n  t h e  plane of r o t a t i o n  include those whose LXz 
frequency i n  t h e  fundamental l i es  above t h e  f o u r t h  harmonic of ex terna l  forces  
(dot-dash l i n e  i n  Fig.l.5). 

Blades of moderate and high r i g i d i t y  i n  t h e  plane of r o t a t i o n  can be fabri
cated with moderate stresses. However, i n  t h e  p r a c t i c a l  use of such blades dif
f i c u l t i e s  o f t en  arise, associated wi th  a decrease i n  blade frequency as a conse
quence of e l a s t i c i t y  of t h e  r o t o r  attachment po in t  t o  t h e  fuselage.  T h i s  must 
d e f i n i t e l y  be taken i n t o  account i n  designing blades of t h i s  type. 

Sect ion 4. 	Calculation of Natural Blade Vibrat ion Modes 
and Frequencies i n  a Cent r i fwal .  Force- _Field 

1. P m o s e  and Problems. of Calculat ion 

A s  mentioned i n  Sect ion 1, Subsection 8, t h e  natural v ib ra t ion  modes and 
frequencies of t h e  blade must be determined i n  solving two types of t echn ica l  
problems that impose d i f f e r e n t  demands on t h e  method of calculat ion.  

The first type includes problems i n  which t h e  c a l c u l a t i m  of modes and fre
quencies i s  car r ied  out t o  s e l e c t  blade parameters that w i l l  prevent t h e  appear
ance of resonance. I n  t h i s  case, t h e  ca l cu la t ion  is  cumpleted by construct ion 
of t h e  resonance diagrams, and t h e  na tu ra l  v ib ra t ion  modes p l ay  only t h e  r o l e  of 
intermediate r e s u l t s  and are not used later. Therefore, i n  current  ca lcu la t ions  
of this type, t h e  natural v ibra t ion  mode of a given blade i n  a cen t r i fuga l  force  
f i e l d  i s  assumed t o  coincide with t h e  mode of a nonrotating blade. The e f f e c t  
of cen t r i fuga l  forces  i s  taken i n t o  account only i n  t h e  values of frequencies 
computed from energy re la t ionships  determined by eq.(3.8). Such a r a t h e r  s h p l e  
method of ca lcu la t ion  i s  f u l l y  adequate f o r  t h e  purposes involved. 

The second type includes problems i n  which the  na tu ra l  v ib ra t ion  modes and 
frequencies are used f o r  ca lcu la t ing  forced vibrat ions,  wi th  a determination of 
variable s t r e s s e s  set uy, i n  t he  blade s t ruc tu re .  To obta in  s u f f i c i e n t l y  accurate  
r e s u l t s  here, it i s  important t o  allow f o r  cha rac t e r i s t i c s  t h a t  introduce tensile 
cen t r i fuga l  forces  i n t o  t h e  v ib ra t ion  mode. 

It will be shown i n  this Section t h a t  cen t r i fuga l  forces  subs t an t i a l ly  
change t h e  natural v ibra t ion  mode of t h e  blade. The e f f e c t  of cen t r i fuga l  
forces  i s  espec ia l ly  manifest i n  t h e  form of curvature d i s t r i b u t i o n  of an  e l a s t i c  
l i n e  over t h e  blade length  and, t o  a lesser extent,  i n  t h e  mode of displacement 
of i t s  elements. A change i n  t h e  form of curvature d i s t r i b u t i o n  na tura l ly  leads 
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t o  a r ed i s t r ibu t ion  of bending s t r e s s e s  over t h e  blade. The e f f ec t  of cent r i 
fugal  forces on t h e  d i s t r i b u t i o n  of s t r e s s e s  over t h e  blade length i s  f e l t  most 
a t  s i t e s  of a marked drop i n  f l e x u r a l r i g i d i t y  and a t  sites of concentrated 
loadings. 

It should be noted that, i n  determining t h e  natural v ibra t ion  modes with 
consideration of cen t r i fuga l  forces,  c e r t a i n  d i f f i c u l t i e s  a re  encountered that 
must be examined i n  g rea t e r  d e t a i l .  

2. 	-Emits of Appl icabi l i ty  of _CalculationMethods Reducing 
-&&ion of t h e  Intenral-Equation of Blade Vibrations 

To ca lcu la te  t h e  f r e e  vibrat ions of a blade i n  a cent r i fuga l  force  f i e l d ,  
it i s  convenient t o  use t h e  same method as f o r  t h e  blades of a nonrotating ro tor .  
However, the method of successive approldmations (see Sect .2), which involves 
solVing t h e  i n t e g r a l  equation (2.1), cannot be applied i n  a l l  cases t o  t h e  sol
t i o n  of eq.(3.1) describing natural blade vibrat ions i n  a cent r i fuga l  force &
f i e l d .  

It was shown i n  Section 2, Subsection 1 that, with a fourfold in tegra t ion  
of eq.(2.1), t h e  problem reduces t o  solving t h e  i n t e g r a l  equation (2.4). T h i s  
equation can be wr i t t en  i n  a somewhat differerrt  form 

R R  
where M i n e r t= JJ mydr2 i s  t h e  bending moment due t o  i n e r t i a  forces  a r i s ing  upon 

r r  
blade vibrat ions with a frequency p = 1. 

In t h e  same manner, on in tegra t ing  e ~ ~ ( 3 . 1 )t h e  problem reduces t o  solving 
an equation of t he  fo l l a J ing  form: 

where M C a f  is t h e  bending moment due t o  cent r i fuga l  forces  at an angular ve loc i ty  
of ro t a t ion  of t he  r o t o r  w = 1: 

R P 
M ,.. =s myrdr -y s mrdr; 

r r 

0 2  y=-. 
P2 

The method of successive a p p r o a t i o n s  applied t o  eq.(k.l) y ie lds  s a t i s 
f ac to ry  convergence i n  a l l  cases of r o t o r  ca lcu la t ion  but, applied t o  eq.(4.3),
it w i l l  converge only i n  a c e r t a i n  range of values of t h e  parameter y .  
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Figure 1.6 gives t h e  resonance diagram f o r  a conventional hel icopter  'Dlade--
with hinged attachment t o  t h e  hub. I n  this graph, t h e  r o t o r  r p m  i s  l a i d  off on 
t h e  absc issa  and t h e  na tu ra l  v ib ra t ion  frequencies on t h e  ordinate .  

The values f o r  t h e  natural frequencies,  obtained by solving eq.(4.3) wi th  
t h e  method of successive approximations, are shown i n  Fig.l.6 by dots .  Opposite 
each dot, we entered t h e  corresponding value of t h e  parameter y and t h e  number 
of approximations s necessary f o r  achieving t h e  required accuracy of 0.001. The 
graph ind ica t e s  that, at d e r t a i n  values of y, t h e  value of s begins t o  increase  
rap id ly  and t h e  method of successive approximations ceases t o  converge. 

Fig.l.6 Resonance Diagram of Helicopter Blade i n  t h e  Thrust 
Plane, Constructed by t h e  Method of Successive Approximations. 

If follows from F'ig.l.6 that, i n  t h e  operat ing r p m  range f o r  he l icopter  
blades, this method permits a determination of natural frequencies of t h e  t h i r d  
and higher harmonics but only i f  a l l  harmonics of t he  v ibra t ions  are determined 
f o r  a constant value of t h e  parameter y, which only approximately corresponds t o  
conditions of t h e  formulated phys ica l  problem. If, i n  t h e  process of successive 
approximations, t h e  parameter y 53 ref ined  f o r  a given value of angular ve loc i ty  
w, t hen  t h e  method w i l l  converge only i n  an  rpm range appreciably smaller than  
t h e  operating rpm. 
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T h i s  requires t h e  use of other  methods t h a t  a f ford  a more reliable r e s u l t  

i n  t he  e n t i r e  rpm range of t h e  ro tor .  

3 .  Possible Methods of Calculating ..Fr-e. Blade Vibrations 
-
i n  a Cegtrifmal Force F ie ld  

Various methods can be used f o r  ca lcu la t ing  t h e  natural v ib ra t ion  frequen
c i e s  and modes i n  a cen t r i fuga l  force  f ield.  Of Soviet  work, published on this 
subject  matter, we should mention three apers  (Ref.4, 8, 10). Papers w e r e  a l s o  
published i n  o ther  countr ies  (Ref .33, 347. I n  these,  a r a t h e r  cumbersome method 
i s  presented which, moreover, does not  y i e l d  a high accuracy of the  f inal  
r e s u l t s  des i t e  t h e  f a c t  t h a t  t h e  ca lcu la t ion  should be car r ied  out t o  not l e s s  
than  t h e  10!h t o  12th s ign i f i can t  figure. 

Here, we will present  a method which, i n  our opinion, is  the  most convenient 
f o r  ca lcu la t ing  t h e  natural v ibra t ion  frequencies of t h e  blade i n  a cen t r i fuga l  
force  f i e l d .  The process i s  based.on t h e  three-moment method used by T.Morris 
and W.Tye (Ref.32) i n  ca lcu la t ing  bending s t r e s s e s  i n  a blade extended by cen
t r i f u g a l  forces .  The Morris and Tye method i s  a l s o  presented elsewhere 
(Ref. 12) . 

The three-moment method,applied t o  ca lcu la t ion  of a blade extended by 
cent r i fuga l  forces ,  has a number of s ign i f i can t  advantages, t h e  main one being 
t h a t  i t  does not require  a high accuracy i n  the  ca lcu la t ion  process. The calcu
l a t ions  can even be ca r r i ed  out with an  ordinary s l i d e  r u l e .  

The three-moment method has long been i n  use f o r  ca lcu la t ing  na tu ra l  m 
frequencies, and has been programmed on the  e lec t ronic  computers IlStrela11 and 
M-20. Calculation of t h e  first eight  harmonics of natural v ibra t ions  takes  only 

about 3 minutes on t h e  IlStrelaIt 

1Qrz 	
computer. A l a rge  number of t h e  
most diverse  ca lcu la t ions  have 
been performed. The re,sults indi
ca t e  t h e  extreme convenience and 
grea t  r e l i a b i l i t y  of this method. 

It should be noted t h a t ,  when 
using a computer program f o r  such 
a calculat ion,  t h e r e  i s  no need �or 
any s implif ied methods of calcula
t ion ,  f o r  example, those mentioned 
i n  Section 3 .  

2 Yo 
0 -

Yo 4. Three-Moment Method f o r  Calcu
l a k i n g  Natural Blade Vibration 

Fig.l.7 Polygon of Forces Acting on Two Modes and Frequencies i n  a 
Adjacent. Blade Elements. Centr i fugal  Force Field 

To der ive  t h e  computational 
formulas, we used t h e  blade beam m o d e l  wi th  concentrated loads, discussed 
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already i n  Section 2, Subsection 2. As before, we present  t h e  flexural r i g i d i t y  - .  
of t h e  blade as a stepped curve, so that it remains constant over t h e  length of 
each segment (see Fcig.l.3). We will assume t h e  cent r i fuga l  force  t o  be applied 
only t o  t h e  loads. Therefore, this value W i l l  be constant over t h e  length of 
each segment. We w i l l  a l s o  assume t h a t  t h e  cen t r i fuga l  force  i s  absorbed by a 
spec ia l  attachment of zero weight, free t o  move ver t i ca l ly .  

It i s  obvious t h a t  such an ideal ized ca lcu la t ion  scheme w i l l  be reliable 
i f  t h e  number of segments z i s  taken as s u f f i c i e n t l y  large.  Usually t h e  blade 
i s  divided i n t o  no less than  25 - 30 segments (elements) 

The method proposed later consis ts  i n  determining t h e  natural o s c i l l a t i o n  
modes and f r e q e n c i e s  of such an ideal ized scheme, without addi t iona l  assump
t ions .  

Let us examine.two adjacent blade segments, def lected under t h e  e f f ec t  of 
i n e r t i a  forces  from t h e  plane of ro t a t ion  of t h e  r o t o r  (Fig.l.7). As usual, we 
w i l l  examine only small deflect ions.  

The equation of equilibrium of each of t h e  segments under the  e f f ec t  of 
forces  ex terna l  t o  t h e  given segment can be wr i t t en  i n  t h e  form of zero-equality 
of t h e  sum of t h e  moments of a l l  these forces  r e l a t i v e  t o  some point .  In this 
case, we must include i n  t h e  sum of t h e  moments of these  forces  t h e  shearing 
force Q and t h e  bending moment  M act ing i n  t h e  cross sect ion.  

Then, t h e  sum of t h e  moments of forces  act ing on t h e  blade segment 0 - 1 & 
r e l a t i v e  t o  t h e  poin t  0 can be written a s  

MI-Mo--No~ (~i-yo) +Qoi lo l=O.  (4.6) 

The sum of t h e  moments of forces  act ing on t h e  segments 1 - 2 r e l a t i v e  t o  
t h e  point  1reads 

Mz-MI-N~z (~2-yi) +Q12li2=0.  (4.7) 

Here, 

After dividing e q ~ ~ ( 4 . 6 )and (k.7), respect ively,  by t o l N o ,  and t12N12 and 
adding them, we obtain t h e  f o l l d n g  equation of equilibrium: 



In  t h e  same manner as eq.(4.8), we can write t h e  equations of equilibrium 
f o r  a l l  other  blade segments. 

E s r a " g ,  as usual, only small displacements of t h e  blade elements, we 
first determine t h e  deformations of t h e  segment 1- 2. The equation of deforma
t i o n s  of t he  element 1- 2 can be wri t ten,  as conventional [see eq.(3.1)1, 

The i n e r t i a  term is absent here, s ince  i n e r t i a  forces  a r e  applied only at 
t h e  boundaries of t h e  segment. Taldng i n t o  consideration that E1 =. const and 
N = const over t h e  length of t h e  segment and a l s o  that EIy" = M, we ob ta in  

where 

The so lu t ion  of eq.(4.9) can be wr i t t en  i n  terms of hyperbolic functions,  
i n  the  following manner: 

The coef f ic ien ts  A and B are found from t h e  fo lhwing  boundary conditions:  
f o r  x = 0 Mx = M l ;  
f o r  x = t,,M, = M,. 

From this, it follows that 

A = 2 - L .M * M 
sinha1 tanha, ' 

B=M,,  

where cy, = p1I,, . 
Subst i tut ing these  values i n t o  eq.(k.lo), we obta in  

Twice in t eg ra t ing  eq.(k.l l) ,  assuming y' .= PI, y = y, at x = 0 and y' = $,, 
y = y, a t  x = tl,, we obta in  e i t h e r  

o r  

The equation of deformations f o r  t h e  segment 0 - 1 can be wr i t t en  by analogy 
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wi th  t h e  second equation of t h e  system (4.12): 

After changing a l l  s igns  i n  e ~ ~ ( 4 . 1 3 )t o  t h e  opposite and adding t o  t h e  
first equation of t h e  system (4.12), we ob ta in  

b~Yo+alYl+blY~.zdoMo+ciM1 +diM2. (4.14) 
Subs t i tu t ing  t h e  left-hand s i d e  of eq.(k.&) f o r  t h e  bending moments i n t o  

t h e  equation of equilibrium of t h e  elements [eq.(4.8)], we obtain t h e  following 
equation: 

Repeating t h e  ca lcu la t ions  f o r  other  segments of t h e  blade, we ob ta in  a 
system of d i f f e r e n t i a l  equations with respect  t o  t h e  unknown funct ions of t i m e  
yi and Mi, which i s  w r i t t e n  out below. 

T h i s  system, expressed i n  t h e  form of tables, cons is t s  of two systems of 
equations (4.16) and (4.17), each of which comprises z + 1equations. 

AnJr of t h e  equations occupying one row i n  Table 1.1represents  a polynomial 
whose coe f f i c i en t s  are entered i n  t h e  squar'es. All terms of t h e  polynomial re
present  t h e  products of some coef f ic ien t  determined by eqs.(&.l8), (4.21),

-
(4.23) and (koa) (4.27) as w e l l  as t h e  unknown functions Mi and yl o r  t h e  
second der iva t ive  of yi with  respect  t o  t i m e .  

Only t h e  coe f f i c i en t s  of these  funct ions are errtered i n  t h e  squares of 
Table 1.1w h i l e  t h e  funct ions themselves, simultaneously enter ing seve ra l  equa
t ions ,  a r e  given i n  a separate  row above t h e  tables. 

The described system of equations a l s o  includes equations of t h e  type of 
eq.(&.U), per ta in ing  only t o  t h e  root  and t i p  segments of t h e  blade and CO

t a in ing  t h e  boundary values Bo and $, O These equations are needed f o r  calculat
ing t h e  boundary value problems. 

The obtained system of equations has t h e  f o l k n c h g  form: 

Table 1. 1 
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The following notations were adopted i n  constructing t h e  above equations: 

a,=O. 1 

e, =0. J 
c, =e,; 

Cl =e*-1 f e,; 

c, =e,,, . (4.23) 


43 

I 



I l l l l I l I l l l l  I I I I 11l1ll1l1111l1ll1l1l1l11ll1II IIIII 


h, =do -m,; 

hi=di -mi; 

h,=O. I ( 4 . W  


go=co -no; 
g,=c, -n1; 
g, =c, -n,. I 

I n  eqs.(4.26) and (4.27), given below, mi i s  the  mass of t h e  i - t h  load 

1 

Here, t h e  subscr ipt  k denotes t h e  number of t h e  row i n  Table 1.1. 

To solve t h e  system of equations i n  Table 1.1, it is  convenient t o  use t h e  
method of successive approximations. With respect  t o  this system of equations, 
this involves t h e  following: The functions of time yi(t),Mi(t), and pi  (t)  
enter ing i n t o  the  systems (4.16) and (4.17) are represented in t h e  following 
form: 

Y l ( 4=iii  sin pt ;  
M,(t)=M,sinpt; 

Pr (4=PI sin p t ,  

where the  l e t t e r s  yi,Mi, and pi now denote only amplitude values of these  
functions.  

Then, bearing i n  m i n d  that yi(t) = -p2yi s i n  p t  and canceling f o r  s i n  p t ,  
we obtain a system of a lgebraic  equations analogous t o  the  system (4.16) and 
(4.17). O n l y  t h e  values of p2 w i l l  appear on t h e  right-hand s ides  of t he  system 
of equations analogous t o  eq.(4.16). 

Let us begin t h e  method of successive approximations a f t e r  assigning some ,/& 
funct ion yl as t h e  zeroth approximation. The second subscr ipt  here denotes the  
nqnber of t%e approximation. The funct ion ylo taken as t h e  zeroth approximation 
should somehow be normed, f o r  example 
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tJz= 1. 

If t h e  func t ion  yi i s  known, then t h e  inertia fo rces  enter ing t h e  right-
hand s idz  of eqs.(4.16) can be determined wi th  an accuracy t o  wi th in  a constant 
f ac to r  p . 

For t h e  t i m e  being, we Will assume p” = 1. Then, eqs.(4.16) Will y i e l d  t h e  
values of t h e  bending moments Mi and t h e  angle of r o t a t i o n  of t h e  blade a t  t h e  
root  Bo. N e x t ,  from t h e  known values of Mi and Bo we can determine, over 
eqs.(&.l7), t h e  displacements of t h e  blade axis during deformation which, f o r  
t h e  case p” = 1, we Will denote by ui such that 

y i=p2U<.  (4.29) 

After determining t h e  displacements ut. we can def ine  t h e  natural v ib ra t ion  
frequency p. Its value i s  obtained on t h e  basis of eqs.(4.2�?) and (4.29) i n  t h e  
following manner : 

Then, i n  conformity wi th  eq.(4.29) we determine t h e  ref ined ( a f t e r  t h e  
first a p p r o ~ m a t i o n )func t ion  

The e n t i r e  process i s  repeateu u n t i l  t h e  required accuracy i s  achieved. 

T h i s  method of successive approximations results i n  the  determined mode yi 
being reduced t o  the  mode of t h e  lower harmonic of the  natural blade vibrat ions.  

In determining successive harmonics, t he  condi t ion of orthogonality must be 
s a t i s f i e d .  The operations required when obeying t h e  condition of or thogonal i ty  
are t h e  same as f o r  a blade of a nonrotating r o t o r  (se.e Subsect.3 of Sect.2). 

The above equations are equal ly  suitable f o r  ca lcu la t ing  t h e  na tu ra l  dbra
t i o n  frequencies i n  the  f lapping plane and i n  t h e  plane of ro t a t ion  of t h e  ro to r .  
When ca lcu la t ing  i n  t h e  plane of ro ta t ion ,  the  above values of t h e  frequencies 
should be corrected by t h e  formula 

-w2, 

where w i s  the  angular ve loc i ty  of r o t a t i o n  of t h e  ro to r .  

The method of ca l cu la t ing  t h e  natural v ib ra t ion  modes remains the  same, ir
respect ive of t h e  plane i n  which the  ca l cu la t ion  i s  performed. 

Let  us make a more de t a i l ed  study of c e r t a i n  operations i n  performing one 
approximation 
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5. 	Determination of Bending Moments on t h e  Basis of 
Known Forces 

kt us begin wi th  a determination of t he  bending moments on t h e  basis of 
known i n e r t i a  fo rces  enter ing t h e  right-hand s i d e  of eq.(4.16), which we de te r 
mine i n  each approximation, assigning a t  f irst  t h e  value p2 = 1. 

After prescr ib ing  some v ibra t ion  mode yi , the  coe f f i c i en t s  of t h e  r igh t -
hand s ide  of eqs.(l+..l6) can be determined which will be denoted here by Fk . 

The coe f f i c i en t s  Fk can be determined from t h e  formulas L& 

(4.33) 

or ,  s t i l l  better, from 

7. 

where Q3r-l,k =?miyi. 

Then, t he  system of equations (4.16) can be r ewr i t t en  i n  the  f o l l a J i n g  
form (Table 1.2): 

1. 2 

To solve this system, we must know two add i t iona l  equations which take  t h e  
boundary condi t ion i n t o  consideration. These equations can be the  following: 

a t  r i g i d  attachment of t he  blade root  

Po=(); 


a t  r i g i d  attachment of t h e  blade t i p  

pz=0. 


A t  hinged attachment of t h e  blade t ips  o r  wi th  completely free t i p s ,  we-
have Mo = 0 and M, = 0. 



. 


Below, we will discuss  only the  two most common cases where t h e  blade t i p  
i s  free (M, = 0) w h i l e  t h e  roo t  e i t h e r  has a hinged support (M, = 0) o r  a r i g i d  
attachment (po = 0 )  

L e t  us examine the  first case i n  which t h e  blade i s  hinged, i.e., Mo = 0. 
Here, t o  determine the  bending moments we use only the  equations encased by a 
s o l i d  l i n e  i n  the  system (4.35); from the  first equation we can then  determine 
t h e  value of t h e  angle of blade r o t a t i o n  i n  the  hinge Bo. From the  last  equa
t i o n  of t h e  system (4.35) we could a l so  determine the  value of B, . However, we 
do not need this value f o r  f u r t h e r  solut ion.  The equation i t se l f  i s  used only 
i f  pz = 0, a case r a r e l y  encountered i n  prac t ice .  

I n  solving t h e  system (4.35), it may e a s i l y  happen t h a t  the  wrong pa th  i s  
selected,  leading t o  t h e  appearance, during solut ion,  of s m a l l  d i f ferences of 
la rge  quant i t ies ,  which might completely r u i n  the  r e s u l t  even when using a com
pu te r  providing an accuracy t o  10 decimal places .  

We propose here a repeatedly verifzed procedure, which permits performing ,& 
t h e  ca lcu la t ion  on an  ordinary s l i d e  ru l e .  

We divide t h e  first equation of t h e  system (4.35), w r i t t e n  f o r  a hinged 
blade, by gl and t h e  second equation by hl: 

Subtracting eq.(4.36) from eq.(4.37) and introducing t h e  following notations:  

we ob ta in  an  equation analogous t o  eq.(4.36): 

I n  combination wi th  t h e  next equation of t h e  system (4.35), this equation 
forms a system of two equations analogous t o  eqs.(4.36) and (4.37). Repeating 
t h e  described operations a c e r t a i n  nmber  of t i m e s ,  we u l t imate ly  obta in  one 
equation of t h e  following form: 

(4.39) 
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After determining t h e  moment M,,1, we determine t h e  moment M,-a, and so on 
up t o  t h e  moment MI. I n  other  words, t h e  moment M, is determined each t i m e  
when t h e  moment i s  already determined. The formula f o r  determining t h e  
moment M i  can be w r i t t e n  on t h e  basis of eqs.(&.36) and (4.3e) i n  t h e  following 
manner : 

After obtaining t h e  bending moments, t h e  angle of r o t a t i o n  of t he  blade i n  
t h e  root  hinge Bo is  determined by means of t h e  formula 

The second s tep  i n  the  method of successive approximations involves deter
mining t h e  blade deformations from known values of t h e  bending moments Mi  and 
t h e  angle of blade r o t a t i o n  i n  t h e  hinge Bo 

6. Determination of Displacements from Known Bendinn Moments 

Displacements of the  blade i n  deformation which - i n  conformity wi th  the  
above - are denoted by u l  can be determined from t h e  system (4.17). However, 
it can be demonstrated that t h e  equations of t h e  system (4.17) are inadequate 
f o r  determining a l l  values of u,. 

Actually, f o r  determining t h e  p o s i t i o n  of t he  curve a t  a known curvature & 
d i s t r i b u t i o n  over t h e  length, when given t h e  values of Mi, and a t  a known value 
of t h e  angle of r o t a t i o n  a t  one po in t  Bo, one more condi t ion imposed on t h e  
values of displacements i s  necessary. I n  this case, t h e  last equation of t h e  
system (4.17),which incorporates  t h e  value of t h e  angle of r o t a t i o n  a t  another 
po in t  B,, i s  ac tua l ly  i d e n t i c a l  with t h e  first equation so  t h a t  it can be 
wr i t t en  out exclusively by analogy with t h e  system (4.16). 

Thus, t h e  a d l i a r y  condition e i t h e r  Will be t h e  condition 

uo =0, 

if the re  i s  a support a t  t h e  blade root ,  o r  e l s e  t h e  condi t ion 

i f  t h e  blade i s  regarded as free on two s ides  of t h e  beam. The condition (4.43) 
coincides wi th  t h e  expression obtained from t h e  condi t ion of orthogonality with 
t h e  fundamental of t h e  v ibra t ions  

ylo) =1=const. 



-- 

Calculating t h e  coef f ic ien ts  t h a t  comprise t h e  already determined values 
of M i  and &, and leaving only t h e  first of t h e  two i d e n t i c a l  equations, we ob
t a i n  t h e  following system of equations which, i n  combination with eqs.(4.42) 
and (4.43), permits determining a l l  values of ul (see Table 1.3) 

Table 1.3 

(4.44) 

Here, we have introduced t h e  following notations:  

I n  this formula, a t  i = -1, it is  necessary t o  s u b s t i t u t e  Bo f o r  t h e  values of 
E, and t o  consider t h e  value of d,, as equal  t o  uni ty  (ct, = 1). 

With the  condition (4.42), t h e  so lu t ion  of t h e  system (4.44.) reduces t o  
determining t h e  values of u1 from simple recurrence r e l a t ions  of the  type of 

1 

u I = - 61-1 [ D ~ ~ l - b I ~ ~ u I ~ ~ - a I ~ ~ u I ~ l ] .  (4-46) 

On solving t h e  system (4.44.) wi th  t h e  condition (4.43), t h e  values of ul ,&? 
can be represented as 

ui =uo+ Ei, (4.47) 

where Yo = 0, and we can determine Ui from eqs.(4.46), after which t h e  value of 
uo can be determined by means of t he  formula 

uo= I - 0 
i - z  

2 m i  
i-0 

The f u r t h e r  course of successive approximations has been described above. 
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I n  t h e  examined case of hinged blade attachment at t h e  root ,  t h e  method of 
successive a p p r o h a t i o n s  leads a t  first t o  a determination of t he  mode of t he  
fundamental, which, when t h e  blade hinge coincides wi th  t h e  ax is  of r o t a t i o n  of 
t h e  ro tor ,  w i l l  coincide with a s t r a i g h t  l i n e .  It i s  natural tha t ,  i n  this 
p a r t i c u l a r  case, t he  ca lcu la t ions  should begin d i r e c t l y  wi th  determination of 
t h e  first harmonic, carrying out i n  each approximation orthogonalization t o  the  
fundamental which W i l l  be assumed as coinciding wi th  a s t r a i g h t  l i n e .  

I n  most designs, t h e  root  hinge of a he l icopter  blade i s  set off  from the  
axis of r o t a t i o n  of t h e  r o t o r  by some amount ro, which may be as much as 3 - 10% 
of t h e  blade radius .  The presence of this o f f s e t  causes t h e  mode of t he  funda
mental of a hinge-suspended blade t o  deviate  s l i g h t l y  from a s t r a igh t  l i n e  and 
t h e  na tu ra l  frequency t o  d i f f e r  noticeably from a n  amount equal t o  t h e  rpm of 
t h e  ro to r .  To i l l u s t r a t e  this effect ,  we will present  (see Mg.1 . a )  a graph 
of t h e  mode of t h e  fundamental, f o r  a la rge  o f f s e t  of t h e  axis of ro to r  ro t a t ion  
from the  root hinge. 

7. Case of a Blade Ria id ly  Attached a t  t h e  Root 

The ca lcu la t ion  of t he  natural v ib ra t ion  mode f o r  a blade r i g i d l y  f ixed  a t  
t h e  root  d i f f e r s  l i t t l e  from t h e  above case of hinged attachment. 

The first s tage  of t h e  calculat ion,  involving a determination of  t h e  bend
ing  moments Mi, is car r ied  out i n  t h e  same manner as described above, except 
t h a t  we now solve t h e  system out l ined by a broken l i n e  i n  the  table of eq.(4.35). 
T h i s  system incorporates  one more equation i n  which, by v i r tue  of t h e  boundary 
conditions,  we set p = 0. 

T h i s  condition i s  used a l s o  i n  solving t h e  system (4.44.),i n  which t h e  co
e f f i c i e n t  Do i s  calculated from t h e  formula 

8 .  Possible Simplif icat ions i n  Ca lcu la t iw  t h e  Coeff ic ients  

We would l i k e  t o  emphasize t h a t ,  i n  cases i n  which t h e  blade i s  divided 
i n t o  a s u f f i c i e n t l y  l a rge  number of segments so  t h a t  t h e  value of t h e  coeff i 
c i en t s  ai i n  eqs.(k.X)) i s  l e s s  than  0.05 - 0.08, it i s  poss ib le  t o  s implify 
eqs.(4.21) and (4.22) on replacing t h e i r  hyperbolic functions by the  first terms 
of t h e i r  expansion i n  series. 

Actually, i n  eqs.(4.21) and (4.22) we s e t  

a3 a5 a3sinha=a+-+-+. . 
31 51 

tanha=a-- a3 2a5 ru a3+ 1 5 - . . . = a - 
3 

and neglect t h e  values a2 w i t h  respect t o  unity.  Then t h e  coef f ic ien ts  di m 



-- 

and e, can be calculated from t h e  approximate formulas 

These s impl i f ica t ions  render t h e  ca lcu la t ion  somewhat l e s s  laborious, which 
i s  important when using manual means. 

9 .  	C e r t a i n - e s u l t g  of CalculatinE t h e  Natural Blade 
Vibration- Modes and &e auencies 

Here w e  d i s t inguish  two problems which a r e  of prime i n t e r e s t  from our poin t
of v iew.  

Harmonic o f  
V i  bra t ions  

Frequei 

Approximate
Method 

I 

Exact 
Method 

rence of-sharp bends i n  t h e  blade under 
t h e  e f f ec t  of l o c a l  phenomena of the  
d i s t r i b u t i o n  of r i g i d i t y  and mass para-
meters over t he  blade length.  The oc-

Hinged suspension currence of such f lexures  i s  charac-
a t  blade root  t e r i s t i c  f o r  beams extended by cent r i -

F i r s t  
Second 

405.3 
708.5 

404.3 
705.9 

fuga l  forces  and i s  never observed i n  
the  absence of extension by cen t r i fuga l  
forces  . 

’Ihi rd 1069.7 1069.0 
R i g i d  attachment bt us begin wi th  t h e  first prob

a t  blade root l e m :  We already noted i n  Subsection 1
F i r s t  212.1 194.7 of Section 3 t h a t  t h e  approfimate
Second 463.7 461.9 method of ca lcu la t ion  of na tu ra l  blade 
’hird 821.5 817.5 frequencies i n  a cen t r i fuga l  force  

f i e l d ,  which i s  based on t h e  assumption 
t h a t  t h e  natural v ibra t ion  modes do not 
d i f f e r  i n  t h e  Dresence o r  absence of 

cen t r i fuga l  forces ,  y ie lds  completely s a t i s f a c t o r y  r e s u i t s  a t  these  frequency 
values. 

To confirm this assumption, l e t  us present  t h e  values of t h e  natural vibra
t i o n  frequencies of t h e  first three harmonics of hinged and r i g i d  hel icopter  
blades i n  a cent r i fuga l  fo rce  f i e l d .  The values of t h e  frequencies calculated 
by t h e  approximate energy method (see Sect .3) are shown i n  t h e  second column of 
Table 1.4. For comparison, t h e  t h i r d  column contains t h e  exact values of fre
quencies calculated by t h e  method presented i n  this Section. 



A comparison of t h e  frequency values presented i n  Table 1.4 shows tha t ,  a t  
hinged suspension of t h e  blade, t h e  d i f fe rence  i n  t h e i r  values i s  qui te  small. 
A t  r i g i d  attachment, t h e  d i f fe rence  i s  somewhat g r e a t e r  but s t i l l  moderate. 
Therefore, as pointed out above, i n  ca lcu la t ions  wi th  t h e  purpose of preventing 
t h e  poss ib le  occurrence of resonance, t h e  approximate method gives  s a t i s f a c t o r y  
results. 

Centrifugal forces  have a s t ronger  e f f e c t  on t h e  na tu ra l  v ibra t ion  modes ,&
and espec ia l ly  on t h e  d i s t r i b u t i o n  of bending moments and curvature of t h e  
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Fig.l.8 Modes of . t h e  First Five 
Harmonics of a Blade i n  a Centri
fuga l  Force Field and at n = 0. 

e l a s t i c  l i n e  over t h e  blade length.  

f igure 1.8 shows hinged modes of t h e  
first five harmonics (excluding t h e  funda
mental) f o r  t h e  same blade as i n  
Table 1.4, w h i l e  Fig.l.9 gives  t h e  d i s t r i 
bu t ion  of bending moments corresponding 
t o  these  modes. The s o l i d  l i n e s  i n  
f igs . l .8  and 1.9 ( j u s t  as i n  Figs.l.10, 
1.11, and 1.12) represent  t h e  na tu ra l  v i 
b ra t ion  modes i n  a cen t r i fuga l  fo rce  f i e l d ,  
and t h e  broken l i n e s  ind ica t e  t h e  same 
modes f o r  a nonrotating blade. 

Figure 1.10 shows t h e  natural vibra
t i o n  modes and t h e  corresponding bending 
moments f o r  t h e  first two harmonics of. a 
blade f ixed  at t h e  root .  

A s  ind ica ted  by a l l  these  graphs, 
considerat ion of cen t r i fuga l  forces,  i n  
ce r t a in  blade sect ions,  has a noticeable 
e f f e c t  on t h e  natural v ibra t ion  mode, a 
poin t  espec ia l ly  manifest i n  bending 
moment diagrams and hence i n  t h e  d is t r ibu
t i o n  of bending stresses over t h e  blade 
length.  T h i s  e f f e c t  i s  stronger,  t h e  
lower t h e  harmonics of natural vibrat ion.  

The d i s t r i b u t i o n  of bending moments 
over t h e  blade length during i t s  v ibra t ion  
i n  a cen t r i fuga l  force  f i e l d  i s  character
ized  by an  increase  i n  bending moments i n  
c e r t a i n  blade segments due t o  t h e i r  de

crease i n  adjacent segments. We w i l l  c a l l  this l o c a l  increase i n  bending moments 
a llconcentration of bending momentsll. The occurrence of such concentrated bend
ing moments i s  associated with t h e  presence of la rge  concentrated loads and 
marked decreases i n  flexural r i g i d i t y  i n  t h e  blade s t ruc ture .  

Concentrated bending moments lead t o  an i n t e n s i f i c a t i o n  of bending stresses 
a t  various blade segments, caused by sharp f lexures  of t h e  b h d e  a t  these  
segments. 
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T h i s  i s  of considerable i n t e r e s t  f o r  p rac t i ce  and t hus  should be s tudied 
i n  g rea t e r  d e t a i l .  

The nature of blade v ibra t ions  i n  a cen t r i fuga l  fo rce  f ie ld  i s  l a rge ly  de
termined by t h e  co r re l a t ion  between t h e  magnitudes of e l a s t i c  and cen t r i fuga l

forces.  If t h e  flexural r i g i d i t y  of t h e  

F i r s t  o v e r t o n e  

Fig.l.9 Dis t r ibu t ion  of Bending
Moments over a Blade Vibrating 
with Respect t o  t h e  Modes of t h e  
First Five Harmonics i n  a Cen
t r i f u g a l  Force F ie ld  and when 

n = 0. 

blade i s  s u f f i c i e n t l y  grea t  (as i s  o f t en  
t h e  case, e spec ia l1  in t h e  plane of ro
t a t i o n  of t h e  r o t o r 7  and i f  t h e  cent r i 
fuga1 forces  are ins ign i f i can t  (low rpm of 
ro tor ) ,  t hen  t h e  v ibra t ion  mode Will d i f 
fe r  l i t t l e  from that of a nonrotating 
blade. 

If, on t h e  o ther  hand, t h e  flexural 
r i g i d i t y  of t h e  blade i s  low and t h e  
cent r i fuga l  forces  a r e  appreciable,  then  
t h e  form of blade deformation i s  deter- ,&
mined mainly by i n e r t i a  and cen t r i fuga l  
forces  and depends l i t t l e  on t h e  e l a s t i c  
proper t ies  of t h e  blade. I n  t h i s  case, 
t h e  form of blade deformation during Vi
bra t ion  d i f f e r s  l i t t l e  from t h e  form of 
deformation of a n  i d e a l  f l e s b l e  heavy 
s t r i n g  s t re tched  by cen t r i fuga l  forces .  
T h i s  phenomenon i s  general ly  observed 
during v ibra t ions  i n  t h e  thrust plane of 
blades i n  modern hel icopters .  

Quantitatively, t h e  r e l a t i o n  between 
e l a s t i c  and cen t r i fuga l  forces  can be 
estimated from t h e  coef f ic ien t  CY which 
represents  t he  r a t i o  of t h e  e l a s t i c  po
t e n t i a l  energy t o  t h e  p o t e n t i a l  energy 
accumulated by t h e  blade due t o  bending
i n  t h e  cen t r i fuga l  force  f i e l d :  

a = c E r _ .
chf 

The values of CEI and CN are described 
i n  e q ~ ~ ( 3 . 3 )and (3.4). 

When CY > 1, the  e f f e c t  of t h e  e l a s t i c  
proper t ies  of t h e  blade i s  g rea t e r  than  
t h e  e f f e c t  of cen t r i fuga l  forces .  When 
cy < 1, t h e  opposite i s  observed. 

Table 1.5 gives  t h e  values of t h e  coe f f i c i en t s  cy f o r  a hinged blade whose 
modes of operat ion are shown i n  F'igs.1.8 and 1.9. T h i s  blade can be regarded 
as a t y p i c a l  he l icopter  blade. 
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The values of t h e  coe f f i c i en t s  cy given i n  Table 1.5 confirm t h e  a s s u p t i o n  
t h a t  t h e  hel icopter  blade, wi th  respect  t o  i t s  cha rac t e r i s t i c s  i n  t h e  f lapping 
plane, a p p r o h a t e s  a n  i d e a l  flexible heavy s t r i n g  extended by cen t r i fuga l  
forces,  for which Q = 0. 

The proper t ies  of a blade and of an e l a s t i c  s t r i n g  draw c lose r  together ,  
t h e  lower t h e  overtone of t h e  natural v ibra t ions .  

A bas ic  feature of a n  extended i d e a l  e l a s t i c  s t r im i s  t h a t  i t s  a x i s  under-
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Fig.l.10 Modes of First and Second 
Overtones of Natural Vibrations of a 

Rigid Blade. 

goes sharp-bends a t  t h e  po in t s  of 
app l i ca t ion  of concentrated l a t e r a l  
forces  and at s i t e s  where t h e  
s t r i n g  makes contact wtth r i g i d
elements. Such a sharp f lexure  
genera l ly  occurs a t  t h e  s i te  where 
t h e  s t r i n g  i s  embedded o r  clamped. 
If a r i g i d  segment i s  inse r t ed  i n t o  
the  s t r ing ,  sharp bends w i l l  form 
along t h e  edges of this segment. 
Therefore, i n  cases when t h e  prop
e r t i e s  of t h e  blade and those of 
t he  s t re tched  s t r i n g  approach more 
closely,  t h e  same cha rac t e r i s t i c s  
become manifest a l s o  i n  deforma
t ions  of t h e  blade. O f  course, a n  
e l a s t i c  blade, no matter how low 
i t s  flexural r i g i d i t y  might be, 
cannot undergo such sharp bends. 
Nevertheless, sharp bends inherent 
t o  a n  i d e a l  e l a s t i c  s t r i n g  are 
t ransmit ted t o  the  blade and & 
cause sharp a l t e rna t ing  bendings 
of i t s  ax is .  These bends are ac
companied by concentrations of 
bending moments and an  increase i n  
bending stresses a t  t h e  po in t s  of 
flexure . 

Let  us examine seve ra l  examples 
that confirm this assumption. 

Figure 1.11shows t h e  dis t r ibu
t i o n  of bending moments over t h e  blade length, corresponding t o  t h e  na tu ra l  v i 
bra t ion  modes of t h e  first and second harmonics wi th  a load almost equal t o  t h e  
weight of t h e  blade and located a t  a relattve radius  F = 0.48. 

A t  t h e  poin t  of attachment of t h e  load, t h e r e  i s  a marked concentration of 
bending moments leading t o  a n  increase i n  stresses by a f a c t o r  of almost 2 i n  
comparison wi th  a nonrotating blade. The in t roduct ion  i n t o  t h e  b h d e  of a seg
ment of high r i g i d i t y  leads t o  a concentration of bending moments i n  t h e  area 
of this segment (Eg.1.12). However, s ince  a n  increase  i n  flexural r i g i d i t y  
leads t o  a n  increase i n  t h e  moment of r e s i s t ance  over t h e  length  of t h e  r i g i d  



TABLE 1.5 segment, t h e  g rea t e s t  s t r e s s e s  w i l l  
arise along t h e  edges of t h e  segment, & 
i.e., where t h e  i d e a l  r i g i d  s t r i n g  

Harmonic of  would undergo sharp bends. 
Vibrations 

of Rotation The occurrence of t h e  same proper-
t ies of an  i d e a l  e l a s t i c  s t re tched 

F i r s t  0.083 
Second 0.332 
'Ihird 0.629 
Fourth I 1.116 

2.2 
3.7 
7 .7  
-

s t r i n g  explains t h e  occurrence of sharp 
concentrations of bending moments i n  
t h e  case of r i g i d  blade attachment, 
s ince  a flexible s t r i n g  would have, a t  
t h e  s i te  of attachment, t h e  same sharp 
bend as a hinged blade. 

The bending moment corresponding 
t o  t h e  first harmonic i n  the  case of a r i g i d  blade r i s e s  by a f a c t o r  of almost 6 
( see  Fig.l.10) i n  comparison wi th  t h e  nloment of a nonrotating blade. Such a 
sharp concentration of bending moments has a noticeable e f f ec t  even on the  

MI 

900 

800 


700 


600 


SOD 

400 

300 

200 

IGO 

0 

ML 


1000 

0 


-1000 

Fig.l.11 Bending Moment during Vibra
t i o n s  wi th  Respect t o  t h e  First and 
Second Overtone, f o r  a Load a t  Radius-
r = 0.48 Close i n  WeigM t o  t h e  Weight 

of t h e  Blade. 

values of t h e  natural v ibra t ion  f re 
quencies (see Table 1.4). T h i s  
g r e a t l y  reduces t h e  f e a s i b i l i t y  of an  
approfimate method (see  Sect .3) , as 
appl ied t o  a ca lcu la t ion  of a blade 
wi th  r i g i d  attachment a t  t h e  root .  

I n  p rac t i ce  it i s  of ten  necessary 
t o  introduce addi t iona l  hinges i n t o  
the  r o t o r  blade o r  t o  shift the  posi
t i o n  of t h e  hinges already present i n  
t h e  hub design. The necessi ty  of 
providing add i t iona l  hinges has t o  
do wi th  t h e  need t o  reduce t h e  bend
ing  s t r e s s e s  a t  some blade segment 
o r  wi th  t h e  change i n  i t s  na tu ra l  
v ibra t ion  frequency. 

Let us now inves t iga te  t h e  
manner i n  which bending deformations 
of a blade a r e  a f fec ted  by t h e  intro
duct ion of a n  add i t iona l  hinge. It 
w a s  mentioned earlier t h a t  t h e  blade 
of a he l icopter  i s  close i n  i t s  
cha rac t e r i s t i c s  t o  a s t re tched e l a s t i c  
string. A s t re tched  chain, with 
hinges continuously d i s t r ibu ted  over 
i t s  length,  behaves l i k e  an  e l a s t i c  
s t r i n g .  Therefore, we can assume 
t h a t  a hel icopter  blade takes  ap
proximately t h e  same shape as an ex
tended multihinged chain during de
formation. Thus, it i s  l o g i c a l  that 
t h e  in t roduct ion  of an  add i t iona l  
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Fig.l.12 Mode of Bending Moment wi th  Respec% t o  t h e  First 
Harmonic, f o r  a Blade wi th  a Segment of High Rigidi ty .  

Fig.l.13 Mode of First Harmonic of Natural Vibrations of 
a Blade wi th  and without Additional Hinge. 

a and b - Modes of first harmonic i n  a cen t r i fuga l  force  f i e l d  
without hinge ( a )  and wi th  hinge (b ) ;  c - Mode of first harmonic 
of nonrotating blades wi th  hinge; d and e -Modes of bending 
moment wi th  respect  t o  first harmonic i n  a cen t r i fuga l  force  

field without hinge (d)  and wi th  hinge ( e ) .  



hinge i n t o  t h e  blade cannot subs t an t i a l ly  a f f e c t  t h e  mode of i ts  deformation. 
T h i s  i s  i l l u s t r a t e d  i n  Fig.l.13 which gives  t h e  mode of t h e  first harmonic of 
natural  Vibrations of a blade with and without a n  add i t iona l  hinge. It i s  a l s o  
seen from Fig.l.13 that  t h e  addi t ion  of an auxiliary hinge has a not iceable  

effect on t h e  mode of t h e  bendim
Y 

moment only i n  a small segment 
c lose  t o  t h e  hinge. Its inf luence 
is  negl igible  i n  segments remote 
from t h e  hinge. 

It i s  espec ia l ly  necessary 
t o  note that, i n  the  case i n  
question i n  which t h e  blade has 
two hinges, i ts  v ib ra t ion  modes &
i n  a cent r i fuga l  force  field 
differ g rea t ly  from t h e  osc i l l a 
t i o n  modes of a nonrotating blade. 

Fig.l.l.4 Modes of h e r  Harmonic of The nonrotating blade is  not de-
Natural Vibrations of a Blade wi th  Hinge formed a t  a l l  i n  first-harmonic 
Set O f f  from t h e  Axis of Rotation and t h e  v ibra t ions .  Therefore, i n  t h e  
Bending Moment Corresponding t o  this given case t h e  a p p r o h a t e  energy
Mode (on Vibration i n  t h e  Flapping Plane method of frequency calculat ion,  
po/n = 1.35, on Vibration i n  t h e  Plane i n  t h e  form i n  which it is  pre

of Rotation po /n = 0.91). sented i n  Section 3, i s  not appli
cable.  

Nor can we disregard t h e  cen t r i fuga l  fo rce  f ie ld  i n  studying t h e  blade de
formations i n  a Dorscbidt-type r o t o r  w i th  a hinge far  removed from t h e  axis of 
ro ta t ion .  The v ibra t ion  mode of t h e  laver harmonic of t he  blade of this r o t o r  
and t h e  corresponding bending mment are shown i n  F ig .1 .z .  Without considera
t i o n  of cen t r i fuga l  forces  t h e  mode of t h e  blade would coincide with a s t r a i g h t  
l i n e  and it would be impossible t o  f i n d  t h e  magnitude of t h e  bending moment 
p lo t t ed  i n  F ig . l . u ,  which i s  very grea t  f o r  this r o t o r  and ac tua l ly  determines 
t h e  p o s s i b i l i t y  of i t s  use. 

These examples show that, i n  many  cases, t h e  natural v ibra t ion  modes i n  a 
cen t r i fuga l  force  field subs t an t i a l ly  differ f r o m t h e  corresponding m o d e s  of a 
nonrotating blade. T h i s  must be taken i n t o  account when designing a blade. 
Therefore, i n  t h e  design of f ice ,  i f  t h e  ca lcu la t ions  are a l l  car r ied  out on 
e lec t ronic  computers and t h e  degree of complexity of t h e  method i s  of no import, 
t he re  is no sense i n  resor t ing  t o  approximate methods. 

Sect ion 5. Torsional Vibrations of a Blade 

1. koblsms- Solved-in Calculat ing Torsional Vibrations 

It was  noted above i n  Sections 1and 4 that t h e  ca lcu la t ion  of t h e  modes 
and frequencies of natural flexural blade v ibra t ions  not only has a secondary 
value ( f o r  stress analysis) but a l s o  a n  independent value as a method f o r  se lec t 
ing  blade parameters t h a t  prevent t h e  occurrence of bending resonance. T h i s  
problem does not arise i n  ca lcu la t ing  free t o r s i o n a l  Vibrations s ince  v ibra t ions  
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of noticeable amplitude caused by t o r s i o n a l  resonance are never encountered i n  
prac t ice .  A s  a ru le ,  appreciable t o r s i o n a l  v ibra t ions  are set IQ only during
f l u t t e r  o r  during forced v ibra t ions  under conditions c lose  t o  f l u t t e r .  There
fore ,  t he  magnitude of t h e  frequency of na tu ra l  t o r s i o n a l  vibrat ions i s  of no 
p r a c t i c a l  i n t e r e s t  i n  i t s e l f  ( i f  we do not regard it as a parameter character
i z i n g  t h e  t o r s i o n a l  r i g i d i t y  of a blade),  and t h e  r e s u l t s  of t h e  ca lcu la t ion  
of natural v ib ra t ion  modes and frequencies are on ly  of secondary s igni f icance  
f o r  ca lcu la t ing  f l u t t e r  o r  f o r  ca lcu la t ing  bending stresses computed with con
s ide ra t ion  of t o r s i o n a l  blade deformations. The o ther  problem does not arise 
when ca lcu la t ing  free t o r s i o n a l  blade vibrat ions.  

Two main problems are encountered i n  ca lcu la t ing  forced to r s iona l  vibra
t ions .  The first i s  t h e  determination of e l a s t i c  blade deformations whose con
s ide ra t ion  is  necessary f o r  t h e  ca lcu la t ion  of bending stresses; t h e  second i s  
the  determination of t h e  magnitudes of t h e  hinge moments necessary f o r  calcu
l a t i n g  t h e  r o t o r  con t ro l  system. 

2. D i f f e ren t i a l  Equation of Torsional Blade Vibrations 

Let us represent  a blade i n  t h e  form of a can t i l eve r  s t r a i g h t  bar with a 
t o r s i o n a l  r i g i d i t y  GT, var iab le  over i t s  length.  The m a s s  moment of i n e r t i a  of 
t h e  bar sec t ions  relative t o  i t s  ax is  I, w i l l  be assumed, j u s t  as t h e  t o r s i o n a l  
r i g i d i t y ,  t o  be a continuous funct ion var iable  over t h e  length  of t h e  bar, t h e  
centers  of gravity of a l l  sec t ions  of t h e  bar t o  l i e  on i t s  axis, and t h e  mount
ing  of t h e  bar t o  be t o r s i o n a l l y  e l a s t i c .  

It i s  l o g i c a l  t h a t  reducing t h e  problem of blade x ibra t ions  t o  ca lcu la t ion  
of such a model presupposes t h e  use of numerous simplifying assumptions. Le t  
us assume t h a t  t h e  flexural ax is  of t h e  blade i s  r e c t i l i n e a r  and coincides wi th  
t h e  a x i s  of t h e  feather ing (axial) hinge of t h e  r o t o r  hub. Let us equate t h e  
f lapping compensator N t o  zero. 

Allowance f o r  displacement of t h e  centers  of g rav i ty  and determination of 
t h e  e f f e c t  of: t h e  f lapping compensator on t h e  natural frequencies w i l l  be ex
amined i n  Section 6. 

Use of t h e  above assumptions permits solving t h e  problem of to r s iona l  blade 
v ibra t ions  complet'ely independently, without r e l a t i n g  them wi th  t h e  flexural 
blade vibrat ions.  

kt us construct t h e  d i f f e r e n t i a l  equation of t o r s i o n a l  blade vibrat ions.  
The torque i n  t h e  blade sec t ion  can be determined from t h e  d i f f e r e n t i a l  equation: 

[Mt l'==-m, 

where is  t h e  l i n e a r  torque of external and i n e r t i a  forces  ac t ing  on a blade 
element . 

Under t h e  e f fec t  of torque, each element of t h e  blade is  twisted through 
a n  angle of 



where cp i s  t h e  e l a s t i c  angle of r o t a t i o n  of t h e  blade sect ion.  

The value of t h e  torque, derived from eq.(5.2), i s  subs t i tu ted  i n t o  eq.(5.1). 
Then, t h e  d i f f e r e n t i a l  equation of t o r s i o n a l  deformations of t h e  blade can be 
wr i t t en  i n  t h e  form 

[GT, ?']'+!Dl =O. ( 5  03) 

kt us examine t h e  t o r s i o n a l  v ibra t ions  of a r o t o r  blade ro t a t ing  i n  a 
vacuum. The l i n e a r  torque i n  this case Will be equal  t o  

xu= - /'?IT -w2 (/y -1-Jrq, ( 5  -4) 

where I, and I, a r e  t h e  mass moments of i n e r t i a  of t h e  blade sec t ion  r e l a t i v e  
t o  i t s  p r inc ipa l  axes of i n e r t i a .  

If t h e  length of t h e  p r o f i l e  along t h e  x-axis i s  appreciably g rea t e r  L5.B 
than  along t h e  y-axis (and this i s  usual ly  t h e  case),  then  we can set approxi
mately 

lv- lx  zIm, (5.5) 

where I, i s  the  l i n e a r  mass moment of i n e r t i a  of t h e  blade sec t ion  r e l a t i v e  t o  
an axis going through i t s  flexural ax is .  

After subs t i t u t ing  eq.(5.4), with considerat ion of eq.(5.5), i n t o  eq.(5.3), 
we ob ta in  t h e  d i f f e r e n t i a l  equation of t o r s i o n a l  v ibra t ions  of a r o t o r  blade 
ro t a t ing  i n  a cen t r i fuga l  force  f ield:  

The blade m o d e l  discussed here has t h e  following boundary conditions : 

at r=O: 

at r=R: (5  *7) 


where 
c,,, = r i g i d i t y  of t h e  r o t o r  con t ro l  system reduced t o  t h e  axial hinge

of t h e  hub ( t h e  con t ro l  r i g i d i t y  determines t h e  magnitude of 
r i g i d i t y  of t h e  e l a s t i c  blade attachment at t h e  roo t ) ;  

yo = r o t a t i o n  of t h e  blade i n  t h e  axial (feather ing)  hinge as a conse
quence of deformation of t h e  r o t o r  con t ro l  system. 
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3 .  	Determination of t h e  Natural Torsional Blade 
Vibration Modes and Frequencies 

Here, we will use t h e  method of so lu t ion  presented i n  Subsection 1of Sec
t i o n  2 f o r  determining t h e  flexural v ib ra t ion  modes and frequencies.  Let us pose 

~(t)=cpsinvt. (5.8) 

Subst i tut ing eq.(5.8) i n t o  eq.( 5.6), we obtain 

It inmediately fouows from this equation that the  natural to r s iona l  vibra
t i o n  modes of a r o t a t i n g  and nonrotating blade a r e  i d e n t i c a l  and t h a t  t h e  fre
quencies a r e  cor re la ted  by a simple r e l a t i o n  of t h e  form 

where 
v = natural frequency i n  a cen t r i fuga l  force  f i e l d ;  

v,, = natural frequency of blade of a nonrotating ro to r .  

Integrat ing eqa( 5.9), with consideration of t h e  boundary conditions (5.7) 
f o r  t h e  case u) = 0 w i l l  yield 

Here and below, we will omit the  superscr ipt  of v, which denotes t h a t  t h e  
natural frequency i s  determined f o r  u) = 0. 

Equation (5.11) i s  solved by t h e  method of successive approximations, j u s t  
as had been done i n  solving eq.(2.4.) i n  Section 2. 

Le t  us prescr ibe  an a r b i t r a r y  v ibra t ion  mode cp. T h i s  mode should be LEL 
normed i n  some manner, f o r  example 

Ti?= 1, (5  =12) 

where cpR i s  t h e  e l a s t i c  angle of twist of t h e  blade t i p .  

Then, performing t h e  operations prescribed by eq.(5. l l ) ,  we determine t h e  
funct ion 

We can determine the  natural t o r s i o n a l  blade v ib ra t ion  frequency from the 
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noming condi t ion f o r  eq.(5.12) 

where 8, i s  t h e  value of t h e  funct ion 9 at r = R. 

After prescr ib ing  a new value of t h e  funct ion 

'?=V2Q (5.15) 

and performing t h e  operations (5.13) and (5.a)as many times as necessary f o r  
securing t h e  required accuracy, we ob ta in  t h e  final values of v and cp. A s  i n  
t h e  determination of t h e  modes and frequencies of natural flexural vibrat ions,  
this method of successive approximations leads t o  determination of t h e  lower 
harmonic of natural t o r s i o n a l  vibrat ions.  When determining t h e  next harmonics, 
t h e  condition of or thogonal i ty  

must be s a t i s f i e d .  

Here t h e  index j denotes t h e  mode of t h e  unknown harmonic of vibrations,  
w h i l e  t h e  index m gives  t h e  modes of a l ready determined lower harmonics. 
Put t ing  

m-j-1 


( 5  017) 

we obtain from t h e  condition (5.16) t h e  following expressions f o r  t h e  constant 
coe f f i c i en t s  c, : 

R 


The natural v ibra t ion  frequencies of subsequent harmonics are determined 
i n  each approximation from t h e  formula 

ni- 1 

Upon completing t h e  determination of a l l  natural v ibra t ion  modes and fre
quencies needed f o r  f u r t h e r  ca lcu la t ions  it is  necessary t o  correct  t h e  frequen
c i e s  by means of eq.(5.lO) which takes  i n t o  account t h e  e f f e c t  of cen t r i fuga l  
forces  

61 




Calculations of t h e  natural t o r s i o n a l  v ib ra t ion  modes and frequencies of a 
blade i n  a c t u a l  he l icopters  show that t h e  r i g i d i t y  of t h e  r o t o r  con t ro l  system 
i s  of dec is ive  importance i n  determining t h e  magnitudes of lower-harmonic m 
v ib ra t ion  frequencies. The t o r s i o n a l  blade r i g i d i t y  i s  almost always much 
higher t han  t h e  r i g i d i t y  of t h e  con t ro l  system. figure 1.15 shows t h e  modes of 
t h e  first harmonic of natural t o r s i o n a l  blade v ibra t ions  f o r  d i f f e r e n t  heli
copters  i n  mass service.  

Based on t h e  re la t ionship  between t h e  t o r s i o n a l  deformations of t h e  blade 
and r o t o r  con t ro l  system i n  first-harmonic vibrat ions,  it i s  poss ib le  t o  esti
mate t h e  extent  of t o r s i o n a l  r i g i d i t y  of t h e  blade i n  comparison with t h e  
r i g i d i t y  of t h e  cont ro l  system. The co r re l a t ion  between these  r i g i d i t i e s  i s  
estimated by t h e  coe f f i c i en t  Q, (see Fig.l.15). ThLs coe f f i c i en t  determines t h e  
po r t ion  of t h e  t o t a l  angle of r o t a t i o n  of t h e  blade t i p  due t o  deformations of 
only t h e  blade. 

Fig.l.15 Natural Torsional Blade Vibration Modes; f o r  Various 
Correlations of Blade and Control System Rigid i t ies .  

The described c h a r a c t e r i s t i c  i n  the  co r re l a t ion  between blade and con t ro l  
r i g i d i t i e s  permits i n  c e r t a i n  ca lcu la t ions  t h e  assumption t h a t  t h e  t o r s i o n a l  
blade d e f o m t i o n s  are small i n  comparison wi th  t h e  con t ro l  deformations, thus 
making it poss ib le  t o  use only t h e  blade twist due t o  deformation of t h e  control .  
T h i s  a s smpt ion  i s  o f t en  used i n  t h e  ca lcu la t ion  of f l u t t e r  ( see  Chapt . I V  of 
V 0 l . I ) .  

The r e s u l t s  of t h e  ca l cu la t ion  by t h e  above method permit an  estimate of 
t h e  type of layout of t h e  na tu ra l  t o r s i o n a l  v ib ra t ion  frequencies of a blade 
r e l a t i v e  t o  t h e  harmonic components of aerodynamic forces .  F g u r e  1.16 gives 
t h e  resonance diagram of t o r s i o n a l  vibrat ions of a blade constructed f o r  one of 
t h e  ex i s t ing  hel icopters ,  w h i l e  Fig.l.17 shows t h e  modes of t h e  first three 
harmonics. 

It was noted i n  Subsection 1 of this Sect ion t h a t  t h e  var iab le  external 
forces  producing b x d e  twist are small so that, even i n  t h e  presence of resonance, 
t h e  t o r s i o n a l  v ib ra t ion  amplitudes do not become dangerous f o r  t h e  s t r eng th  of 
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Fig.l.16 Resonance Diagram of Torsional Blade Vibrations. 

Fig.1.17 Modes of First Three Harmonics of 
Torsional Blade Vibrations. 
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t h e  blade. I n  v i e w  of this, one usua l ly  does not t ry  t o  avoid t o r s i o n a l  reso
nance, and t h e  resonance diagram presented i n  F’ig.l.l-6 i s  given only f o r  esti
mating t h e  absolute  nragnitude of t h e  t o r s i o n a l  v ib ra t ion  ,frequencies. 

It follows from fig.1.16 that even t h e  second harmonic of t o r s i o n a l  vibra
t i o n s  a t  t h e  operating r p m  no, proves t o  be higher t han  t h e  1 5 t h  harmonic of t h e  
r o t o r  rpm.  The frequencies of subsequent overtones are even higher. Therefore, 
probably only t h e  frequency of t h e  first harmonic of natural t o r s i o n a l  b h d e  
v ibra t ions  can be of p r a c t i c a l  i n t e r e s t .  

A l l  of t h e  above considerations p e r t a i n  t o  t o r s i o n a l  vibrat ions of a r o t o r  
blade t r e a t e d  as an i so l a t ed  blade, without considerat ion of t h e  r e l a t i o n s  /62
superimposed on t h e  v ibra t ions  by t h e  design.of  blade attachment at t h e  hub. 
It was found that t h e  interconnect ion of t o r s i o n a l  v ibra t ions  of ind iv idua l  
r o t o r  blades across  t h e  con t ro l  system may s u b s t a n t i a l l y  change t h e  e n t i r e  pat
t e r n  of v ibra t ions .  

4. 	 Determination of t h e  Natural Vibration Modes and 
Frequencies of a Rotor as a Whole 

Figure 1.B gives t h e  diagram of t h e  blade-sett ing cont ro l  system used on 
most modern hel icopters .  D e s i g d s e  this system i s  l a i d  out so  t h a t  loading of 

another con t ro l  loop dependsone o r  
on t h e  combination of forces  generated 
at t h e  swashplate of t h e  p i t c h  con t ro l  
by t h e  blades.  The form of this c o w  
bina t ion  depends on the  v ibra t ion  
mode of t h e  ro to r ,  i.e., on t h e  dis
t r i b u t i o n  of v ib ra t ion  phases with 
respect  t o  t h e  blades. For example, 
when a l l  blades vibrate wi th  t h e  same 
phase, t h e  con t ro l  loop i s  loaded only 
by t h e  t o t a l  p i t ch .  When opposite 
blades vibrate i n  opposite phase, t h e  
l a t e r a l  and longi tudina l  con t ro l  loops 
are loaded. Finally,  i f  t h e  number 
of r o t o r  blades i s  more than three, 
v ibra t ion  modes become poss ib le  at 
which a l l  fo rces  a r r iv ing  from t h e  
blades are locked on t h e  swashplate 
of t h e  p i t c h  control .  

Variable forces  during v ibra t ions  
cause deformations of t h e  con t ro l  
loops loaded by these forces .  On 

F’ig.l.18 Diagram af  P i t c h  Control. 
1- Blade turn ing  lever; 2 - Flap
ping hinge; 3 - Drag hinge;
4 - Blade; 5 - Swashplate of control ;  

6 - Slide.  

deformation of ind iv idua l  con t ro l  loops, t h e  swashplate of t h e  p i t c h  con t ro l  is  
set i n  osc i l l a t ion ;  t hese  v ibra t ions  impose d e f i n i t e  phases on t h e  blade vibra
t i o n s .  For example, during v e r t i c a l  v ibra t ions  of t h e  swashplate generated by 
deformation of t h e  co l l ec t ive  p i t c h  con t ro l  loop, r o t o r  v ibra t ions  are exci ted 
having a mode i n  which t h e  phases of a l l  blades are i d e n t i c a l .  
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If t h e  swashplate of t h e  p i t c h  con t ro l  is  inc l ined  during vibration, oppo
s i te  blades are exci ted i n  opposite phase. Thus, t he  swashplate of t h e  p i t c h
con t ro l  couples t h e  Vibrations of ind iv idua l  r o t o r  blades.  A s  a r e s u l t ,  blade 
v ibra t ions  can occur only with well-defined v ibra t ion  modes of t h e  e n t i r e  r o t o r  
as a whole, and t h e  number of such modes w i l l  coincide with t h e  number of r o t o r  
blades. Here, each Vibration mode corresponds t o  i ts  value of con t ro l  r i g i d i t y  
reduced t o  t h e  fea ther ing  hinge of t h e  blade, which depends on t h e  r i g i d i t y  of 
t h e  control‘loop loaded a t  this mode. Accordingly, each mode of r o t o r  v ibra t ion  
i s  characterized by i t s  own frequency value of t h e  natural to r s iona l  blade vi
brat ions.  

Consequently, f o r  a r o t o r  with a number of blades z b  t he re  are zb d i f f e ren t  
na tu ra l  v ib ra t ion  frequencies corresponding t o  each harmonic of t o r s i o n a l  
blade vibrat ion.  Each natural v ib ra t ion  frequency i s  characterized by i t s  own 

/63 
spec i f i c  mode of d i s t r i b u t i o n  of angles of twist over t h e  blade length, but 
qua l i t a t ive ly  a l l  modes corresponding t o  a spec i f ic  harmonic of vibrat ions do 
not d i f f e r ;  f o r  example, they have an  i d e n t i c a l  number of v ibra t ion  nodes. 

A s  a t y p i c a l  example we can c i t e  t h e  values of t h e  natural v ibra t ion  fre
quencies of t h e  first harmonic f o r  t h e  four-blade r o t o r  of t h e  M i - 4  hel icopter .  

The laver frequency values at s t r e s s ing  of t h e  longi tudinal  and lateral 

controls ,  r e l a t i v e  t o  t h e  operating rpm of t h e  ro tor ,  are -- 3.4 t o  3.5.*l 

Q P  


Upon loading t h e  co l l ec t ive  p i t c h  control ,  this quant i ty  takes  t h e  value 

v’,”’p = 4.6 w h i l e ,  upon locking a l l  forces  from t h e  r o t o r  on t h e  swashplate,
OP 


we have V1a.p = 6.6, 
no P 

A very important circumstance is  that only t h e  f i r s t  harmonic of natural 
t o r s i o n a l  blade v ibra t ions  l i e s  wi th in  t h e  limits of t h e  v ibra t ion  frequencies 
corresponding t o  harmonics of t h e  r o t o r  rpm, with  respect  t o  which t h e  ex terna l  
forces  have a not iceable  magnitude. A l l  subsequent harmonics of ‘vibrat ions l i e  
higher and therefore  a r e  of no p r a c t i c a l  i n t e r e s t .  

Sect ion 6 .  Combined Flexural  and Torsional Blade Vibrations 

1. Couplinp of Flexural  and Torsional Vibrations.~.. 

Above, we discussed free flexural and t o r s i o n a l  blade vibrat ions as two 
unrelated,  independent problems. I n  a real  blade, t o r s i o n a l  and flexural vibra
t i o n s  are always re la ted .  The i n t e n s i t y  of such coupling will be demonstrated 
below. W e  W i l l  examine blade v ibra t ions  i n  vacuum,whenthe coupling between 
t o r s i o n a l  and flexural v ibra t ions  i s  produced exclusively by displacement of 
t h e  centers  of g rav i ty  of t h e  sec t ions  relative t o  t h e  flexural axis of t h e  
blade and as a consequence of t h e  kinematic coupling over t h e  f lapping campen
sa to r .  We wi l l  use t h e  method of ca lcu la t ion  constructed on t h e  basis of t h e  
three-moment method described i n  Sect ion 4, as applied t o  ca lcu la t ion  of flexural 
vibrat ions.  
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The p o s s i b i l i t y  of ca lcu la t ing  t h e  natural flexural and t o r s i o n a l  (binary) 
v ibra t ion  frequencies i s  usefu l  t o  t h e  designer i n  solving numerous spec i f i c  
p r a c t i c a l  problems. 

For example, such a ca lcu la t ion  becomes necessary i f  it i s  des i red  t o  p lace  
outr igger  balancers on t h e  blade t o  prevent resonance. Here we have i n  mind t h e  
r e l a t i v e l y  rare cases when t h e  use of balancers is  proposed not t o  eliminate 
f l u t t e r  but t o  change t h e  natural frequencies. 

The designer may wish t o  t ake  i n t o  account t h e  coupling between flexural 
and t o r s i o n a l  v ibra t ions  a l s o  when t h e  ca lcu la t ion  of na tu ra l  blade frequencies 
f o r  some Teason does not coincide with experiment. Here it  can be shown i n  many 
cases t h a t  this difference i s  due t o  disregard of such coupling. We can hope 
t h a t  t h e  ca lcu la t ion  results presented below w i n  f a c i l i t a t e  s e t t l i n g  these  
doubts. 

We should note, however, t h a t  ca lcu la t ion  of n a t u r a l  frequencies i n  
vacuum cannot give t h e  answer t o  many questions i n  p r a c t i c a l  use having t o  do 

/64. 
with  t h e  appearance of high variable stresses of some frequency i n  t h e  blade, 
which are evaluated as resonance s ince  aerodynamic forces  o f t en  introduce sub
s t a n t i a l  correct ions i n t o  t h e  p i c t u r e  of t h e  phenomenon. 

2. Method of C a l c u l a t i K H n a r y  Vibrations 

Calculation of natural binary v ibra t ion  modes and frequencies i s  g rea t ly  
s implif ied i f  we only consider blades of a d e f i n i t e  conventional type, f o r  
whose ca lcu la t ion  t h e  following a s s q t i o n s  can be used: 

1. The flexural a x i s  of t h e  blade i s  a s t r a i g h t  l i n e  coinciding with t h e  
a ~ sof t h e  feather ing ( a x i a l )  hinge. 

graui t y  

Fig J.19 Design Model of Blade. 
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The method of ca lcu la t ion  does not fundamentally change when these  axes do 
not coincide. It is  then  only necessary t o  in t roduce , in to  t h e  ca lcu la t ion  
formulas, a number of add i t iona l  terms which take i n t o  account t h e  d is tance  be
tween these  axes. For s impl ic i ty  of computation, we w i l l  assume t h a t  t h e  
flexural axis goes through t h e  axis of r o t a t i o n  of t h e  ro to r .  

2. The plane of minimum blade r i g i d i t y  is considered t o  coincide with t h e  
f lapping plane.  

3 .  The blade performs t o r s i o n a l  v ibra t ions  as a consequence of t o r s i o n a l  
deformations of t h e  blade i t s e l f ,  deformation of t h e  p i t c h  control ,  and kine
matic coupling over t h e  f lapping compensator wi th  blade v ibra t ions  i n  the  f lap
ping plane.  

These assumptions penni t  representing t h e  blade as a weightless f r e e  beam 
divided i n t o  e segments, along whose edges loads are placed of a mass mi a t  
some s tagger  xCag (fig.1.19). Each load, i n  addi t ion  t o  t h e  m a s s  m, concen

1 
t r a t e d  a t  t h e  center  of g rav i ty  of t h e  corresponding blade element, has a 
c e r t a i n  moment of i n e r t i a  r e l a t i v e  t o  an  axis going through t h e  center  of 
g rav i ty  of t h e  load and p a r a l l e l  t o  t h e  e l a s t i c  a x i s  of t h e  blade. 

Let us represent t h e  flexural and t o r s i o n a l  r i g i d i t i e s  i n  t h e  form of 
stepped curves, such t h a t  they  remain constant over t h e  length of each segment. 

The presence of a f lapping compensator leads t o  a kinematic coupling /65
between t h e  flexural and t o r s i o n a l  vibrat ions,  which can be expressed by t h e  
formula 

where 
(PO = angle of blade r o t a t i o n  i n  t h e  fea ther ing  hinge;
M b  = twis t ing  moment r e l a t i v e  t o  t h e  fea ther ing  Einge; 

C C O  n = r i g i d i t y  of t h e  p i t c h  con t ro l  reduced t o  t h e  fea ther ing  hinge; 
H = f lapping compensator; 

Bo = angle of blade r o t a t i o n  relative t o  t h e  f lapping hinge. 

Furthermore, t h e  boundary conditions a t  t h e  root  of t h e  hinged blade some
w h a t  change during i t s  v ibra t ions  i n  t h e  t h r u s t  plane.  These conditions, i n  
t h e  presence of a f lapping compensator, can be w r i t t e n  as 

where Mo is  t h e  bending moment and M b  is  t h e  twis t ing  moment a t  t h e  blade root .  

In  constructing t h e  d i f f e r e n t i a l  equations of blade v ibra t ions  i n  t h e  flap
ping plane, we w i l l  use t h e  three-moment method i n  t h e  form as presented i n  
Sect ion 4. Application of this method t o  t h e  case examined here leads t o  t h e  
following equation& 
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Here, 

.. 
Qi-l. =-2 miyi (wherei=O, 1 ,2 , .  ..,z);  Ii 

where 
fi = v e r t i c a l  displacement of po in t s  of t h e  e l a s t i c  blade axis (see 

fig 1 19 ; 
yi = v e r t i c a l  displacement of t h e  centers  of g rav i ty  of t h e  loads mi.  

The expressions f o r  t h e  constants  a,, bi, c,,  hi, and g l  are given i n  
Sect ion 4; see e q ~ ~ ( 4 . 2 3 )- (4.25). 

The displacements of t h e  e l a s t i c  ax is  f, and t h e  centers  of g rav i ty  of t h e  
blade elements y1 are r e l a t e d  by 

where (pi is t h e  angle of r o t a t i o n  of t h e  blade elements about i ts  elastic a x i s .  

To determine t h e  binary v ib ra t ion  modes and frequencies  of a blade, 
eqs .( 6.3) must be supplemented by t h e  equations of t o r s i o n a l  v ibra t ions  

The twis t ing  moment, i f  it i s  considered constant i n  magnitude over t h e  
length  of each blade segment, can be defined as 

*om t h e  magnitude of t h e  tw i s t ing  moment, we can determine t h e  t o r s i o n a l  /66
deformations of t h e  blade 

where GTt i - l,i i s  t h e  t o r s i o n a l  r i g i d i t y  of a blade segment having a length  equal 
t o  tl-l,i w h i l e  (PO i s  determined by eq.(6.1). 

When using t h e  three-moment method, t h e  boundary conditions of t h e  problem 
are taken i n t o  account i n  t h e  coe f f i c i en t s  of t h e  equation of t h e  system. Thus, 
i n  t he  case examined here, t h e  boundary condi t ion (6.2) leads t o  a change of t h e  
coe f f i c i en t s  of t h e  first two equations of t h e  system (6.3): For a blade wi th  
hinged attachment a t  t h e  root  these  equations' can be w r i t t e n  i n  t h e  following 
manner : 
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first equation of t h e  system (6.3), from which t h e  value Bo is  deter
mined : 

Po+rgoMto -hoMi=-; 	 Qoi (6=8)
No1 

second equation of t h e  system (6.3) : 

Thus, t h e  system of equations that includes eqs.(6.3), (6.5), (6.6), and 
(6.7) represents  a system of d i f f e r e n t i a l  equations of binary blade Vibrations. 
The so lu t ion  of this system permits determining t h e  modes and frequencies of 
natural. binary blade Vibrations, which a l s o  enters i n t o  t h e  ca lcu la t ion  problem. 

If we assume that t h e  var iab les  en ter ing  t h e  d i f f e r e n t i a l  equations (6.3),
(6.5), (6.6), and (6.7) vary i n  accordance wi th  a s i n e  l a w  of t h e  type 

then  these  equations can be transformed i n t o  a system of a lgebraic  equations
r e l a t i v e  t o  unknowns represent ing t h e  amplitude values of t h e  previous variables. 

w2The parameters p” and y = -Will en te r  as cofactors  only i n t o  c e r t a i n  coeff i 
p2 

c i en t s  of these  equations. 
w r i t t e n  i n  the  form 

If we set p” = 1, then  these  equations can be re

1 

(6 .lo) 

(6.11) 

vi =ui -XcagiBi, 

where 

i;l 



The quan t i t i e s  en ter ing  these  equations obey t h e  following r e l a t ions :  

The system of equations (6.10), (6.111, (6.12), and (6.13) can be con
v ien t ly  solved by t h e  method of successive approximations. In s o  doing, i n  each 
approximation we should r e f ine  t h e  parameter y f o r  t h e  angular ve loc i ty  of ro
t a t i o n  of the  r o t o r  tu prescr ibed i n  the  ca lcu la t ion .  

The successive approximations are ca r r i ed  out i n  t h e  following sequence: 

Assign a c e r t a i n  magnitude of t h e  parameter y and an  a r b i t r a r y  form of t h e  
zeroth approximation of t h e  funct ions yl 

0 and cpio . 
Normalize t h e  funct ions taken as t h e  zeroth approximation, f o r  example 

yr= 1. 

After t h i s ,  der ive t h e  funct ion f i o  from eq.(6.5). Then, from eq.(6.11), 
determine t h e  quant i ty  Et0 needed f o r  solving t h e  system of equations (6.10). 
A t  t h e  same time Eti-l,l is  determined. 

from t h eAfter solving t h e  system of equations (6.10) and determining ui 
first equation of this system, determine Bo:  

Then, from eq.(6.12), determine and f r o m  eq.(6.13) 
2 

which, furthermore, should s a t i s f y  t h e  c o n d i t i o n z  m,v, = 
0 


Determine t h e  n a t u r a l  frequency from t h e  condi t ion of 
basis of t h e  first r e l a t i o n  i n  t h e  system (6.&), thus:  

t h e  values of v i ,  

0. 

normalization on t h e  

After this, determine t h e  funct ions yl and (pi from eq.(6.l4) and use them 
i n  t h e  next approximations which are performed i n  t h e  same sequence. A t  t h e  
same time, r e f ine  t h e  parameter y .  



T h i s  method of successive approximations leads t o  a d e t e k n a t i o n  of t he  /68
frequency and mode of t h e  lower harmonic of natural vibrat ions.  To determine 
t h e  next harmonic, we use t h e  condi t ion of or thogonal i ty  which f o r  binary vibra
t i o n s  has t h e  following form: 

Here, t h e  index j denotes t h e  mode of t h e  sought harmonic and t h e  index m 
t h e  modes of a l ready determined lower harmonics. 

The use of this method of ca lcu la t ion  gives r e s u l t s  t h a t  a r e  completely 
s a t i s f a c t o r y  for prac t i ce .  

It should be mentioned that, i n  cases i n  which t h e  na tura l  frequencies of 
two successive harmonics have su f f i c i en t ly  c lose values, this method of calcula
t i o n  does not give a converging solut ion.  I n  prac t ice ,  however, this i s  of no 
grea t  import s ince  it can happen only when t h e  coupling between t o r s i o n a l  and 
flexural vibrat ions i s  very weak and t h e  corresponding v ibra t ion  modes can be 
determined separa te ly  without consideration of this coupling. 

3 .  	Effect  of Cowling between Bendiw and Torsion 
a t  Natural Vibration Frequency 

Here, we w i l l  def ine t h e  extent  of t he  dif9erence of na tu ra l  binary blade 
v ib ra t ion  frequencies from corresponding p a r t i a l  frequencies, i .e., frequencies
obtained without considerat ion of coupling between bending and tors ion .  

Calculations show t h a t  t h e  coupling between bending and twis t ing  has t h e  
g rea t e s t  inf luence on natural blade v ibra t ions  i n  regions i n  which the  p a r t i a l  
frequencies of bending and t o r s i o n  approach closely.  Therefore, we should in
ves t iga te  only these regions. Outside these  zones, t h e  p a r t i a l  frequencies of 
t h e  blade and the  frequencies of t h e  coupled binary v ibra t ions  p r a c t i c a l l y  
coincide. 

It i s  known t h a t  t h e  p a r t i a l  frequencies of natural v ibra t ions  of bending 
of a hinged b h d e ,  f o r  a l l  modern hel icopters ,  l i e  i n  very narrow well-defined 
zones whose pos i t i on  relative t o  t h e  harmonics of ex te rna l  exc i t a t ion  cannot be 
changed subs tan t ia l ly .  In  Fig.l.20, t hese  zones are superposed on a resonance 
diagram of t h e  blade. This diagram i s  constructed f o r  t h e  frequency range that 
includes only a s e r i e s  of first harmonics of r o t o r  rpm, s ince  external forces  
ac t ing  on t h e  blade wi th  higher harmonics are ins ign i f i can t  i n  magnitude and 
cannot cause noticeable blade vibrat ions.  Only t h e  first three overtones of t h e  
p a r t i a l  frequencies of t h e  blade i n  bending f a l l  wi th in  this region. I n  p rac t i ce  
only these  overtones are of i n t e r e s t  i n  blade design. The natural flexural v i 
bra t ion  frequencies can leave t h e  ind ica ted  zones only f o r  r o t o r s  with an  unusual 
method of blade attachment t o  t h e  hub, such as - f o r  example - i n  r o t o r s  wi th  
r i g i d  blade attachment or with  a gimbaled hub. 

The p a r t i a l  frequencies of natural t o r s i o n a l  blade v ibra t ions  may vary 



with in  wider limits, mainly as a consequence of t h e  difference i n  t h e  r i g i d i t i e s  
of t h e  ro to r  cont ro l  system whose designs may vary widely. Nevertheless, with 
respect t o  t h e  magnitudes of t h e  p a r t i a l  frequencies of natural t o r s i o n a l  blade 
vibrat ions a very important conclusion can be drawn, involving t h e  following: 
Only t h e  first harmonic of t o r s i o n a l  vibrat ions can f a l l  within t h e  frequency 
range of i n t e r e s t  here. The second harmonic of t o r s i o n a l  vibrat ions generally 
w i l l  be i n  a region not belaw t h e  15th  harmonic of t h e  ro to r  r p m  (see f ig . l . l6) ,
i.e., beyond t h e  limits of t h e  region of i n t e r e s t  t o  t h e  designer. Usually, /69
vibrat ions of r e l a t i v e l y  la rge  amplitude do not arise with such frequencies. 
Therefore, only the  first h a m n i c  of na tu ra l  t o r s iona l .  vibrat ions of a blade i s  
of p r a c t i c a l  i n t e r e s t  from t h e  aspect of possible  occurrence of resonance. 

9th harmonic, 

0 - 0.2 0.4 0.6 0.8 7.0 nln, 

fig.1.20 Fkgions on t h e  Resonance Diagram of t h e  Frequencies 
of Natural Vibrations of t he  First, Second, and Third 
Overtone of Bending and t h e  First Overtone of Torsion 

f o r  Blades of Different Helicopters. 

Here, it should be recal led t h a t  t h e  hel icopter  r o t o r  blade may have severa l  
first overtones of t o r s iona l  vibrat ions w i t h  d i f f e ren t  frequencies, depending 
on the  v ibra t ion  mode of t h e  r o t o r  a s  a whole and on w h a t  cont ro l  loop i s  loaded 
a t  this mode. The difference i n  na tu ra l  v ibra t ion  frequency of these  modes will 
be determined exclusively by t h e  difference i n  t h e  r i g i d i t i e s  of t h e  cont ro l  
loops being loaded. 
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In  f l i g h t ,  each harmonic of external forces  i s  able t o  exc i t e  only one 
well-defined v ib ra t ion  mode. Therefore, i n  inves t iga t ing  t h e  p o s s i b i l i t y  of t h e  
occurrence of resonance it i s  necessary t o  check whether t h e  con t ro l  r i g i d i t y  
adopted i n  t h e  ca l cu la t ion  corresponds t o  this mode, wi th  which resonance i s  
possible .  I n  this Section, we W i l l  ciiscuss only natural v ibra t ions  of t h e  sys
t e m .  Therefore, we w i l l  not f u r t h e r  discuss  this problem. 

Figure 1.20 shows t h e  region which usual* comprises the  frequencies of t h e  
first harmonic of natural v ibra t ions  of a blade i n  tors ion,  f o r  a l l  modes of 
r o t o r  Vibrations when both cyc l i c  and co l l ec t ive  p i t c h  con t ro l  loops are loaded. 
For r o t o r s  wi th  a blade number g rea t e r  than  three, a v ib ra t ion  mode i s  poss ib le  

F1 exura l  a x i r  

Fig.l.21 Stepped Centering of Blade 
wi th  a Change of Sign at t h e  Node of t h e  
First Overtone of N a t u r a l  F lexural  

Vibrations.  

i n  which a l l  forces  a r r iv ing  from 
t h e  blades lock on the  swashplate 
of t h e  p i t c h  control .  The m 
con t ro l  r i g i d i t y  corresponding t o  
this mode general ly  i s  very high.
I n  Fig.l.20, t h e  upper l i m i t  of 
t h e  region of t o r s i o n a l  vibrat ions 
f o r  this case i s  s h m  by a dot-
dash l i n e .  

Let us examine t h e  most common 
case i n  which p a r t i a l  frequencies 
of t h e  first harmonic of bending 
and t h e  first harmonic of t o r s ion  
coincide i n  magnitude i n  t h e  zone 
of operating rpm of t h e  ro to r .  
ht us d iscuss  two versions of t he  
blade center-of-gravity d is t r ibu
t i o n  over i t s  length. 

I n  both versions, we wi ’ l l  
assume - i n  conformity with t h e  
above-adopted assumptions - t h a t  
t h e  flexural a x i s  of t h e  blade i s  
r e c t i l i n e a r  and coincides wi th  t h e  

axis of the  fea ther ing  hinge of t h e  hub. The d is tance  t o  t h e  centers  of g rav i ty  
of t h e  sec t ions  w i l l  be reckoned from t h e  flexural axis i n  percentages of t h e  
b h d e  chord. A l l  inves t iga t ions  W i l l  be conducted appl icable  t o  a he l icopter
blade with a pressed duralumin spar wi th  a chord constant over i ts  length.  Such 
a blade has roughly a constant l i n e a r  weigM over t h e  length.  Its chord com
p r i s e s  about 1/20 of t h e  r o t o r  radius  e 

So that t h e  results of t he  ca lcu la t ions  W i l l  be more graphic, we w i l l  as
sume that, upon va r i a t ions  i n  blade centering, t h e  mass moments of i n e r t i a  of 
i t s  sec t ions  r e l a t i v e  t o  an  a x i s  going through t h e  centers  of g rav i ty  do not 
change, i.e., that t h e  p o s i t i o n  

i s  maintained. 
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I I l1111l111111l1Ill II II Ill I 

first, l e t  us examine t h e  case i n  which t h e  center ings of t h e  blade sec
t i o n s  are constant over i ts  length, i.e., 

-x ~ . ~ -xcg--const, 

where b i s  t h e  blade chord. 

T h i s  vers ion of t h e  d i s t r i b u t i o n  of center ings i s  considered quite wide
spread i n  p rac t i ce .  Furthermore, it permits t r ac ing  - i n  a very graphic form -
t h e  e f f e c t  of center ing and evaluating i t s  s igni f icance  as a f a c t o r  of t h e  
coupling between flexural and t o r s i o n a l  v ibra t ions .  

Figure 1.22 shows t h e  resonance diagram of a blade f o r  this case. The 
s o l i d  l i n e s  represent t h e  p a r t i a l  frequencies of bending and twis t ing  of t h e  
blade, and t h e  dashed l i n e s  give t h e  frequencies of binary v ibra t ions  calculated 
f o r  a displacement of t h e  center ing r e l a t i v e  t o  t h e  flexural axis, equal t o  10% 
of t h e  blade chord. The ca lcu la t ions  were performed f o r  t h e  case of n = 0. 
Therefore, t h e  s ign  of t h e  shift of center ing i s  of no s ignif icance.  

p cyqmin 6 t h  harmonic 

harmonic 

harmonic 

harmonic 

harmonic 

harnon i c  

50 150 200 n r p m  

Fig.1.22 Resonance Diagram of Blade at Displacement of 
Centering Constant over t h e  Length and Amounting 

t o  10% of t h e  Chord. 

Here and below, we will i n t en t iona l ly  examine a very wide range of varia
t i o n  i n  centerings,  so as t o  t r a c e  i ts  inf luence i n  a more concise form. I n  
prac t ice ,  t h e  design c a p a b i l i t i e s  and t h e  condi t ions imposed by f l u t t e r  permit 



r . ,. I 

changing of t h e  center ing only wi th in  very narrow limits. Usually, f o r  r o t o r  
blades t h e  center ing varies wi th in  limits from 20% t o  25% of t h e  blade chord 
(here, values reckoned from t h e  leading edge of t h e  blade are given), ?.e., t h e  
e n t i r e  range of va r i a t ion  i n  centering amounts t o  only about 5% of t h e  blade 
chord. Thus, we can conclude from a study of Fig.1.22 t h a t  a displacement of 
centering, constant over t h e  blade length, has only a negl igible  e f f ec t  on t h e  
values of natural frequencies.  

I n  t h e  second case examined here, t h e  d i s t r i b u t i o n  of centering i s  se lec ted  
such that i t s  inf luence i s  s t rongest  during vibrat ions wi th  a frequency c lose  
t o  t h e  p a r t i a l  bending frequency of t h e  first harmonic. The centering is  assumed 
as constant over t h e  blade length, but its s ign  changes a t  t h e  node of t h e  first 
harmonic of t h e  p a r t i a l  bending mode. 

7 t h  harmonir 

SO 100 150 200 n rpm 

Fig.l.23 Frequencies of Natural Binary Blade Vibrations with 
a Stepped Law of Change of Centering over t h e  Blade Length, 

a t  10 and 20% Displacement with Respect t o  t h e  Chord 
from t h e  Flexural  Axis. 

An o f f s e t  center ing can be created f o r  a blade when t h e  a n t i - f l u t t e r  
balancer is introduced i n t o  t h e  design not over t h e  e n t i r e  length  but only over 
a small segment at t h e  blade t i p .  Results of t h e  ca lcu la t ion  of this version 
of center ing d i s t r i b u t i o n  are given i n  Fig.1.23. The e f f e c t  of center ing is  
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r a t h e r  s t rong i n  this case. Therefore, at such a d i s t r i b u t i o n  over t h e  length, 
t h e  coupling between bending and t o r s i o n  m u s t  be taken i n t o  account when calc
l a t i n g  t h e  blade. 

It i s  a l s o  necessary t o  e d n e  the  e f f e c t  of a concentrated load shift
i n g  over t h e  chord. Let us take t h e  magnitude of t h e  load as equal t o  8% of 
t h e  blade weight. T h i s  probably i s  the  maxi" value of a load that can actual
l y  be attached t o  a blade. The most e f f ec t ive  si te of a t taching such a load 
from the  Viewpoint of producing s t rong coupling f a c t o r s  f o r  f l e x u r a l  and to r 
s i o n a l  vibrat ions i s  t h e  point  of t h e  blade where t h e  displacements i n  t h e  
t h r u s t  plane a r e  maximum. Therefore, we Will discuss  the  case i n  which t h e  load 
i s  attached a t  t h e  blade t i p .  

Figure 1.& shows the  results of ca l cu la t ion  f o r  this case. The e f f e c t  of 
a concentrated load on t h e  natural v ibra t ion  frequency f o r  la rge  o f f se t  of t h e  
load can be considered subs tan t ia l ;  however, t h e  use of such a means f o r  elimi
nating resonance cannot be recommended t o  t h e  designer.  Nevertheless, t he  at
tachment of a load can be regarded as a temporary means f o r  t r e a t i n g  blades sub
j e c t  t o  la rge  variable s t r e s s e s  due t o  resonance. 

0 50 100 750 200 nrpm 

Fig.l.24 Effect of a 10 and 20% Displacement w i t h  Respect t o  
t h e  Chord of a 10-kg Tip-Concentrated Load on t h e  Magnitude of 

t h e  Natural Binary Blade Vibration F'requencies. 
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The last  parameter which should be regarded as a coupling f ac to r  between 
bending and t o r s i o n  i s  the  f lapping compensator. To evaluate  i t s  e f f e c t  on t h e  
magnitude of t h e  natural binary v ib ra t ion  'frequencies, we made ca lcu la t ions  with 
a f lapping compensator H = 1.0. T h i s  i s  the  maximum value of a f lapping com
pensator of t he  type ever used i n  prac t ice .  All t h e  d a t a  presented above were 
obtained wi th  H = 0. 

It follows from the  ca lcu la t ions  that t h e  effect of t h e  f lapping compensa-m 
t o r  i s  negl igible .  However, considerat ion of t h e  f lapping compensator can be 
j u s t i f i e d  t o  some extent,  s ince  i t . i n t r o d u c e s  some refinement i n t o  t h e  form of 
t h e  d i s t r i b u t i o n  of t h e  bending moment at t h e  blade root .  

._Section 7. Forced Blade Vibrations 

1. Use of B.G.GalerkinTs Method f o r  Calculating Blade Deformations. 
Determination of S t a t i c  Deformations of a Blade 

The problem of t h e  dete-nation of blade deformations reduces t o  a solu
t i o n  of the  above d i f f e r e n t i a l  equation (1.9) whose der iva t ion  i s  given i n  Sec
t i o n  1: 

where T i s  a l i n e a r  ex terna l  load on t h e  blade, d i s t r ibu ted  over t h e  radius  and 
varying i n  time. 

In Sections 2, 3, and 4, we discussed t h e  so lu t ion  of a similar equation 
f o r  T = 0 describing t h e  free v ibra t ions  of a blade. Here, we W i l l  examine 
forced vibrat ions of a blade when T i s  some per iodic  funct ion varying wi th  the  
frequency v .  

I n  the  p a r t i c u l a r  case when v = 0, the  problem reduces t o  a determination 
of t h e  s t a t i c  blade deformations due t o  a load To constant i n  t h e .  

The simplest  method of solving eq.(7.1) i s  that given by B.G.Galerkin. & 
To i l l u s t r a t e  the  appl ica t ion  of Galerkinfs  method t o  the  d e t e d n a t i o n  of 

blade deformations, l e t  us examine the  s t a t i c  problem, when the  external load i s  
time-invariant. I n  this case, 9 = 0 and eq.(7.1) can be wr i t t en  as 

Let  us represent  t h e  blade deformations i n  t h e  form 

where 
yJ = natural v ib ra t ion  modes of t h e  blade with respect  t o  the  j - th  

harmonic; 
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6 ,  = c e r t a i n  coe f f i c i en t s  which wi l l  be ca l l ed  coe f f i c i en t s  of blade de
formation. The coe f f i c i en t s  of deformation i n  a l l  fu r the r  computa
t i o n s  i n  which t h e  Galerkin method i s  used will play  t h e  r o l e  of 
generalized coordinates of t h e  system. 

kt us s u b s t i t u t e  e (7. ) i n t o  eq.(7.2), mult iply a l l  terms of t h e  equa
t i o n  i n  t u r n  by y'") , y(1s.,y?21 , e tc .  and i n t e g r a t e  them with respect  t o  the  
blade radius .  

By v i r t u e  of t h e  or thogonal i ty  of t h e  funct ions y(J ), t he  performed opera
t i o n  transforms the  d i f f e r e n t i a l  equation (7.2) i n t o  a s e r i e s  of independent 
equations of the  form 

CjSj =A j , (7.4) 

where 

0 0 

R (7.5) 
A, = Toy(i)dr. 

0 

CI= E 1 [y"]; dr f jN [g' ] ;  dr; 

We will designate t h e  quant i ty  C ,  as t h e  generalized r i g i d i t y  of t he  blade 
during deformation wi th  respect  t o  t h e  mode of t h e  j - th  harmonic i n  a centr i fu
g a l  force  f i e l d .  It follows from an examination of eqs.(7.5) t h a t  t h e  general
ized blade r i g i d i t y  C, i s  equal t o  double the  p o t e n t i a l  energy accumulated by 
t h e  blade during i t s  e l a s t i c  deformation i n  a cen t r i fuga l  force  f i e l d  wi th  re
spect t o  the  normalized mode of t h e  j - th  harmonic. Le t  us c a l l  t he  quant i ty  A, 
t h e  generalized ex te rna l  force  deforming t h e  blade wi th  respect  t o  the  mode of 
t h e  j - th  harmonic. The magnitude of t h e  generalized force  A, i s  equal t o  double 
t h e  work done by t h e  ex terna l  E n e a r  forces  To during deformation of the  blade 
with respect  t o  t h e  normalized mode of t h e  j - th  harmonic of i t s  natural vibra
t ions .  

*om eq.(7.4) we can determine the  coe f f i c i en t s  of blade deformation 6 ,  : 

af ter  which eq.(7.3) wil l  yield t h e  mode of s t a t i c  blade deformation. 

The more n a t u r a l  v ib ra t ion  modes are used i n  t h e  calculat ion,  t he  more ac
cura te  can t h e  mode of deformations be determined. However, f o r  p r a c t i c a l  pur
poses it i s  s u f f i c i e n t  t o  limit ourselves t o  t h e  first four  harmofics of .b lade  
vibrat ions.  

If t h e  coe f f i c i en t s  of deformation 6 ,  are known, then  it i s  easy t o  de
termine the  bending moments and t h e  bending stresses i n  t h e  blade. These are 
determined from t h e  formulas 
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Here, M ' j )  and o t s )  are t h e  modes of d i s t r i b u t i o n  of bending muments and 
bending stresses i n  normalized deformations of t h e  blade with respect  t o  the  j - th  
harmonic of i t s  n a t u r a l  vibrat ions.  

The quant i t ies  en ter ing  eqs .( 7.7) are governed by t h e  r e l a t ions  : 

M

G=


w ;  1 

where W i s  t h e  moment of res i s tance  of t h e  blade sect ions.  

2. 	 Determination of Blade Deformations with Periodic b p l i c a t i o n  
of a n  ESrternal Load 

L e t  us here discuss  t h e  case i n  which t h e  ex terna l  load var ies  i n  accord
ance with the  l aw:  

T= T,sin vt.  
(7.9) 

To solve this problem, we w i l l  again use Galerkin's method. Representing 
t h e  blade deformations i n  t h e  form of eq.(7.3), we first s u b s t i t u t e  eqs.(7.3) 
and (7.9) i n t o  eq.(7.l), mult iply a l l  terms of t h e  obtained equations i n  t u r n  by
y'j)  and in t eg ra t e  over t h e  blade length.  By v i r tue  of orthogonality of t h e  
funct ion y ' j ) ,  we obta in  a series of independent d i f f e r e n t i a l  equations of the  
form 

mjij+Cj8j =A,  sin vt, (7.10) 

where 

We will designate t h e  quant i ty  m J  as t h e  equivalent mass of t h e  blade during 
i t s  v ibra t ions  wi th  respect  t o  t h e  mode of t h e  j- th harmonic. If t h e  v ibra t ion  
modes y'j) are normed so t h a t  y i J )  = 1, then m J  will be t h e  equivalent mass of 
t h e  blade reduced t o  i t s  t i p .  It a l s o  follows from t h e  first equation of t h e  
system (7.11) that t h e  equivalent blade mass is equal t o  double i ts  k i n e t i c  en
ergy and t h a t  t h e  blade elements are displaced at a rate of y'j' * 
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To determine t h e  s teady motion, we pose 

Subs t i tu t ing  this expression i n t o  e ~ ~ ( 7 . U )and canceling a l l  terms of the  
equation by the  quant i ty  s i n  v t ,  we obtain 

according t o  which t h e  value of t h e  amplitude of blade deformation is equal t o  

It is  not d i f f i c u l t  t o  note that the  r a t i o  CJ/mJ i s  equal  t o  t h e  natural 
v ibra t ion  frequency of t h e  j - th  harmonic of t h e  blade. Actually, i f  we set A, = 
= 0 i n  eq.(7.12), t hen  t h e  value of v i n  this case w i l l  dekermine t h e  natural 
frequency of t h e  blade and can be obtained from eq.(7.U): 

I n  conformity wi th  eq.(7.6) t h e  r a t i o  A,/C, determines the  magnitude of de
formation i f  t h e  load T, were t o  be applied s t a t i c a l l y .  

Equation (7.13) is conveniently represented i n  t h e  form 

yhere 
6:;) = coe f f i c i en t  determining t h e  magnitude of deformation a t  a stati

c a l l y  applied external load T y ;  below, this coe f f i c i en t  w i l l  be 
ca l led  t h e  coe f f i c i en t  of quasi-s ta t ic  blade deformation; 

h d y n  = coe f f i c i en t  of dynamic increase  i n  v ibra t ion  amplitude. 

For t h e  case i n  question, we have 

It follows from eq.(7.16) that during resonance, when t h e  frequency of 
forced v ibra t ions  v i s  equal t o  the  frequency of t h e  natural vibrat ions p , ,  t he  
coeff ic ient  of dynamic increase  i n  amplitude becomes inf ini te .  T h i s  r e s u l t  is  
regular  f o r  problems i n  which forced v ibra t ions  without damping are examined. 

I n  r e a l i t y ,  a hel icopter  blade operating i n  air undergoes appreciable aero-



dynamic damping during v ibra t ion .  Aerodynamic damping limits t h e  amplitude of 
blade v ibra t ions  i n  resonance and must be taken i n t o  account i f  a determination 
of blade vibrat ions,  under conditions of resonance, en te r s  i n t o  t h e  problem of 
t h e  calculat ion.  

I n  determining t h e  v ibra t ions  of a he l icopter  blade, when vibrat ions arise 
under t h e  e f f e c t  of aerodynamic forces,  it i s  very d i f f i c u l t  t o  make a s t r i c t  
separat ion between forces  of a e r o d y d c  damping and aerodynamic forces  causing 
blade v ibra t ions .  Such a separat ion can be made only condi t ional ly .  However, 
a number of s implif ied ca l cu la t ion  methods do use such a d iv is ion .  Therefore, 
we w i l l  discuss  this approach i n  some d e t a i l .  

3 .  g-ql i f i e d  App=rEch t o  Calculation of. Forced Blade Vibrations 

Let us assume that t h e  external aerodynamic loads ac t ing  on a n  e l a s t i c  
blade i n  f l i g h t  can be divided i n t o  two pa r t s :  external loads ac t ing  on t h e  
blade and forces  of aerodynamic damping. We w i l l  s t i pu la t e ,  i n  first approxba
t ion ,  t h a t  t he  external loads ac t ing  on a n  e las t ic  blade coincide wi th  loads act
ing  on a n  i d e a l  f l e x u r a l l y  r i g i d  blade. Then, f o r  performing t h e  ca lcu la t ion  i t  
remains only t o  determine t h e  forces  of aerodynamic damping. 

Usually t h e  forces  of aerodynamic damping are determined f o r  a regime m 
with  &a1 flow pas t  t he  ro tor ,  whereqon it i s  assumed t h a t ,  i n  a l l  other  f l i g h t  
regimes wi th  oblique flow p a s t  t h e  rotor ,  t h e  coef f ic ien ts  of aerodynamic damp
i n g  do not change. 

I n  a regime with axial flow p a s t  t h e  ro tor ,  t h e  force  of aer0dynami.c damp
i n g  can be determined on t h e  basis of t he  following: 

During vibrat ion,  t he  blade elements move with a ve loc i ty  J F .  A s  a conse
quence, t h e  angles of a t t ack  of a l l  blade elements change by t h e  quantity 

Upon a change i n  t h e  angle of a t tack ,  the  blade elements become subjec t  t o  
t h e  ac t ion  of add i t iona l  forces  of aerodynamic damping 

Let us assume t h a t  t h e  aerodynamic load T can be represented as consis t ing 
of two components : 

where 
T, ~ = aerodynamic load ac t ing  on a r i g i d  blade; 

T d a m p  = add i t iona l  load due t o  aerodynamic damping produced during e l a s t i c  
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blade vibrat ions.  

Then, eq.(?.l) can be rewritten i n  t h e  following form: 

[E/y”]”-[Nu‘]’+my * *  $-	1 caebory=7& (7 019 12 y 

Let  us examine blade v ibra t ions  due t o  t h e  s inuso ida l  component of t h e  aero
dynamic load, varying according t o  t h e  l a w  

T .  =T,sin v t ,“9 

If we represent blade deformations i n  t h e  form of eq.(7.3) and apply B.G. 
Galerk infs  method t o  eq.(7.l9), then  we a r r i v e  a t  a system of ordinary d i f f e ren 
t i a l  equations r e l a t i v e  t o  t.he coef f ic ien ts  of deformation 6 , .  k d i v i d u a l  equa
t i o n s  of this system w i l l  be cor re la ted  by terms i n t o  which t h e  following in t e 
g r a l  enters :  

where y ( j )  and y(m) are t h e  na tu ra l  v ib ra t ion  modes corresponding t o  d i f f e r e n t  
harmonics ( j  # m).  

In s implif ied methods of calculat ion,  t he  i n t e g r a l s  D,, a re  usual ly  equated 
t o  zero although, i n  many cases, such an assumption i s  impossible t o  ju s t i fy .  

If we nevertheless make use of this assumption, then appl ica t ion  of Galer
kin’s method y i e lds  a series of independent d i f f e r e n t i a l  equations of t h e  form 

where t h e  coe f f i c i en t  sJ  determines t h e  magnitude of aerodynamic darrpsing: L28 

After dividing a l l  terms of eq.(7.20) by mj, we obta in  an equation of t h e  
form 

‘6, +2ni8i+p3j=p3$ sin vt, (7.22) 

where 
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Usually, f o r  t h e  cha rac t e r i s t i c  of t h e  magnitude of damping we use t h e  rela
t ive damping coe f f i c i en t  

- nj
nj=-. 

Pj 


Its magnitude, as applied t o  aerodynamic damping of a blade, i s  calculated 
by m e a n s  of t h e  formula 

The so lu t ion  of eq.(7.22), performed i n  t h e  same manner as t h a t  used above 
i n  solving eq.(7.lO), leads t o  t h e  formula 

-1 8"' 
'dyn- d y S t  

where t h e  coe f f i c i en t  of t h e  dynamic increase i n  v ib ra t ion  amplitude i s  

A - I 
dyn- [* -($)I'+ 4n; ($)2 * 

(7.24) 

Thus, t h e  so lu t ion  of t h e  problem examined here cons is t s  i n  determining t h e  
quasi-s ta t ic  coe f f i c i en t s  of deformation 6 :  i' and t h e i r  subsequent multiplica
t i o n  by t h e  value of t h e  coef f ic ien t  of dynamic increase i n  amplitude h d y n .  

Such an  approach i s  subjec t  t o  c e r t a i n  inaccuracies  because of t h e  arti
f i c i a l  separat ion of aerodynamic forces  i n t o  two components by eq.(7.18), t h e  
inadequately founded assumption that D,, = 0, and t h e  approximate determination 
of t h e  coe f f i c i en t s  of aerodynamic damping f o r  a regime wi th  axial flow pas t  t h e  
ro tor .  Therefore, i n  Sections 8 and 9 we W i l l  present  methods of ca lcu la t ion  i n  
which t h e  above assumptions are not used. 

Nevertheless, a s impl i f ied  approach of this type f a i r l y  w e l l  descr ibes  t h e  
qual5tat ive aspect of phenomena observed during blade vibrat ions.  

h l i t u d e.~Diagram of Blade Vibrations4. -. . . . .  

As indicated above i n  Sect ion 3 ,  t h e  resonance diagram of a blade i s  widely 
used i n  evaluating t h e  charac te r  of blade vibrat ions.  The resonance diagram 
permits estimating t h e  extent  t o  which t h e  natural v ibra t ion  frequencies of t h e  
blade d i f f e r  f r o m t h e  exc i t a t ion  frequencies and determining t h e  poss ib le  hazard 
of t h e  occurrence of resonance vibrat ions.  However, i n  cases i n  which t h e  natu
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r a l  frequencies and t h e  exc i t a t ion  frequencies do not d i f f e r  grea t ly ,  it i s  of 
i n t e r e s t  t o  estimate t h e  extent t o  which blade v ib ra t ion  amplitudes can be re
duced. Such an  estimate can be made by using t h e  amplitude diagram of blade Vi

bra t ions .  This diagram, Constructed f o r  

x
*yn 

a blade wi th  ordinary mass and r i g i d i t y  
cha rac t e r i s t i c s ,  i s  given i n  Fig.1.25. 

I n  t h i s  diagram, t h e  abscissa  gives 
5 ‘Second t h e  exc i t a t ion  frequency re fer red  t o  t h e  

I 
? 

over tone angular ve loc i ty  of r o t a t i o n  of t h e  
4 w 

-F i r s t  v=-* 	V 

0 (7.25) 

The ordinate  gives  t h e  coef f fc ien ts  
of dynamic increase  i n  v ibra t ion  ampli

0 1 2 3 C 5 6 7 : 	 tude. The diagram i s  constructed only
f o r  t h e  first three harmonics of e l a s t i c  

Fig.1.25 Amplitude Diagram of blade Vibrations, using t h e  damping co-
Blade Vibrations. e f f i c i e n t s  c a l c d a t e d  from eq.(7.23). 

5. 	Calculation of Vibrations a t  bp_l icat ion Ph-asgof M e r n a l  
Load Variable over t h e  Blade Length 

Jn Subsection 3 of this Sect ion we presented formulas f o r  t h e  case when the  
ex te rna l  load i s  represented as 

T .  =T,sinvt..
“9 

T h i s  form of nota t ion  of t h e  load i s  poss ib le  only i f  t h e  phase of i t s  ap
p l i c a t i o n  over t h e  blade length i s  constant.  A s  a rule, this does not happen 
during v ibra t ions  of a hel icopter  blade. The phase of t h e  external load varies 
over t h e  blade length, so that t h e  load’should be represented i n  t h e  form 

- -
where t h e  components of t h e  external load Tv and Tv vary over t h e  blade length 
i n  accordance wi th  d i f f e r e n t  l a w s .  

After subs t i t u t ing  eq.(7.26) i n t o  eq.(7.19), using Galerkin’s method, and f�& 
assuming that D,, = 0, we obta in  

--
lnjzj -/- Elij +CjEj =~j COS vt -+ 4sin vt ,  (7.27) 



L e t  us pose 

Then, 

where 

are t h e  coe f f i c i en t s  of cpasi-s ta t ic  blade de fo rmt ion .  

Equations (7.29) permit determining t h e  dynamic coe f f i c i en t s  of blade de
formation i f  t h e  quasi-static coe f f i c i en t s  of deformation obtained f o r  t h e  aero- I 

d y d c  loads T, and T, are k n m .  

6.  Aerodynamic b a d  on a Rinid Blade 

In f l i g h t ,  a he l icopter  blade i s  acted y o n  by variable loads with frequen
c i e s  t h a t  are mult iples  of t h e  r o t o r  ro ta t ions .  In  this case, as already men
tioned, t h e  g rea t e s t  variable stresses i n  t h e  blade are caused by t h e  first six 
t o  e ight  harmonics of t h e  aerodynamic load relative t o  t h e  r o t o r  ro t a t ions .  
Higher harmonics usual ly  are so small as t o  cause no not iceable  stresses i n  t h e  
blade, even i n  resonance. 

A ca lcu la t ion  of t h e  variable aerodynamic loads on a blade encounters cer
t a i n  d i f f i c u l t i e s .  These have t o  do pr imar i ly  wi th  t h e  necessi ty  of determining 
t h e  variable induced ve loc i ty  field, considerat ion of nonl inear i ty  i n  t h e  de
pendence of t h e  aerodynamic coe f f i c i en t s  on t h e  angle of a t t ack  of t h e  p ro f i l e ,  
t h e  Mach number (M), and coupling of t h e  loads with t h e  t o r s i o n a l  vibrat ions of 
t h e  blade. The considerat ion of t hese  c h a r a c t e r i s t i c s  i s  discussed i n  t h e  re
spec t ive  Sections.  Here, we W i l l  construct  formulas f o r  determining variable 
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aerodynamic loads ac t ing  on a blade r i g i d  i n  flexure and tors ion ,  under t h e  fo l 
lowing assumptions. 

a) We assume t h a t  t h e  i n l e t  angle t o  t h e  blade p r o f i l e  @ (Fig.1.26) i s  
s m a l l  so  t h a t  we can set approximately: 

where + = i n l e t  angle;  
U, 	 and U, = mutually perpendicular components of t h e  r e l a t i v e  flow ve loc i ty  

lying i n  a plane normal t o  t h e  blade a x i s  ( see  Fig.1.26). Here, 
t h e  ve loc i ty  U, i s  p a r a l l e l  t o  t h e  plane of r o t a t i o n  of t h e  
ro to r .  

P l a n e  of 
r o t a t i o n  

t o  61 ade plane  
axis 

Fig.1.26 Diagram of Flaw P a s t  a Blade 
Rigid i n  Flexure and Torsion. 

Assuming a l s o  t h a t  cos (P 1, 
we will consider t h a t  t h e  unknown 
load T ac t ing  i n  t h e  f lapping plane 
does not d i f f e r  from t h e  load T,,, 
perpendicular t o  t h e  inlet  t o  t h e  
blade p r o f i l e  (Fig.1.26). 

b) W e  assume t h a t  t h e  magni
tude of r e l a t i v e  ve loc i ty  of t h e  
flow (U)  pas t  t h e  p r o f i l e  d i f f e r s  
l i t t l e  from t h e  quant i ty  U,: 

L 7 z  u,. (7032) 

c)  We assme t h a t ,  i n  deter
mining t h e  loads i n  t h e  f lapping 
plane,  t h e  p r o f i l e  drag can be 
neglected and t h a t  we can set c, = 
= 0. 

We s t i p u l a t e  khat t h e  p r o f i l e  lift coe f f i c i en t  c y  depends l i n e a r l y  on t h e  
p r o f i l e  angle of a t t ack  a :  

e, =ce. a. (7.33)U 


d)  We assume t h a t  t h e  induced ve loc i ty  of t h e  flow v passing through t h e  
ro to r  i s  constant over t h e  e n t i r e  area swept by t h e  ro to r :  

v=const. ( 7 -34) 

With these  assumptions, only t h e  constant por t ions  of the  first two har
monics of aerodynamic forces  are of s u b s t a n t i a l  magnitude, and then  only a t  me
dium and high f ly ing  speeds of t h e  hel icopter .  The high harmonics are small and 
t h e i r  ca l cu la t ion  under t h e  above assumptions i s  of no i n t e r e s t .  
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Using these  assumptions, t h e  l i n e a r  aerodynamic load on t h e  blade can be 
determined by t h e  formula 

We w i l l  assume furthermore that t h e  p r o f i l e  angle of a t tack  i s  

where cpr i s  the  angle of blade p r o f i l e  s e t t i n g  i n  a sec t ion  a t  dis tance r from 
t h e  axis of ro ta t ion .  

Then, eq.(7.35) can be transformed i n t o  the  form 

For a n  i d e a l  f l exura l ly  r i g i d  blade, suspended at  the hub by a f lapping 
hinge, t h e  ve loc i t i e s  enter ing eq.(7.37) can be determined by means of t h e  fo l 
lowing formulas: 

(7.38) 

Here, 
B o  = f lapping angle of t h e  blade r e l a t i v e  t o  the  f lapping hinge; 

b o  = -= time der iva t ive  of t he  angle Bo ;
a t  

ho = r e l a t i v e  ve loc i ty  of t h e  flow through t h e  ro to r ;  

ho=ptana,,,,+v"o, 
where 

c y r o t  = r o t o r  angle of a t t ack  a t  t h e  sha f t  axes; 
To = induced ve loc i ty  of t h e  flow re fe r r ed  t o  wR, which i s  constant 

over t h e  r o t o r  disk.  

The blade angle can be w r i t t e n  as 

where 
0, = blade angle at t h e  relative rad ius  F = 0.7 o r  at  any other  

rad ius  adopted f o r  reckoning 8, at Bo = 0; 
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Acp = geometric twist of t h e  blade; 
�I1 and �I2 = angles of cyc l ic  p i t c h  con t ro l  of t h e  blade prescribed by t h e  

swashplate 

If we represent the  f lapping motion of t h e  blade i n  t h e  form of a s e r i e s  

&=ao-	 2 (ancos n$+ bn sin n$) ( 7  040)
n 

and r e t a i n  the re  only t h e  first two harmonic components, s ince t h e  higher har
monics a re  small at the  adopted asswnptions, then eq.(7.37) can be transformed 
i n t o  

L n J ( 7 9 4 - 1 1  

where 

I n  performing these  transformations we used a subs t i t u t ion  t h a t  permits /s3
changing over t o  the  s-called equivalent ro tor .  

An equivalent ro to r  i s  a ro to r  whose sha f t  i s  imagined a s  turned r e l a t i v e  
t o  a real r o t o r  through an angle such that t h e  same angles of a t tack of t h e  blade 
sect ions a re  achieved without cyc l ic  p i t c h  control .  A l l  formulas wr i t t en  out f o r  
an equivalent r o t o r  can be used without change f o r  a r e a l  ro to r  without an au t+  
matic p i t c h  control .  An equivalent r o t o r  usual ly  i s  a l s o  given the  proper t ies  
of a ro to r  without a flapping compensator. In this case, t he  formulas a re  
equivalent only t o  an accuracy t o  within the  f i rs t  harmonic of flapping. 

Transformation of t h e  formulas f o r  aerodynamic loads, a s  applied t o  t h e  
equivalent ro tor ,  was performed under appl ica t ion  of t h e  following subs t i tu t ions :  

(7.43) 
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where 
yreal = real blade angle wi th  considerat ion of t h e  effect of a 

f lapping compensator at t h e  radius  adopted f o r  reading 
this angle; 

a:, by and A: = f lapping coef f ic ien ts  and relative ve loc i ty  of flow through 
t h e  blades f o r  an  equivalent ro tor .  

Here, we V r i l l  not discuss  higher 
harmonics of t h e  aerodynamic load. 

Figure 1.27 shows t h e  constant 
por t ion  and cosinusoidal  and sin&- /s4.
o i d a l  components of t h e  first two har
monics of t h e  aerodynamic load, f o r  a 
t y p i c a l  he l icopter  blade derived from 
eq.(7.42) f o r  horizontal  f l i g h t  of a 
he l icopter  a t  IJ. = 0.28. 

I n  Figs A 2 8  and 1.a these  loads 
are summed; t h e  diagram a l s o  gives t h e  
t o t a l  r e l a t i v e  aerodynamic load P 
ac t ing  on a blade i n  t h e  longi tudina l  
plane of t h e  r o t o r  at I) = 0' and I) = 
= 180' (Fig.1.28) and i n  t h e  l a t e r a l  
plane at JI = 90' and $ = 270' (see 
F ig . l . 3 ) .  

Fig.1.27 Dis t r ibu t ion  of Harmonic 7. Determination of t h e  Blade 
Components of Aerodynamic Load over F l a p p i x  Coeff ic ients  
t h e  Blade Radius, f o r  p, = 0.28. 

To determine aerodynamic loads by 
means of eq.(7.42), it i s  necessary t o  

know the  f lapping coe f f i c i en t s  of a flexurally r i g i d  blade. 

The f lapping coe f f i c i en t s  can be determined from t h e  d i f f e r e n t i a l  equation 
(7.1) i f  we represent t h e  so lu t ion  of t h e  equation i n  t h e  form 

Yt=PoY(0), (7.44) 

where y(O) i s  t h e  mode of blade v ibra t ions  with respect  t o  t h e  fundamental. 

For a r i g i d  blade, this v ib ra t ion  mode coincides wi th  a s t r a i g h t  l i n e  

If t h e  d is tance  from t h e  axis of r o t a t i o n  t o  t h e  hor izonta l  o r  f lapping hinge /85
is  equal t o  zero ( l h . h  = 0), then  



Fig.128 Relative Aerodynamic h a d  Acting on a Blade 
i n  the  Longitudinal Plane of t h e  Rotor. 

which i s  va l id  both f o r  r i g i d  and e l a s t i c  blades ( see  Sect .4). 

Se t t ing  t h S b  = 0, l e t  us subs t i t u t e  eq.(7.45) i n t o  t h e  d i f f e r e n t i a l  equa
t ions  (7.1) and apply Galerkints  method t o  it. T h i s  operat ion leads t o  a d i f 
f e r e n t i a l  equation of f lapping vibrat ions of t h e  blade 

where I i s  t h e  moment of i n e r t i a  of t h e  blade ’ r e l a t ive  t o  t h e  f lapping hinge. 

Equation (7.46) can a l s o  be derived by equating t o  zero t h e  moment of a l l  
forces  relative t o  t h e  f lapping hinge. 

Subs t i tu t ing  eqs.(7.40) and (7.41) i n t o  eq.(7.46) and e q u a t i x  t h e  coef
f i c i e n t s  of l i k e  harmonic azimuthal functions,  we ob ta in  a system of equations 
from which we can determine a l l  f lapping coef f ic ien ts .  T h i s  system i s  wr i t t en  
out as a table (see Table 1.6). 

Each equation of t he  derived system represents  t h e  sum of t h e  products of /s6
c e r t a i n  coef f ic ien ts ,  entered i n  t h e  squares of Table 1.6, w h i l e  the  unknown 
flapping coe f f i c i en t s  of t he  blade simultaneously enter ing several equations are 
set apar t  v e r t i c a l l y  i n  a separate  row above t h e  t ab le .  The known coe f f i c i en t s  
of each equation occupy one row i n  Table 1.6. On t h e  right-hand s i d e  of the  



table, a spec ia l  column contains t h e  coe f f i c i en t s  @ making up t h e  right-hand 
s ide  of t h e  equations. The empty squares of t h e  table correspond t o  coe f f i c i en t s  
equal t o  zero. 

Fig.1.29 Relative Aerodynamic Load Acting on a Blade 
i n  t h e  Latera l  Plane of t h e  Rotor. 

Table 1 . 6  

J I' 

9 1  




The following notat ions were used i n  compiling t h e  table: 

A =	f br3dr; 
bl - - - 1 

(7.47) 

C'+'= bry,dr. 
bf - - - I 

The mass cha rac t e r i s t i c  of a r i g i d  blade y i s  determined by t h e  expression 

On solving this system of equations, it i s  found t h a t  the  coe f f i c i en t  a2 
Thus, theyand bz are appreciably smaller than  t h e  coe f f i c i en t s  a8-' a?' and bi'. 

T h i s  assump- /87can be neglected i n  determining t h e  coe f f i c i en t s  ao, bi, and a?. 
t i o n  leads t o  simple formulas f o r  determining t h e  f lapping coef f ic ien ts  of t h e  

2 
Y xa2= 

18+8A2y: 
[p (4A Bb:+ a;) -p2(2ACao Yz ; 

l ' X  

2 

b, = 
18 +'',8A2yZ Y X  

where 
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8. Simplified Calculation of E la s t i c  Blade Vibrations 

Eased on t h e  simplifying assumptions adopted i n  this Section, we can con
s t r u c t  t h e  ca lcu la t ion  of e l a s t i c  vibrat ions and bending stresses i n  a blade for 
horizontal  f l i g h t  regimes of t h e  hel icopter .  Such a calculat ion,  of course, can
not give pos i t i ve  r e s u l t s  when applied t o  low f l y i n g  speeds where a major r o l e  
is  played by variable stresses having t o  do wi th  the  nonuniform induced ve loc i ty  
field; t h e  same i s  t r u e  f o r  high speeds where it is  hipossible  t o  disregard t h e  
nonl inear i ty  of t he  dependence of aerodynamic coef f ic ien ts  on t h e  angle of at
tack  and phenomena associated with flow compressibil i ty.  

In  conformity with t h e  above formulas, t he  ca lcu la t ion  i s  conveniently per
formed along t h e  axes of a n  equivalent ro tor .  

The ca lcu la t ion  of e l a s t i c  blade vibrat ions i s  car r ied  out i n  the  following 
sequence : 

1. First, determine t h e  parameters of t h e  f l i g h t  regime a t  which t h e  cal
cu la t ion  of stresses i s  t o  be car r ied  out. These are t h e  following parameters: 

a) r o t o r  angle of a t t ack  cyeq i 
b) angular ve loc i ty  of ro t a t ion  of the  r o t o r  w; 
c )  	a l t i t u d e  and f l y i n g  speed represented i n  t h e  ca lcu la t ion  by the  

coe f f i c i en t s  p and w.  

2. Calculate t h e  r e l a t i v e  ve loc i ty  of flow through t h e  ro to r  from the  
formula 

where C, i s  the  t h r u s t  coe f f i c i en t  of t h e  ro to r .  

3. N e x t ,  ca lcu la te  t h e  blade angle a t  t h e  con t ro l  s ec t ion  r e l a t i v e  t o  which 
t h e  geometric twist of t h e  blade is  prescribed. 

Without considerat ion of forces  r e l a t ed  with the  second harmonic of f lap- /88
ping, this angle can be determined by t h e  formula 

Here, 
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t = coe f f i c i en t  of t h r u s t ;  
0 = s o l i d i t y  r a t i o  of t h e  ro tor .  

4. By means of eqs.(7.50), determine t h e  flapping coe f f i c i en t s  of t h e  blade, 
and by means of eqs.(7.41) and (7.42) t h e  external loads on t h e  blade. 

5. To determine t h e  bending stresses, ca l cu la t e  t h e  na tu ra l  v ibra t ion  modes 
and frequencies of t h e  blade. 

6. If such a ca lcu la t ion  i s  performed, eqs.(7.30) W i l l  y i e ld  t h e  quasi-
s t a t i c  coe f f i c i en t s  of deformation with respect  t o  d i f f e r e n t  harmonics of blade 
v ibra t ion  from t h e  constant coqonent  of t h e  first and second harmonics of t he  
aerodynamic load. 

Subs t i tu t ing  eq.(7.41) i n t o  eq.(7.30), we ob ta in  t h e  values of t h e  quasi-
s t a t i c  coe f f i c i en t s  of deformation wi th  respect  t o  the  j - th  harmonic blade vibra
t i o n  

(7.54) 

Here, t h e  subscr ip ts  of t h e  coef f ic ien ts  of quasi-s ta t ic  blade deformation 
correspond t o  t h e  order of t h e  harmonic of t h e  aerodynamic forces .  'The index j 
denotes coef f ic ien ts  per ta in ing  t o  t h e  j- th overtone of blade vibrat ions;  y3 i s  
t h e  mass cha rac t e r i s t i c  of t h e  blade i n  deformations with respect  t o  t h e  j - th  
overtone : 
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The following notat ions are adopted f o r  t h e  i n t e g r a l s  enter ing eqs.(7.54):/89 

where y(J)  i s  the mode of blade v5brations with respect  t o  the  j - th  overtone 
normed such t h a t  $j) = 1 f o r  I; = 1. 

7 .  Then, write t h e  blade deformations i n  the  following form: 

y =[Co -C1COS Q-d, sin 9 -c2cos 29 -d,sin 2b] ~ ( 1 )+ 
+[eo-el cos+- f l s i n ~ - e 2 c o s 2 ~ : , - f 2 s i n 2 ~ ~ ~p+ 

(7.57) 
+[go-gl COS 9 --hl sint;-g2 cos 2;- h, sin 2+]y(3)c... 

Here, i n  determining t h e  blade deformation, t h e  mode of t h e  fundamental 
which, i n  the  case of r, = 0, coincides with a s t r a i g h t  l i n e ,  is replaced b 
first three  harmonics of natural v ib ra t ion  of t he  blade y(’) , y(’) , and y(37 the 
normed such t h a t  yC9)= R a t  r = R. Then, t he  coe f f i c i en t s  of blade deformation 
enter ing eq.( 7.57) can be determined i n  terms of t h e  quasi-s ta t ic  coef f ic ien ts  
of deformation i n  accordance wi th  eq.(7.29). 

A s  a t y p i c a l  example, l e t  us write out t h e  formulas f o r  determining t h e  co
e f f i c i e n t s  of deformation wi th  respect  t o  the  first harmonic: 



If t h e  dynamic coe f f i c i en t s  of deformation are known, it i s  easy t o  deter
mine any camponents of t h e  s t r e s s e s  s e t  up i n  the  blade. T h i s  w i l l  be discussed 
i n  more d e t a i l  i n  Subsection 17 of Section 8 and i n  Subsection 8 of Section 9. 

I n  t h e  s implif ied method of ca lcu la t ion  presented here, a la rge  number of 
add i t iona l  assumptions of a computational nature appl icable  t o  zlmost a l l  s tages  
of t h e  ca lcu la t ion  are used i n  p lace  of t h e  i n i t i a l  assumptions per ta in ing  t o  
t h e  physical  p roper t ies  of a blade model adopted i n  der iving eq.(7.l) and i n  cal
cu la t ing  t h e  right-hand s ide  of this equation, which reduces t o  eq.( 7.35). A l l  
these  s implif icat ions,  although they  make t h e  method of ca lcu la t ion  qui te  suit
able f o r  manual computation, introduce numerous indeterminacies t h a t  are poorly 
amenable t o  a quant i ta t ive  evaluation. Despite this shortcoming, t h e  described 
siniplified method of ca lcu la t ion  has one important advantage, namely i t s  c l e a r  
presentat ion.  I n  pr inc ip le ,  a l l  ca lcu la t ion  results obtained by other  more h
proved methods are evaluated and analyzed on t h e  basis of dependences presented 
here i n  a s implif ied form. 

However, even wi th  t h e  use of a l l  these  assumptions, pencil-and-paper com
put ing by this method takes  one month of work f o r  one ca lcu la tor .  The current  
f l a w  of blade designing cannot be maintained when one ca lcu la t ion  takes  t h a t  
long. Therefore, t h e  ca lcu la t ion  of e l a s t i c  v ibra t ions  of a blade used f o r  se
l ec t ing  t h e  blade design parameters can be performed only on high-speed elec
t r o n i c  computers. Naturally, there  is  no need then  t o  use assumptions t h a t  fa
c i u t a t e  t h e  computational process. 

Consequently, i n  Section 8 we will present  a method of ca lcu la t ion  based on 
t h e  same ini t ia l  assumptions, provided we neglect a l l  var iable  induced veloci
t i es ;  t h e  method uses no assumptions of a computational nature. 
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Sect ion 8. Calculation of B ~ d i n gStresses i n  a Blade a t  Low and Moderate 
Flying Speeds 

1. Charac ter i s t ics  Dist-shiw Fl ight  Renimes a t  I m  
Moderate Speeds 

Low and moderate speeds of a he l icopter  are regarded here as regimes suf
f i c i e n t l y  remote from flow separat ion i n  which, furthermore, phenomena associated 
wi th  flow compressibil i ty can be neglected. On this basis, i n  ca lcu la t ing  aero
dynamic loads it i s  assumed approximately t h a t  

T h i s  assumption g r e a t l y  s impl i f i e s  t h e  ca lcu la t ions  necessary f o r  construct
ing  design formulas. 

On t h e  other  hand, low-speed modes can be regarded as regimes espec ia l ly  ,@ 
detr imental  t o  f a t igue  s t r eng th  and o f t e n  conducive t o  t h e  generation of "um 
bending s t r e s s e s  i n  t h e  blade. 

These considerations j u s t i f y  the  use of a method of ca lcu la t ion  su i t ab le  
only f o r  low and moderate f l y i n g  speeds but not for high speeds nor f o r  regimes 
i n  which phenomena associated with t h e  nonlinear character  of t h e  dependence cy = 
= f(a) and with f l o w  compressibi l i ty  become determining fac tors .  

It should be noted t h a t  t h e  a s s m p t i o n  (8.1) does not always hold f o r  low-
speed modes. I n  cases i n  which t h e  r o t o r  blade accounts f o r  an  extremely la rge  
load, t h e  ca lcu la t ion  should be performed wi th  considerat ion of t h e  nonlinear de
pendence of t h e  aerodynamic coe f f i c i en t s  on t h e  angle of a t t ack  of t h e  p r o f i l e .  
The method of such a ca l cu la t ion  will be discussed i n  Sect ion 9. 

The blade overloading can be estimated f r o m t h e  value of t h e  th rus t  coef
f i c i e n t  of t h e  ro to r  t. Calculations show t h a t  t h e  assumption (8.1) can be used 
f o r  low-speed modes without in t roduct ion  of subs t an t i a l  e r r o r s  i n t o  t h e  r e s u l t s  
a t  t < 0.18. 

I n  regimes with v e r t i c a l  overloads such as, f o r  exanple, t h e  braking regime 
of a he l icopter  before landing, an infringement of this inequa l i ty  might occur 
i n  r o t o r s  which show such overloads i n  steady f l i g h t .  A l l  this must be taken in
t o  account i n  se l ec t ing  t h e  ca lcu la t ion  method. 

2. Me-thod of Calculating S t r e s ses  

T h i s  Section presents  t h e  conventional method of ca lcu la t ing  var iable  
s t r e s ses ,  based on Galerkin's method with expansion of t h e  deformation coeff i 
c i en t  i n  a Fourier series in harmonics. 

Because of t h e  p o s s i b i l i t y  of using this method f o r  ca lcu la t ing  low-speed 
modes, t he  harmonic components of t h e  induced field are introduced i n t o  a l l  cal
cu la t ion  formulas, and t h e  problem of blade deformation i s  solved simultaneously 
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with  t h e  problem of determining t h e  induced ve loc i t i e s .  

However, such a n  approach i s  not a IlmustII f o r  t h e  method proposed here. I n  
calculat ing stresses a t  moderate f ly ing  speeds when t h e  variable induced Veloci
t i e s  do not cause excessive refinements i n  t h e  results, it can be disregarded. 
I n  this case t h e  method of ca lcu la t ion  is  g r e a t l y  s implif ied.  

If t h e  assumption (8.1) i s  used, t h e  aerodynamic load w i l l  be a l i n e a r  
funct ion of t h e  displacements of t h e  blade element, and t h e  problem of calcu
l a t i n g  t h e  bending deformations w i l l  reduce t o  solving t h e  l i n e a r  d i f f e r e n t i a l  
equation (1 .9) .  To solve this equation we use t h e  B.G.Galerkin method. The 
blade deformations are represented as a series wi th  respect  t o  eigenfunctions, 
w h i l e  t h e  time coef f ic ie rks  of this series are expanded i n  a Fourier series. The 
use of Galerkin's method transforms the  d i f f e r e n t i a l  equation of blade v ibra t ions  
i n t o  a system of a lgebraic  equations r e l a t i v e  t o  t h e  unknown coe f f i c i en t s  of t h e  
Fourier s e r i e s ,  and t h e  determination of t h e  blade bending deformations reduces 
t o  a ca lcu la t ion  of these  unknown coef f ic ien ts .  Such a method of ca lcu la t ion  
will be presented here. 

3. A s s m t i o n s  i n  Deternrining Induced Veloc i t ies  

When ca lcu la t ing  t h e  bending stresses a t  low f ly ing  speeds when t h e i r  value 
i s  determined mainly by t h e  degree of nonuniformity of t h e  induced ve loc i ty  & 
f i e l d ,  t h e  assumptions on whose basis this f i e l d  i s  determined become of grea t  
importance. 

I n  t h e  first volume (Chapt.11, Sect.5), it w a s  mentioned t h a t  induced ve
l o c i t i e s  can be represented as t h e  sum of t h e  e x t r i n s i c  and i n t r i n s i c  induced 
ve loc i t i e s .  T h i s  subdivision is  somewhat a r b i t r a r y  but proves use fu l  s ince  it 
permits an evaluat ion of t h e  e f f e c t  of ind iv idua l  induced ve loc i ty  components by 
analogy with t h e  evaluat ion conventional f o r  t h e  wing of a regular  a i r c r a f t ;  this 
justifies the  adoption of c e r t a i n  assumptions important f o r  f u r t h e r  presentat ion.  

The flow pas t  a he l icopter  blade with a nonuniform induced ve loc i ty  f ie ld  
i s  analogous t o  the  flow pas t  t h e  wing of a regular  a i r c r a f t  i n  f l i g h t s  i n  turbu
l e n t  air, when t h e  wing constarkly encounters airflows of d i f f e r i n g  ve loc i ty  and 
d i rec t ion .  During r o t a t i o n  of a rotor ,  t h e  blade a l s o  encounters i n  i t s  pa th  a 
nonuniform ve loc i ty  field, except that this f i e l d  i s  not caused by atmospheric 
turbulence but by t h e  induced ac t ion  of t h e  entire vortex system of t h e  ro to r .  
T h i s  field, by analogy with a Wing, i s  usua l ly  ca l led  t h e  e x t r i n s i c  induced ve
l o c i t y  f i e l d ,  unl ike t h e  ve loc i ty  f ie ld  induced i n  t h e  blade region by t h e  vor
t i c e s  shed by t h e  blade due t o  a change i n  c i r c u l a t i o n  wi th  respect  t o  t i m e  and 
blade radius.  That these  vo r t i ce s  c rea t e  appreciable induced v e l o c i t i e s  a t  t h e  
blade i s  due exclusively t o  t h e  f a c t  that they  are a t  a very s h o r t  dis tance from 
it. Upon removing t h e  vo r t i ce s  a dis tance of 20 - 30' from t h e  r o t o r  azimuth, 
t h e i r  inf luence on t h e  aerodynamic load on t h e  blade W i l l  decrease. 

Jus t  as i n  ca lcu la t ing  a w i n g ,  t h e  Isteady-flow hypothesisll can be used i n  
determining t h e  aerodynamic loads on a blade. According t o  this m o t h e s i s  it 
i s  assumed t h a t ,  i n  a nonsteady f l a w  p a s t  a p ro f i l e ,  t h e  loads ac t ing  on t h e  pro
f i l e  behave as though t h e  flow p a t t e r n  produced at; a given instant of t i m e  would 
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remain unchanged f o r  an a r b i t r a r y  length  of t i m e .  I n  conformity wi th  this hy
pothesis ,  i n  ca lcu la t ing  t h e  aerodynamic loads on a wing allowance i s  made only 
f o r  t h e  change i n  angle of a t t ack  produced by t h e  e x t r i n s i c  ve loc i ty  f i e l d ,  w h i l e  
t h e  e f f e c t  of t h e  i n t r i n s i c  induced v e l o c i t i e s  i s  disregarded. 

We w i l l  use an analogous approach f o r  t h e  case of a blade. I n  determining
t h e  aerodynamic loads, we w i l l  t ake  i n t o  account only t h e  e x t r i n s i c  induced ve
l o c i t y  f ield.  

In t h e  ca lcu la t ion  of this field, c e r t a i n  additional.  assumptions r e l a t i v e  
t o  t h e  cha rac t e r i s t i c s  of t h e  vortex system i n  t h e  low-speed mode can be used. 

Figure 1.30 gives a planview of a system of free vor t ices  shed by t h e  blade 

D i r e c t i o n  of flight 

Fig.l.30 View of a Vortex S y s t e m  
Shed by t h e  Blade Tip i n  the  p = 

= 0.05 Regime. 

t i p s  of a five-blade r o t o r  i n  a f l i g h t  
regime wi th  a speed corresponding t o  
p = 0.05. A t  this speed, t h e  variable 
stresses i n  t h e  r o t o r  blades reach a 
"um. 

The p i c t u r e  conveyed by this 
sketch is  incomplete, s ince  only f r e e  
vo r t i ce s  shed from t h e  blade t i p s  are 
shown w h i l e  t h e  vo r t i ce s  shed from a l l  
other  blade r a d i i  are omitted. The 
radial ( t ransverse)  vo r t i ce s  are a l s o  
l e f t  o f f .  However, even this p a t t e r n  
already gives an idea  on t h e  close 
spacing of vo r t i ce s  i n  low-speed 
regimes. Due t o  this cha rac t e r i s t i c  
of t h e  vortex system, t h e  induced 
ac t ions  of i nd iv idua l  vo r t i ce s  W i l l  
merge and appear as t h e  t o t a l  nonuni
formity of t h e  e n t i r e  ve loc i ty  f i e l d .  
No sharp induced ve loc i ty  peaks, char
a c t e r i s t i c  f o r  t h e  vortex system, with 
widely spaced vo r t i ce s  occur. There

fore ,  a t  low f ly ing  speeds and espec ia l ly  f o r  r o t o r s  with a l a rge  number of 
blades, t he  induced v e l o c i t i e s  can be determined from t h e  theory covering t h e  
configurat ion of a r o t o r  wi th  a n  infinite number of blades. 

With an  increase i n  f l y i n g  speed, t h e  free vortex system starts extending & 
and shows wider spacing. The vortex system a l s o  changes i n  t h e  same sense on a 
decrease i n  t h e  number of r o t o r  blades.  T h i s  reduces t h e  accuracy of ca l cu la t ion  
f o r  a configuration wi th  a n  i n f i n i t e  number of blades. 

On changing from a given r o t o r  t o  a configurat ion wi th  an  infinite number 
of blades, t h e  l o c a l  effect due t o  t h e  vor t ices  immediately adjacent t o  t h e  blade 
i s  reduced so g rea t ly  that, i n  first approximation, it can be assumed that this 
design does not allow for t h e  inf luence of adjacent vo r t i ce s  so t h a t  t h e  ve loc i ty  
field determined on i t s  basis will p r a c t i c a l l y  coincide wi th  t h e  e x t r i n s i c  in
duced ve loc i ty  f i e l d .  
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The considerations presented above lead t o  t h e  conclusion that, f o r  calcu
l a t i n g  e l a s t i c  blade v ibra t ions  a t  low f l y i n g  speeds, t h e  vortex theory based on 
a scheme with a n  infinite number of blades can be used. 

A t  low f l y i n g  speeds, one usual ly  measures variable stresses of which a 
major po r t ion  i s  made up of high harmonics of t h e  r o t o r  rpm, general ly  located 
between t h e  fou r th  and s i x t h  harmonic. Therefore, s t i l l  another important re
quirement m u s t  be imposed on t h e  method of determining induced ve loc i t i e s .  Such 
a method should determine t h e  induced ve loc i ty  field wi th  a n  accuracy of at 
least t o  t h e  s i x t h  harmonic, which is poss ib le  only i f  t h e  c i r cu la t ion  values 
are determined wi th  a n  accuracy t o  t h e  same harmonic. Consequently, a l l  methods 
not s a t i s fy ing  this requirement are worthless and cannot be used f o r  ca lcu la t ing  
e l a s t i c  v ibra t ions  

A s  s t a t e d  above, we will present a method of ca lcu la t ing  stresses i n  which 
a l l  variables are expanded i n  Fourier series i n  harmonics. Therefore, it i s  
convenient t o  use t h e  method of determining t h e  induced ve loc i ty  f i e l d ,  i n  which 
these  ve loc i t i e s  are determined a l s o  i n  t h e  form of an  expansion i n  harmonics. 

These s t i pu la t ions  are best m e t  by t h e  theory developed by V.E.Baskin 
[(Ref .3); see a l s o  Sect.5, Chapt.11 of Vol.11. Therefore, this theory will be 
used here f o r  our stress analysis .  

4. Mat hematical Formulas f o r  Induced Velocity Field Determination 

Let us examine t h e  system of formulas proposed by V.E.Baskin f o r  ca lcu la t ing  
t h e  induced ve loc i ty  f ie ld  i n  t h e  plane of r o t a t i o n  of P ro to r .  

We will represent  t h e  field of these  ve loc i t i e s  as t h e  sm of i ts  harmonic 
components. I n  s o  doing, both t h e  t o t a l  f low ve loc i ty  and t h e  harmonic con- & 
ponents of this ve loc i ty  are r e l a t ed  t o  t h e  t i p  speed of t h e  r o t o r  blades wR: 

Here, 
h = t o t a l  ve loc i ty  of t h e  flow passing through t h e  ro tor ,  relative 
- t o  wR;

A, = constant induced ve loc i ty  component, a l s o  relative t o  wR;
-

h ,  and x, = harmonic induced ve loc i ty  components;
JI = azimuthal blade angle reckoned from a n  ax is  coinciding i n  di

r e c t i o n  wi th  t h e  t a i l  boom of a s ingle-rotor  hel icopter ;  

V cos  a d’=oR ’ 

where 
V = f l y i n g  speed of t h e  hel icopter ;  

a F O t= r o t o r  angle of a t t ack  a t  t h e  sha f t  axes. 
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The l i n e a r  aerodynamic load ac t ing  on t h e  blade i s  represented i n  t h e  form 

where 
c: = 	angle of slope of t h e  dependence c y  = f(a), which here i s  taken 

t o  be l i n e a r  i n  t h e  form of eq.(8.1); 
p = a i r  densi ty;  

bo.? = value of blade chord at the  relative radius F = 0.7. 

Henceforth, t h e  value of P en ter ing  this expression Will be designated as 
"relative aerodynamic loadtl. 

We represent t h e  value of P i n  t h e  form 
-

P=P,+ 2 (P ,  cos m++ Fmsin m;). 
(8.4)m 

The harmonic ve loc i ty  components A,, are represented as t h e  sum of t h e  so-
ca l led  p a r t i a l  induced ve loc i t ies ,  each of which i s  induced only by one harmonic 
of t h e  aerodynamic load 

I n  these  expressions, t h e  sum t o t a l  induced ve loc i ty  components have one 
subscr ipt  n, w h i l e  t h e  p a r t i a l  components have two subscr ip ts  n and m. 

The values of t h e  p a r t i a l  harmonic induced ve loc i ty  Components are deter
mined by t h e  following expressions : 

If t h e  power t o  which -r i s  ra i sed  i s  negative ( n  - m < 0), we must set  /95 
= ( - ~ ) m - ~i n  eqs.(8.6). 

The coe f f i c i en t s  enter ing eqs.(8.6) have t h e  following. values: 
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where 
a = s o l i d i t y  r a t i o  of t h e  r o t o r ;  
zb = number of blades of ro to r .  

The value of t h e  d isk  flow r a t i o  averaged over t h e  blade radius  A,,, i s  de
termined from t h e  formula 

k6,=ptana&2 /-A,rdr. 

-
To determine t h e  funct ions J(Fm)and J(Fm)enter ing  eqs.(8.6), t h e  follow

ing  formulas are obtained from V.E.BaskinTs theory: 

where 
J,(zr) and Jm(zF) = Bessel funct ions of t h e  first kind of order n and m, 

respec t ive ly; 
z = i n t eg ra t ion  parameter. 

Here, t o  spec i fy  t h e  parameter over which i n t e g r a t i o n  i s  car r ied  out, a new 
notat ion is  introduced f o r  t h e  r e l a t i v e  blade rad ius  'F;. T h i s  notat ion w i l l  be 
used only i n  ca lcu la t ing  t h e  i n t e g r a l s  (8.9). 

5. Transformations of Mathematical Formulas i n  P a r t i c u l a r  Cases 

Equations (8.6) are g rea t ly  s implif ied i n  p a r t i c u l a r  cases. Thus, i n  t h e  
case of n = m = 0, we have 

(8.10) 

For fu r the r  ca lcu la t ions ,  t h e  r e s u l t  obtained f o r  t h e  case of n = m i s  es
p e c i a l l y  important. It w i l l  be found that t h e  coinciding harmonics of t he  aero
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dynamic load and induced ve loc i ty  are uniquely r e l a t ed  by t h e  expressions: L% 
-

A, =an =;-::1 (8.11)-- = P n-An,,=an-=, 

where 

(8.12) 


T h i s  formulation makes it expedient t o  separate  t h e  induced ve loc i ty  con+ 
ponents i n t o  two types:  p r i n c i p a l  induced ve loc i ty  components due t o  t h e  same 
harmonic of t h e  aerodynamic load as t h e  harmonic of t he  induced velocity,  and 
secondary components due t o  a l l  o ther  harmonics of t h e  aerodynamic load. 

This separat ion permits wr i t ing  eqs.(8.5) i n  t h e  form 

where t h e  p r i n c i p a l  induced ve loc i ty  components a r e  determined by eq.(8.11), 
whereas t h e  sum of a l l  secondary induced veJocity _components i s  introduced i n t o  
t h e  equation by means of t h e  new notat ions 1; and x:: 

Here, zh i s  t h e  number of harmonic induced ve loc i ty  components taken i n t o  
account i n  t h e  calculat ion.  

A t  n = 0, the  first members  of t hese  e q r e s s i o n s  should be equated t o  zero, 
and a t  n = zb t h e  same should be done wi th  t h e  second members.  I n  construct ing 
t h e  equations f o r  stress analysis, t h e  induced ve loc i t i e s  Will be represented i n  
t h e  form of eq.(8.13). 

-
6. Numerical Determination of t h e  Integrals J(Fm)ard J(Fm) 

A t  m # n, a ca l cu la t ion  of t h e  i n t e g r a l s  (8 .9 )  encounters c e r t a i n  d i f f i 
c u l t i e s .  To determine t h e  values of t hese  in t eg ra l s ,  V.E.Baskin proposed a 
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method i n  which t h e  aerodynamic load components are approximated by trigono
metric polynomials. For this, it is  necessary t o  determine the  values of P, a t  
prescribed blade radii not coinciding with those used i n  t h e  o v e r a l l  calcula
t ion .  This i s  not t oo  convenient f o r  t he  method proposed here. Therefore, we 
w i l l  use another method more suitable f o r  t h e  given case, i n  which ca lcu la t ion-
of t h e  i n t e g r a l s  J(Fm) and J@,) i s  car r ied  out appro-tely i n  t h e  same form 
i n  which t h e  i n t e g r a l s  are computed when ca lcu la t ing  t h e  blade s t r e s ses .  To 
this end, t h e  blade is  divided i n t o  ind iv idua l  segments within whose limits t h e  
aerodynamic load i s  represented i n  a form s u i t a b l e  f o r  in tegra t ion .  Here, it i s  
log ica l  t o  divide t h e  blade i n t o  the  same segments i n  a l l  cases, both when cal
culat ing t h e  s t r e s s e s  ard when calculat ing t h e  i n t e g r a l s  (8.9). We wi l l  repre
sent  t he  load P,(p) such t h a t ,  a t  each segment of in tegra t ion ,  this load w i l l  
vary i n  accordance with the  l a w  

Here, 
p = 	current values of r e l a t i v e  blade radius; a f t e r  i n t eg ra t ion  and sub

s t i t u t i o n  of t h e  limits, the  value of Will no longer be contained 
i n  formulas without an index; 

ij;, = 	same value of r e l a t i v e  radius  but with t h e  subscr ipt  k, which means 
that t h e  radius  i n  question coincides with t h e  radius  at which t h e  
r e l a t i v e  aerodynamic load P,(p,) is  calculated.  

Fig.l.31 Shape of t h e  R e l a t i v e  Aerodynamic b a d  Adopted 
f o r  t h e  Calculation of Induced Veloci t ies .  

Henceforth, as already s ta ted ,  l e t  us d i f f e r e n t i a t e  t h e  r e l a t i v e  r a d i i  Fk, 
at  which t h e  value of t h e  aerodynamic load i s  taken, from t h e  r e l a t i v e  radii Fi 
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a t  which t h e  induced ve loc i ty  is calculated.  T h i s  prevents possible  confusion. 

ht us assume t h a t  t h e  r e l a t i v e  aerodynamic load varies i n  accordance with 
t h e  l a w  (8.15) over t h e  length of each segment bounded by t h e  r e l a t i v e  radii 

I n  Fig.l.31, t h e  s o l i d  stepped l i n e  gives t h e  shape of t h e  d i s t r i b u t i o n  of 
t h e  r e l a t i v e  aerodynanric load over t h e  blade length, represented f o r  ca lcu la t ing  
t h e  induced ve loc i t i e s  from eq.(8.15) i n  t h e  case m = 0. Such a form of 'repre
senta t ion  of t h e  aerodynamic load naturally may introduce c e r t a i n  e r ro r s  i n t o  
the  values of t h e  induced ve loc i t i e s .  However, calculat ions performed t o  es
t imate t h e  magnitude of this e r r o r  demonstrated t h a t  t he  e r r o r  i s  small and is & 
unable t o  cause s u b s t a n t i a l  changes i n  t h e  ca l cu la t ion  r e s u l t s .  

On subs t i t u t ing  t h e  value of t h e  r e l a t i v e  aerodynamic load expressed i n  the  
form of eq.(8.15) i n t o  t h e  expression of t h e  integrand of eq.(8.9), then t h e  
i n t e r i o r  i n t e g r a l  on t h e  right-hand s ide  of this equation can be represented as 
some sum of d e f i n i t e  i n t eg ra l s :  

The d e f i n i t e  i n t e g r a l s  enter ing this expression can be calculated analyti
c a l l y  [see (Ref .11)1. Subs t i tu t ing  t h e  in t eg ra t ion  limits i n t o  the  obtained ex
pressions,  we can wri te :  

where 

Subst i tut ing t h e  r e su l t an t  value of t h e  i n t e r i o r  i n t e g r a l  i n t o  eqs.(8.9), 
we obta in  

O r ,  i f  we wr i te  this i n  a simpler form, 
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where 

The i n t e g r a l  (8.20) i s  a discontinuous i n t e g r a l  known as the  Weber-Schaf
h e i t l i n  in t eg ra l  (Ref.11). Its analyt ic  expression, as a function of the  rela
t i o n  between Ti and *(Fk + is;r+l), has t he  following form: 

Here, 
I? = gamma function with d i f fe ren t  arguments; 
F = mergeometr ic  function of t he  argument CY, f3, y, Z .  

These arguments, as indicated by eqs.(8.21) and (8.22), may have d i f f e ren t  
values depending upon the  r e l a t ion  between F, and +&!& + Gtl  ). For exanple, i n  
eq.(8.Z),  we have 
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ion 

When performing t h e  ca lcu la t ion  on a d i g i t a l  computer, these  funct ions are 
easy t o  program. Therefore, t h e i r  ca l cu la t ion  presents  no d i f f i c u l t i e s .  

7 A s m t i o n s  Adopted i n  AerGd>-c Force _Determinations-

In determining t h e  aerodynamic loads, t h e  assumption (8.1) i s  supplemented 
by t h e  same assumptions used i n  determining t h e  r i g i d  blade loadings (Sect.?, 
Subsect .6), with t h e  exception of t h e  a s s q t i o n  (7.34) 

1. let us assume that t h e  i n f l o w  angle t o  t h e  blade p r o f i l e  8 i s  small and 
t h a t  we thus  can assume approximtely:  

where 
Q = inflow angle; 

U, and U, = mutually perpendicular components of t h e  relative flow ve loc i ty  
i n  a plane normal t o  t h e  e l a s t i c  blade a h  (Fig.1.32); here, 
t he  ve loc i ty  U, i s  p a r a l l e l  t o  t h e  plane of r o t a t i o n  of t h e  
ro tor .  

2. let us assume that t h e  
ro  tat  Axisshaft  I.otorofPlane  of *+& magnitude of t h e  r e l a t i v e  ve-

Y l o c i t y  of c i r cu la t ion  flow U 
-1 around t h e  p r o f i l e  d i f f e r s  lit

w t l e  from t h e  magnitude of U,. 
Therefore, we can assume thatc5 u s  u,. 

Ilv . 
3. Let us assume tha t ,  i n  

/
Plane  determining t h e  loads i n  t h e  

p erp endi cu 1 ar " C ~ ~ a p p i n g
'c f lapping plane (plane going 

t o  e l a s t i c  
blade a x i s  c ' plane  	 through t h e  a x i s  of r o t a t i o n  of 

t h e  ro to r ) ,  t h e  p r o f i l e  drag 
can be neglected and it can be 

Fig.1.32 Diagram of Flow Past  a Blade, Used assumed t h a t  c, = 0. 

i n  Stress Analysis at t h e  LaJ-Speed Mode. 

4. S t ipu la t ing  that cos Q = 

= 1, l e t  us assume t h a t  t h e  /100

load i n  t h e  f lapping plane does not differ from t h e  load perpendicular t o  t h e  
i n f l o w  t o  t h e  blade p r o f i l e  (see fig.1.32). 

8. Mathematical Formulas 

When using t h e  assumptions given i n  Subsection 7, t h e  value of t h e  relative 
aerodynamic load P enter ing e ~ ~ ( 8 . 3 )can be determined from t h e  formula: 
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where 
b, = value of t h e  blade chord at t h e  radius  i n  question, r e l a t i v e  

- t o  t h e  chord at a radius F = 0.7; 
U, and t, = same r e l a t i v e  f l o w  ve loc i ty  components as i n  eq.(8.23) but 

r e l a t i v e  t o  t h e  t i p  speed of t h e  r o t o r  blades wR: 

Here, 
A = r e l a t i v e  ve loc i ty  of t h e  flow through t h e  r o t o r ;  this ve loc i ty  

is  determined from eq.(8.2); 
y = displacements of t he  e l a s t i c  blade axis in a plane perpendicular 

t o  t h e  plane of ro t a t ion  from which these  displacements are cal
cu la ted ;

B = y' = angle of s lope of t he  e l a s t i c  blade axis. 

Here the  prime denotes d i f f e r e n t i a t i o n  with respect  t o  .%heblade radius  and 
t h e  dot, with respect t o  time. 

The blade s e t t i n g  angle can be wr i t t en  i n  the  form 

9=8, -+A? -6, sin 9-6, cos 9-x$,. (8.26) 

Here , 
eo = blade s e t t i n g  angle a t  a r e l a t i v e  radius  F = 0.7 o r  at  some 

other  radius  adopted f o r  ca lcu la t ing  eo, when t h e  angle of rota
t i o n  of t h e  blade i n  t h e  flapping hinge B o  is  equal t o  zero; 

Acp = geometric blade twist; 
�I1 and e,= cycl ic  p i t c h  con t ro l  angles prescr ibed by t h e  automatic p i t c h  

control ;  
w. = f lapping compensator;

Bo = angle of ro t a t ion  of t h e  blade i n  t h e  f lapping hinge. 

Let  us represent blade deformations i n  t h e  form /101 

where 
6 ,  = 	coef f ic ien ts  of blade deformation corresponding t o  the  j - th  

harmonic of i t s  natural vibrat ions;  these  coe f f i c i en t s  are func
t i o n s  of time and therefore  a r e  a l s o  ca l led  time f ac to r s ;  

y(j) = natural blade v ibra t ion  modes i n  vacuum normed such t h a t  
yR(j) = R. 

Let us expand t h e  time f a c t o r s  6, i n  a Fourier s e r i e s  i n  harmonics* Then, 
t h e  blade deformations can be represented as 
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(8.28) 

+[ g o - x  (gncosn.;,+/znsinn9)3-g(3)+. .. 
n 

This form of nota t ion  of t h e  so lu t ion  is  a cont inuat ion of t h e  conventional 
form of nota t ion  f o r  t h e  f lapping motion of a blade (7 .bo). 

After d i f f e r e n t i a t i n g  eq.(8.28) wi th  respect  t o  rad ius  and t i m e  and sub
s t i t u t i n g  y, together  wi th  i t s  der iva t ives  and eqs.(8.2) and (8.26), i n t o  
eq.(8.25), and then  subs t i t u t ing  t h e  r e su l t an t  formulas f o r  Ex and v,, i n t o  
eq.(8.&), we f i n a l l y  obta in  t h e  expression from which a l l  harmonic components 
of t h e  r e l a t i v e  aerodynamic load P can be determined. 

These components can be represented i n  t h e  form 

-
Here, f, and Fn are c e r t a i n  funct ions determining t h e  value of this com

ponent of t h e  aerodynamic load, which does not depend on t h e  magnitude of t h e  
induced ve loc i t i e s .  

If now t h e  induced v e l o c i t i e s  h, and 7, are represented i n  t h e  form of t h e  
sum of t h e  main and secondary components and i f  t h e  main components are expressed- -
i n  terms of P, and Fn with  respect  t o  eqs.(8.l l) ,  then  t h e  values of Fn and Fn 
w i l l  appear both on t h e  lef t - and right-hand s ides  of eqs.(8.29). 

-
After determining from these  equations t h e  values of P,, and P,, we ob- /102

t a i n  t h e  following e$ressions: 

where 
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-
Below, t h e  values of g,, and 5, W i l l  be denoted as equivalent chords of t he  

blade since,  i n  t h e  calculat ion,  they p l ay  t h e  same r o l e  as t h e  a c t u a l  chords 
and, i n  eqs.(f3.30), appear a t  t h e  same place  a t  which t h e  values of Zr a r e  lo-
Gated i n  eqs . (8 . a ) .  

Thus, t h e  harmonic components of aerodynamic loads, with consideration of 
variable induced ve loc i t ies ,  should be determined by subs t i t u t ing  only secondary 
induced ve loc i ty  components i n t o  t h e  formulas and replacing t h e  real chords by 
t h e  equivalent blade chords. The values of t h e  equivalent blade chords may di f 
fer d%pending on t h e  f l i g h t  regime and on t h e  order  of t h e  harmonic of aero
dynamic load being determined. However, they  always prove t o  be smaller than  
t h e  real chords. Consequently, a l l  harmonic aerodynamic load components are 
smaller than  t h e  values they  would have i f  t h e  main induced ve loc i ty  components 
were equal t o  zero and are a l s o  smaller as many times as t h e  equivalent chords 
are smaller than  t h e  real  chords. The in t roduct ion  of equivalent chords leads 
t o  a decrease of a l l  aerodynamic load components, both exc i t ing  and damping t h e  
blade vibrat ions.  Therefore, t he re  W i l l  a l s o  be a decrease i n  t h e  values of t h e  
relative coe f f i c i en t s  of aerodynamic d a q i n g  which determines the  v ibra t ion  
amplitudes i n  resonance. T h i s  causes a decrease i n  t h e  variable blade deforma
t i o n s  far from resonance, whereas those i n  resonance remain approxjmately t h e  
same as i n  ca lcu la t ions  without considerat ion of this e f f e c t .  

E r e s s i o n s  of t h e  type of eq.(8.30), w r i t t e n  f o r  a l l  harmonic components
of t h e  aerodynamic load, are found t o  be i n t e r r e l a t e d  over t h e  induced ve loc i ty  
components. Hence, these  cons t i t u t e  a c e r t a i n  complex system of equations rela
t ive t o  unknown loads, which can be solved only i f  t h e  values of f, and T ,  are 
known. These values, however, depend on t h e  magnitude of t h e  coe f f i c i en t s  of 
blade deformation. Therefore, t o  solve this system of equations it i s  necessary 
t o  construct equations f o r  determining t h e  deformation coef f ic ien ts .  T h i s  W i l l  
be car r ied  out below. 

-
If t h e  values of Fn and f, enter ing eqs.(8.30) are described i n  d e t a i l ,  t h e  

expressions f o r  t h e  harmonic a e r o d y d c  load components can be represented i n  
t h e  form of Table 1.7. -

The e q r e s s i o n  f o r  each harmonic component of t h e  loads P, and.% occupies 
one row i n  the  table and represents  t h e  sum of t h e  products formed by t h e  coef
f i c i e n t s  entered i n  t h e  squares of t h e  table wi th  t h e  unknown f a c t o r s  simultane
ously contained i n  several expressions and entered v e r t i c a l l y  i n  a spec ia l  row & 
at the tup of t h e  table. These f ac to r s ,  as already mentioned above, are ca l l ed  
t h e  coe f f i c i en t s  of blade deformation. -The right-hand s i d e  of t h e  table contains 

a number of terms @, f,", q, and f:, not r e l a t ed  wi th  t h e  unknown coe f f i c i en t s  
of  deformation. 
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-
To determine t h e  values of p, and F,, it i s  necessary t o  multiply t h e  sum 

of t h e  products of t h e  terms of each row and t h e  unknown coef f ic ien ts  of de
formation, which sum i s  added t o  terms independent of t h e  coef f ic ien ts  of defor-
mation, by t h e  values of En and E,. These values are entered on t h e  left-hand 
s i d e  of t h e  table. 

-
The number of terms enter ing t h e  expressions f o r  F, and F, depends on t h e  

number of harmonics and overtones of t h e  natural v ibra t ions  being taken i n t o  ac
count i n  t h e  ca lcu la t ion .  In  Table 1.7, t h e  expressions are given f o r  t h e  case 
where only two overtones and four  harmonics of t he  variable forces  are taken in
t o  account i n  t h e  calculat ion.  

I n  programs used f o r  ca lcu la t ion  on d i g i t a l  computers, four  overtones of 
na tu ra l  v ibra t ions  and six t o  eight  harmonics of var iable  forces  can usual ly  be 
considered. 

9 .  Convwsiofi t o  an Equivalent Rotor 

In order t o  demonstrate t h e  p o s s i b i l i t y  of converting t o  an equivalent 
ro to r ,  t h e  following equal i ty  w a s  used i n  compiling Table 1.7: 

which i s  va l id  only when t h e  dis tance between t h e  ax is  of r o t a t i o n  and t h e  f lap
ping o r  horizontal  hinge t,,.h i s  equal t o  zero. 

If we now use t h e  known formulas f o r  t h e  coef f ic ien ts  of f lapping and angles 
of a t t ack  of an  equivalent ro to r  

a;=a,-~xb,+6,; 
bf =61 tX U ,  - 02; 

t~ana,~.=tana,,fvb, -el, 
-

t hen  t h e  expressions f o r  Fn and F, can be somewhat s implif ied by subs t i tu t ing ,  
i n  t h e  first row of t h e  table, t he  values of a? and b? f o r  a, and b,. T h i s  will 
cause t h e  coe f f i c i en t s  f ,0 t o  become equal t o  zero, and t h e  values of t h e  angles 

and e 2  w i l l  not en ter  i n t o  the  equation. I n  o ther  words, the  well-known prin
c i p l e  t h a t  blade loading does not depend on t h e  de f l ec t ion  of t he  automatic p i t c h  
con t ro l  a t  t h a h  = 0, i s  completely observed i n  t h e  expressions of Table 1.7. 

However, t h e  s impl i f ica t ions  obtained on converting t o  an  equivalent r o t o r  
are so  in s ign i f i can t  as not t o  justify t h e  assumption of t h a h  = 0. Therefore, 
we w i l l  inves t iga te  blade v ibra t ions  only i n  the  axes of t h e  sha f t  and will not 
use t h e  concept of a n  equivalent ro tor .  

-10. Basic A s s m t i o n s  Used i n  Calculation of Bending St resses  

In t h e  ca lcu la t ion  of bending s t r e s s e s  i n  a blade, we W i l l  use t h e  assump
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t i o n s  adopted i n  der iving t h e  d i f f e r e n t i a l  equation (1.9) of blade v ibra t ions  i n  
t h e  thrust plane. We w i l l  represenb t h e  blade as an  e l a s t i c  beam extended by 
cen t r i fuga l  forces  N. The parameters of this beam - i t s  l i n e a r  mass m and t h e  
flexural r i g i d i t y  E1 - will be considered as continuously d i s t r ibu ted  over t h e  
blade length. 

Furthermore, we are adopting t h e  following assumptions: /104. 
1. We Will assume t h a t  t h e  plane of minimum blade r i g i d i t y  coincides with 

t h e  f lapping plane, so t h a t  t h e  blade w i l l  bend i n  t h e  f lapping plane only under 
t h e  e f f e c t  of forces  ac t ing  i n  this plane.  

2. In determining loads i n  t h e  f lapping plane we W i l l  d isregard t o r s i o n a l  
blade deformations (see Sect .7 of Chapt .IV i n  Vol.1, on considerat ion of to r 
s i o n a l  deformation). 

3. We w i l l  assume the  conventional type of r o t o r  wi th  hinged blades and d is 
regard t h e  dis tance from t h e  ax is  of r o t a t i o n  t o  the  f lapping hinge, i.e., we 
W i l l  pose lh, , ,  # 0.  We W i l l  a l s o  neglect t h e  f r i c t i o n a l  forces  i n  t h e  blade 
hinges. 

11. Dif feren t ia l  Equation of Blade Vibrations and i t s  Solut ion-

When using these  assumptions, t he  ca lcu la t ion  of bending stresses reduces 
t o  solving a d i f f e r e n t i a l  equation whose der iva t ion  has been given i n  Sect ion 1 
of this Chapter: 

[E/y"l"-[ivy']' +my =T .  

With t h e  blade attachment i n  question here, t h e  boundary conditions can be 
wr i t t en  as 

The value of t h e  l i n e a r  aerodynamic load enter ing t h e  right-hand s i d e  of 
eq.(8.32) i s  determined from eqs.(8.3), (8.4.), and Table 1.7. 

After subs t i tu t ing ,  i n t o  this equation, t he  so lu t ion  of t h e  form of equa
t i o n  (8.28) and applying Galerkints method, we ob ta in  a system of  a lgebraic  equa
t i o n s  relative t o  the  unknown deformation coef f ic ien ts .  T h i s  system of equations
i s  represented i n  t h e  form of Table 1.8. 

Each equation of t h e  obtained system represents  t h e  sum of t h e  products 
formed by c e r t a i n  coe f f i c i en t s  entered i n  t h e  squares of t h e  table with t h e  un
known coe f f i c i en t s  of deformation simultaneously contained i n  several equations 
and entered v e r t i c a l l y  i n  a s p e c i a l  row at t h e  top  of t h e  table. The known coef
f i c i e n t s  of each equation occupy one row i n  t h e  table. The right-hand s ide  of-
' the  table, i n  a s p e c i a l  column, contains t h e  coe f f i c i en t s  Fn and Fn representing 
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t h e  right-hand s ide  of t h e  equations. 

Jus t  as i n  Tables 1.7 and 1.9 t he re  are empty squares i n  Table 1.8. T h i s  
means t h a t  t he  coef f ic ien ts  of t h e  equations f o r  which these  squares are in
tended are equal t o  zero. 

12. 	Determination of t h e  Coeff ic ients  on-the Left-Hand Side 
of %he Equations i n  Table 1.8 

To determine t h e  coe f f i c i en t s  on the  left-hand s i d e  of t h e  equations, a 
spec ia l  operator must be devised f o r  t h e  computational program. T h i s  operator 
should read out t he  values f o r  a l l  coe f f i c i en t s  of any equation of t h e  system. 
To render this operator as simple as possible ,  we w i l l  d ivide t h e  e n t i r e  t a b l e  of 
coef f ic ien ts  i n t o  a number of zones r e l a t i v e  t o  the  number of harmonics of natu
ra l  v ibra t ions  used i n  the  calculat ion.  These zones a r e  then  used f o r  combining, 
i n t o  separa te  groups, a l l  coe f f i c i en t s  t h a t  follow a s i m i l a r  pa th  of formation 
when using Galerkints method and can be roughly calculated by the  same formulas. 

The transformation of t h e  d i f f e r e n t i a l  equation (8.32) by means of Galer
kin 's  method i n t o  a system of a lgebraic  equations of Table 1.8 comprises the  fo l 
lowing operations: 

1. In to  the  d i f f e r e n t i a l  equation (8.32), w e  first s u b s t i t u t e  t he  s o l u t i o n m  
i n  the  form of eq.(8.28) containing various na tu ra l  v ib ra t ion  modes. If t h e  
modes enter ing i n t o  the  so lu t ion  (8.28) a r e  denoted by t h e  subscr ipt  J, then  a l l  
terms of t h e  equation obtained as r e s u l t  of this operat ion can be divided i n t o  
severa l  groups, each of which i s  characterized by a d e f i n i t e  subscr ipt  J. 

2. Next, a l l  terms of t h e  equations are mult ipl ied i n  t u r n  by t h e  same natu
r a l  v ib ra t ion  modes y( I )  . A s  a r e s u l t  of this operation, a system of equations 
i s  formed i n  which each ecflation differs from t h e  others  by t h e  harmonic of t h e  
natural v ibra t ion  mode y(' ty which a l l  terms of t h e  equations had been multi
p l ied .  Therefore, t h e  r e su l t an t  equations were numbered i n  accordance with t h e  
values of t h e  index I. 

3. In tegra t ion  over t h e  blade length  of a l l  funct ions obtained as a r e s u l t  
of p r i o r  operations i s  the  next s tep  i n  Galerkints  method. A s  a r e s u l t  of this 
operation, a l l  terms of t h e  equations which previously had been funct ions of t he  
blade radius  become constants.  

4.. I n  t h e  next s tep,  each equation obtained i n  this manner can be divided 
i n t o  numerous simpler equations i f  a l l  coe f f i c i en t s  of l i k e  values of cos n$ and 

s i n  n$ are equated. 

meral I W i l l  be transformed i n t o  an e n t i r e  family of equations. 

equations enter ing this family are coordinated by t h e  index i i n  Table 1.8. 


A s  a r e s u l t  of this operation, each equation wi th  t h e  nu-
The ind iv idua l  

Furthermore, each p a i r  of equations per ta in ing  t o  l i k e  harmonics i s  marked by t h e  
index n, equal  t o  t h e  order of t h e  corresponding harmonic. 

An ana lys is  of t h e  r e su l t an t  system of a lgebraic  equations shows t h a t  a l l  
l i k e  coe f f i c i en t s  of equations are arranged diagonal ly  i n  Table 1.8. T h i s  ar
rangement i s  repeated i n  a l l  zones corresponding t o  d i f f e r e n t  indexes J and I. 



It should be noted t h a t  t h e r e  are exceptions t o  this ru le ,  which becomes obvious 
from a study of Table 1.8. 

Using t h e  above indices  i, n, J, and I, it i s  poss ib le  t o  construct general  
formulas f o r  a l l  coe f f i c i en t s  enter ing i n t o  t h e  left-hand s i d e  of t h e  equations 
of Table 1.8. I n  construct ing these  formulas, we win use s p e c i a l  functions 
f l ( a )  and f,(a) which assume t h e  following values, depending upon t h e  p a r i t y  and 
magnitude of t h e i r  argument : 

1 at u even; 
0f1(4=j 

at U odd; 

f 2  (4=j 0 
1 	 at a=O; 

at u-#O.  

These formulas have t h e  form 

L=-	A p2x,cf ; (8.34)4 

where 
p$J,= angle of r o t a t i o n  i n  t h e  hor izonta l  hinge during vibrat ions with 

respect  t o  t h e  mode of t h e  j - th  harmonic of n a t u r a l  v ibra t ions  
normed i n  conformity with eq.(8.27); 

y I  = mass cha rac t e r i s t i c  of t h e  blade during v ibra t ions  with respect  t o  
t h e  i - t h  harmonic; 

I 



m:q = 	equivalent mass of blade during v ibra t ions  wi th  respect  t o  the  
mode of t h e  I- th  harmonic: 

I n  t h e  p a r t i c u l a r  case when I = 0 and when we can set T(O) = F, t h e  expression 
f o r  yo w i l l  coincide with t h e  conventional expression (7.49) f o r  t h e  mass char
a c t e r i s t i c  of a r i g i d  blade [eq.( 7.49) 1. 

pJ= frequency of natural blade v ibra t ions  wi th  respect  t o  t h e  mode of 
t h e  j- th harmonic; i n  performing t h e  calculat ions,  t h e  value of t h e  
frequency is  a t t r i b u t e d  t o  t h e  expression 

w = 	angular 'veloci ty  ( o r  r o t o r  rpm, depending on t h e  u n i t s  i n  which P J  
i s  determined); t h e  r a t i o  PJ/W should be dimensionless. 

Other quant i t ies  enter ing eqs .( 8.34) have t h e  following values : 
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Here, 
BCi) = equivalent blade chord determined by eqs.(8.31) and thus  

having d i f f e ren t  values depending on t h e  number of t h e  equa
t ion :  

TJ and = na tu ra l  v ibra t ion  modes of t h e  blade whose harmonic i s  de
termined by t h e  value of t h e  ind ices  J and I. 

The symbols of t hese  modes are marked by a vinculum. T h i s  means t h a t  they 
are normed such t h a t  FR = 1. A t  t h e  same time, t h e  values of t h e  first deriva
t ive  of these  modes, following d i f f e r e n t i a t i o n  over t h e  blade radius  B J ,  are not 
marked by a vinculum. T h i s  means t h a t  t hese  der iva t ives  are taken from t h e  vi
bra t ion  modes yJ normed such t h a t  yi = R. 

Equations (8.34) permit determining t h e  Vinculi of t h e  coe f f i c i en t s  K, L, 
M, N, R, Q, S, T, U, L, and K f o r  any zone of Table 1.8, i f  the  coordinates of 
this zone J and I and t h e  number of t h e  equation i n  t h e  zone i are prescr ibed.  
Thus, assigning i n  sequence t h e  d i f f e ren t  values of J, I, and i and making use 
of t h e  operator which includes t h e  operat ion prescr ibed by eqs.(8.34), we can 
determine a l l  coeff ic ients  of t h e  left-hand s i d e  of t h e  equations i n  Table 1.8. 

13. 	Determination of t h e  Coeff ic ients  on t h e  Right-Hand Side 
of t h e  Equation of Table 1.8 -

To determine t h e  coe f f i c i en t s  on t h e  right-hand s ide  Fn and g,, it i s  neces
sary  t o  der ive a s p e c i a l  operator f o r  t h e  computational program, i n  which these  
coef f ic ien ts  are determined by t h e  following formulas: 

For harmonics above t h e  t h i r d  (a t  n 2 3), we have /108 



- -  -
d+5:; q=&. 

I n  eqs.(8.38), t h e  new notat ions are used f o r  a series of i n t eg ra l s :  

Here, 

where 

cpp = 	constant component of blade s e t t i n g  angle, calculated from t h e  
plane of r o t a t i o n  of t h e  ro to r ;  over t h e  blade radius,  this qua
t i t y  changes only due t o  i t s  geometric twist Acp. 

The values of f i  are entered i n  t h e  extreme right-hand column of Table 1.7. 

Thus, eqs.(8.38) permit determining a l l  coe f f i c i en t s  of t h e  right-hand s ide  
of t h e  equations i f  t h e  value of I is  prescr ibed.  

a.System of Equati-ons after Subs t i tu t ion  of Eqs.(8.34) and (8.38) 

If t h e  values of t h e  coe f f i c i en t s  determined from eqs.(8.34) and (8.38) are 
subs t i tu ted  i n t o  t h e  equations of Table 1.8, then  this same system of equations 
can be represented i n  t h e  form of Table 1.9. 

For s implici ty ,  we l imi ted  ourselves here t o  t h e  case i n  which t h e  calcula
t i o n  i s  performed with an  accuracy t o  two overtones of v ibra t ions  and four  har
monics of r o t o r  rpm. However, t h e  above-derived mathematical formulas (8.34) 
and (8.38) are w r i t t e n  i n  a general  form and permit ca l cu la t ion  t o  any desired 
accuracy. 

After evaluating t h e  p r a c t i c a l  requirements, it becomes possible ,  i n  s e t t i n g  
up t h e  program, t o  limit t h e  ca l cu la t ion  t o  considerat ion of only four  overtones 
of natural v ibra t ions  alYl t o  six or eight  harmonics of t h e  r o t o r  rpm. 
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15. General Comutat ional  Scheme 

The system of a lgebraic  equations entered i n  Table 1.8, together  wi th  t h e  
system of equations presented i n  Table 1.7, represents  a complex system of equa
t i o n s  permit t ing a determination of a l l  unknown quan t i t i e s  enter ing i n t o  it. A 
determination of t hese  unknowns and pr imar i ly  of a l l  coe f f i c i en t s  of blade de
formation cons t i t u t e s  t h e  ultimate purpose of t h e  method of ca l cu la t ion  pre
sented here. 

Above (Sect .7) , i n  t h e  ca l cu la t ion  of bending stresses based on Galerkints  
method, we used various s impl i f ica t ions  i n  der iving t h e  equations presented 
here and i n  solving them. The use of d i g i t a l  computers g rea t ly  f a c i l i t a t e s  solv
ing  this system of equations without add i t iona l  assumptions; this g rea t ly  in
creases  t h e  r e l i a b i l i t y  of t h e  results. I n  any case, t h e  computational e r r o r s  
can be ascr ibed s o l e l y  t o  t h e  in i t ia l  assumptions. Performance of a l l  necessary 
mathematical operations w i l l  introduce no e r r o r s  and can be car r ied  out  at any 
prescr ibed accuracy. 

How does one solve this r a t h e r  complex system of equations? No doubt, t he  
sbiplest method here i s  t h e  method of successive approximations i n  t h e  form i n  
which it will be presented below. T h i s  method was used i n  programming and has 
been checked by numerous ca lcu la t ions .  The method converges rap id ly  and already 
three or four  approximations s u f f i c e  f o r  obtaining; t h e  necessary accuracy. 

I n  applying t h e  method of successive approximations, t he  unknown coeff i 
c i en t s  of deformation are determined i n  t h e  sequence of ascending ind ices  char
ac t e r i z ing  t h e i r  r e l a t i o n  t o  t h e  corresponding harmonic. Therefore, before pass
ing  t o  a descr ip t ion  of t he  sequence of operations i n  t h e  method of successive 
approximations, a brief review of t h e  determination of deformation coe f f i c i en t s  
i s  required.  

16. Determination of Deformation Coeff ic ients  

In determining t h e  coe f f i c i en t s  of deformation, t h e  same p r inc ip l e  i s  used 
i n  a l l  cases, involving t h e  following. The deformation coe f f i c i en t s  are deter
mined i n  p a i r s  from two equations of t h e  system of Table 1.8 per ta in ing  t o  t h e  
cosinusoidal  and s inusoida l  components of some harmonic. The equations are first 
transformed i n  t h e  f o l l k n g  manner: Determine t h e  sum of t h e  products of A$,-
and A5,, coe f f i c i en t s  i n  Table 1.8 as w e l l  as t h e  deformation coe f f i c i en t s  de
r ived before performing this operation, with t h e  exception of t h e  products con
t a in ing  t h e  coe f f i c i en t s  out l ined by a broken l i n e  i n  Table 1.8. These sums of 
t h e  products are t ransfer red  t o  t h e  right-hand s i d e  of t h e  equations. After 
this. t h e  deformation coe f f i c i en t s  per ta in ing  t o  l i k e  harmonics (of course, only 
i n  the case of n > 1)and t o  the  deformation modes are determined from two alge
b r a i c  equations of t h e  following form: 



I' 

The coe f f i c i en t s  a, and b, here have a generalized character  i n  that such 
a notat ion of t he  equatiQns is  poss ib le  a l s o  with t h e  coef f ic ien ts  c, and d,; e, 
and f,; g, and h,. 

-
The coe f f i c i en t s  G, S, R, and 3 enter ing eqs.(8.M) are determined by

eqs.(8.34) f o r  t h e  case of J = I. The value of 5. i s  even f o r  t h e  first equation 
and odd f o r  t h e  second. Consequently, t h e  coeff ic ients ,  i n  this p a r t i c u l a r  /1Lo 
case, can be w r i t t e n  i n  accordance wi th  eq~~(8.34)i n  t h e  form 

I n  this case, a t  J = I, we have 

Neglecting t h e  second term i n  t h e  first equation of t h e  system (8.41) and-- -
approximately s e t t i n g  E, = B, = b,, eqs.(8.40) can be transformed i n t o  t h e  form 
used i n  t h e  s implif ied methods of ca1cula;tion (see Sect .7) . 

I n  fact, when making these  a s s q t i o n s ,  we mult iply a l l  terms of eq.(8.40) 

P:
Let us now introduce new notat ions.  The quant i ty  ;.J, d e t e h n e d  by t h e  ex

( 8  

Will be ca l led  t h e  relative coef f ic ien t  of aerodynamic damping 

The quant i ty  v, = nw Will be ca l l ed  t h e  frequency of exc i t a t ion  of forced 
v ibra t ions .  

Then eq.(8.40) can be r ewr i t t en  i n  t h e  form used i n  Section 7: 



From these equations, the  a q l i t u d e  of t h e  coe f f i c i en t s  of deformation cor
responding t o  t h e  J-th harmonic of na tu ra l  Vibrations can be determined as 

where 
X d Y n  = coef f ic ien t  of d y d c  increase i n  amplitude; 

S',:) = 	def l ec t ion  of t h e  blade with respect  t o  t h e  mode of t h e  J-th ,hr
monic under s t a t i c  appl ica t ion  of ex te rna l  forces  : 

Thus, t h e  adopted form of determining t h e  deformation coef f ic ien ts  theo
r e t i c a l l y  coincides with t h e  form used i n  problems of mechanics when determining 
t h e  Vibration q l i t u d e  of a damped system, as described above i n  Section 7. 

It should be noted that, i n  determining t h e  coe f f i c i en t s  of deformation, /1l1
t h e  equations of t h e  system (see Table 1.8) are transformed i n t o  t h e  form of 
eq.(8.40) only a t  n > 1. In determining t h e  coe f f i c i en t s  r e l a t i v e  t o  t h e  first 
harmonic, c e r t a i n  add i t iona l  coef f ic ien ts  K, L, and U will enter  t h e  left-hand 
s ide  of eqs.(8.hO) which, however, changes nothing i n  t h e  e s s e n t i a l  aspect of t h e  
matter. 

A determination of t he  coef f ic ien ts  a,, c,, e, and go which def ine t h e  con
s t a n t  component of t h e  deformations proves t o  d i f f e r  somewhat. These coeff i 
c i en t s  can be determined f o r  one equation with t h e  number i = 0. However, so as 
not t o  d is rupt  t h e  genera l i ty  of t h e  approach, it i s  preferab le  t o  determine them 
a l s o  i n  a program of two equations with the  numbers i = 0 and i = 1whose coef
f i c i e n t s  are determined by t h e  same formulas [eqs.(8.34)1. I n  so  doing, it i s  

necessary t o  put ?? = 0. Such an approach y i e lds  a s l i g h t  s impl i f ica t ion  of 
t h e  computational program. 

17. Computational Program 

I n  programming t h e  calculat ion,  t he  following sequence of performing t h e  
necessary operations is  used: 

1. The mtural v ibra t ion  modes and frequencies of a blade i n  t h e  t h r u s t  
plane a r e  determined from a separate  program which i s  absolutely necessary i n  de
sigrdng blades and thus m u s t  be formulated. The fol-laring quant i t ies  should be 
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defined f o r  carrying out this calculat ion:  y J ,  BJ, oJ,  and m"J9 . Here, i s  
t h e  d i s t r i b u t i o n  of  bending stresses over t h e  blade radius  during i ts  v ibra t ions  
wi th  respect  t o  t h e  normed modes of t h e  J-th harmonic. 

2. The parameters character iz ing t h e  f l i g h t  regime of t h e  hel icopter  are 
prescribed: p,  p ,  w, a r o t ,rqrasl, e,, �I2=Here, a r o t  and cpreal  can be deter
mined from ca lcu la t ion  i f  t h e  required propulsive force  and thrust of t h e  r o t o r  
are prescribed. The cyc l i c  p i t c h  con t ro l  angles 8, and e 2  can be determined i f  
t h e  required moments M, and M, due t o  t h e  r o t o r  blades and ac t ing  on t h e  hub are 
determined from t h e  conditions of he l icopter  balancing. These aperations are 
usua l ly  included i n t o  t h e  programming. 

3. To arrive at t h e  so lu t ion  of t h e  system of equations entered here i n  
Tables 1.7 and 1.8, it i s  necessary t o  determine t h e  coe f f i c i en t s  yJ and N. J. 
T h i s  system of equations i s  solved by t h e  method of successive approximations

I where, i n  each approximation, a l l  unknowns are determined i n  t h e  sequence given
I i n  Table 1.10. First, t h e  coe f f i c i en t s  i n  t h e  first row  are determined, then 

those i n  t h e  second row, and so on. 

4.After determining a l l  quant i t ies  given i n  Table 1.10, t h e  parameters of 
t h e  	f l i g h t  regime y r e a l ,a r O t, e, ,  e 2  can be refined and t h e  ca lcu la t ion  of a l l  
coe f f i c i en t s  can be car r ied  out i n  the  next approz&"aion i n  t h e  same sequence. 

5. The sequenc of operations,  indicated i n  Table 1.10, i s  repeated u n t i l  
t h e  d i f fe rence  of l ike  deformation coe f f i c i en t s  i n  two successive approximations 
i s  less than  t h e  prescr ibed accuracy of ca lcu la t ing  �8. The value of � 6  can be 
taken as equal t o  1/1000 o r  somewhat smaller. 

6.  The magnitude of t h e  bending stresses i n  t h e  blade a t  each azimuth can 
be determined from t h e  formula 

where t h e  values of 6 ,  are determined from t h e  deformation coef f ic ien ts  ao, a,, 
b,, coy c,, b,, etc. ,  i n  conformity wi th  eqs.(8.27) and (8.28). 

T h i s  sequence of operations cons t i t u t e s  t h e  p r inc ip l e  of +he method of cal
cu la t ion  presented here. Performance of these  ca lcu la t ion  pe  ..dtsobtaining: 

bending stresses and form of blade deformation at eacn r o t o r  azimuth, 
wi th  simultaneous determination %f a l l  harmonic components of these  quan
t i t ies ;  
f ie ld  of axial induced v e l o c i t i e s  i n  t h e  plane of t h e  r o t o r  and a l l  har
monic components of this f ie ld;  
angle of a t t ack  arid blade s e t t i n g  angle i n  f l i g h t  regimes wi th  pre
scr ibed values of propulsive fo rce  and t h r u s t ;  
angles of de f l ec t ion  of t h e  p i t c h  con t ro l  swashplate, necessary f o r  cre
a t i n g  t h e  mamerrts M, and M, required f o r  he l icopter  balancing. 
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18. Gomarison of Calculation wi th  Eberiment  at .bJlfi-ng Speed 

A t  low f ly ing  speeds, t h e  variable stresses measured i n  t h e  blade are usu
a u  highly unstable. 

During a s ing le  f l i g h t  regime flown by one p i l o t .  t h e  v ib ra t ion  a m l i t u d e  
may f luc tua te  i n  magnitude by a f a c t o r  of 2 - 3 .  This can be a t t r i b u t e d  t o  t h e  

f a c t  that t h e  angle of a t t ack  
of t h e  r o t o r  and t h e  f l y i n g  
speed i n  these  regimes are ex
tremely d i f f i c u l t  t o  keep con
s t a n t .  The f l i g h t  mode changes 
continuously. However, t h e  
designer i s  mainly in t e re s t ed  
i n  t h e  m a x i "  variable stress 
amplitudes, s ince  these  gener
a l l y  car ry  t h e  g rea t e s t  r i s k  
wi th  respect  t o  f a t igue  i n  t h e  
s t ruc ture .  

Usually, t h e  maximum vari
able blade stresses arise i n  
f l i g h t  regimes wi th  t h e  l a rges t  
angles of a t t ack  of t h e  ro tor .  
These regimes include braking 
and s teep descent at high ver
t i c a l  speed. 

To compare t h e  results of 
ca l cu la t ion  and experiment,, 
one proceeds i n  t h e  following 
manner: Check a l l  f l i g h t  
regimes with abrupt braking of 
t h e  hel icopter  before landing, 
i n  which the  blade stresses 
were measured. From each 
f l i g h t ,  s e l e c t  t h e  maximum 
(over t h e  blade rad ius)  WE
tude of stresses set up during 
t h e  e n t i r e  landing mode. The 
f ie ld  of values of t hese  
stresses is  hatched i n  Fig.1.33. 

Then, ca lcu la te  t h e  
stresses f o r  regimes with d i f 
f e ren t  f l y ing  speeds and wi th  
a n  i d e n t i c a l  r o t o r  angle of at
tack.  The f ly ing  speed i n  t h e  
given regime wi l l  be character
ized  by p .  The r e s u l t s  of 
these  calculat ions are given 
i n  Fig.1.33. The s o l i d  l i n e s  
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show t h e  dependence of t h e  calculated ma?&" variable blade stresses on f ly ing  
speed. Here, we examined regimes wi th  a n  angle of a t t ack  CY = 0, CY = 30' which 
can be achieved i n  a regime of abrupt braking, as w e l l  as wi th  a n  angle of at
tack  a = 50' which i s  poss ib le  during s teep descerrt at high v e r t i c a l  speed. The 
dashed l i n e  shows t h e  same dependence f o r  a = 0 and a = -6', but  without con
s ide ra t ion  of t h e  variable induced ve loc i ty  field. I n  performing these  calcula-

F'ig.l.33 Results of Calculating V a r i 
able Stresses ,  with Consideration of a 
Nonuniform Induced Velocity Field and 

Comparison wi th  Ekperiment 

t h e  variable stress amplitudes obtained from 
than  those measured i n  f l i g h t  tests. 

t ions ,  we inves t iga ted  f l i g h t  re
gimes without overload when the 
t h r u s t  of t h e  r o t o r  was equal t o  
t h e  weight . 

It follows from these calcu
la t ions ,  t h a t  t h e  g rea t e s t  increase  
i n  variable stresses a t  low speeds 
i s  observed i n  f l i g h t  regimes i n  
which t h e  free vortex sheet shed 
by the  blades becomes two-dimen
s iona l .  When t h e  sheet  i s  f a r t h e r  
removed from t h e  r o t o r  plane,  t h e  
variable s t r e s s e s  decrease g rea t ly  
and approach, i n  magnitude, the  
s t r e s s e s  calculated without con
s ide ra t ion  of t h e  variable induced 
ve loc i ty  f i e l d .  

A comparison of regimes with 
i d e n t i c a l  angles of a t t ack  shows 
a marked increase i n  variable 
s t r e s ses ,  i n  a very narrow range 
of f ly ing  speeds. 

The r e s u l t s  of t h e  calcula
t i o n  r e f l e c t  t o  some degree t h e  
p a t t e r n  of t h e  phenomenon observed 
i n  f l i g h t .  Thus, as i n  f l i g h t ,  
t h e  calculated values of var iab le  
stresses increase a t  low speeds a 
and rise with an  increase  i n  r o t o r  
angle of a t tack .  However, t he re  
i s  a considerable discrepancy be
tween ca lcu la t ion  and experiment. 

1. A t  i d e n t i c a l  f l i g h t  regimes, 
ca lcu la t ion  were found t o  be lower 

2. The variable stress amplitudes obtained i n  ca lcu la t ion  and experiment 
are quant i ta t ive ly  similar when comparing regimes with d i f f e r e n t  angles of at
tack, using, i n  t h e  calculat ion,  r o t o r  angles of a t t ack  somewhat g rea t e r  t han  
those occurring i n  f l i g h t .  

3.  A comparison of f l i g h t  regimes i n  which t h e  stress magnitudes obtained 
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I l l 1  I l l  ll1111ll11111l11lIl Ill1 I1 I I I Ill1 

i n  calculat ion and experiment coincide shows a subs t an t i a l  difference i n  t h e i r  
harmonic composition. The content of high harmonics i s  greater  i n  s t r e s ses  
measured i n  f l i g h t  than i n  calculation. Thus, harmonics frorr. the  four th  t o  t h e  
s i x t h  predominate i n  s t r e s ses  measured i n  an abrupt braking regime, which a re  
shown i n  Fig.1.33. A t  t he  same time, stresses of t he  first, th i rd ,  and f i f t h  
harmonic predominate i n  var iable  stresses obtained by calculation. Here, they 

are l i s t e d  i n  the  sequence of descending am
pli tude.  A s  an exmple, Fig.1.x shows the  
d i s t r ibu t ion  of s t r e s ses  over t he  blade radius 
and t h e i r  harmonic content i n  a f l i g h t  regime 
at CY = 50' and p = 0.048. 

It should be noted that, i n  the  calcu- /1l5
l a t ion ,  we investigated a blade with charac
t e r i s t i c s  ensuring the  absence of resonance 
a t  the  operating rpm. Its resonance diagram 
is  shown i n  Fig.1.35. The operating rpm 
adopted i n  the  calculat ion i s  shown on the  
resonance diagram by a v e r t i c a l  l i ne .  

The presented data  show t h a t  appl icat ion 
of the  method of calculation, with considera
t i o n  of moderate induced ve loc i t ies  under the  
same assmptions as described i n  Subsection 3, 
approximates t h e  r e s u l t s  of calculat ion and 
experiment at low f ly ing  speeds. However, 

U fur ther  refinements a r e  necessary t o  obtain 
r e s u l t s  usefu l  f o r  p r a c t i c a l  purposes. 

0 5 
r m  19. Gomarison of Calculation with Emeriment 

at Moderate-5beed Mode 
Fig.l.34 Distr ibut ion of 

Stresses  over t h e  Blade Radius Here, by moderate f ly ing  speeds we mean 

and t h e i r  Harmonic Content at a l l  speeds a t  which the  nonlinearity i n  the  

Flight Regimes (p = 0.048 and r e l a t ion  cy = f ( a )  and the  phenomena associ-


CY = 50'). 	 ated with flow compressibil i ty s t i l l  have no 
e f f ec t .  I n  many cases, therefore,  Itmoderate 
f ly ing  speeds" comprise the  cruising speed 

of a helicopter;  this i s  especial ly  of i n t e r e s t  from the  viewpoint of fa t igue 
strength,  since the  helicopter operates most of t h e  t h e  at this speed. 

Figure 1.36 gives a comparison of t h e  amplitudes of variable s t r e s ses  and 
t h e i r  first and second harmonics r e l a t ive  t o  t h e  ro to r  rpm, obtained i n  calcula
t ions  with s t r e s ses  measured i n  the  blade at cruis ing speed f o r  p = 0.25. The 
stresses obtained i n  f l i g h t  a r e  shown by dots.  The dashed l i n e  shows s t r e s ses  
calculated with consideration of the  assumption that A = A,,, = const, and t h e  
so l id  l i nes  with consideration that h = var. 

It follows from this diagram that the  results from calculat ion and experi
ment at cruising speed d i f f e r  substant ia l ly .  The t o t a l q l i t u d e  of calculated 
s t r e s ses  amounts t o  no more than 80% of the  values measured i n  f l i g h t .  This dis-



crepancy occurs mainly as a consequence of t h e  d i f fe rence  i n  t h e  values of t h e  
second harmonic of t h e  stresses relative t o  t h e  r o t o r  rpm. The coincidence i n  
t h e  first harmonic of t h e  stresses i s  r a t h e r  good. The higher harmonics of 
stresses i n  this f l i g h t  regime are quite small and have no subs t an t i a l  effect  on 
t h e  stress amplitude. 

The results presented i n  Fig.1.36 

p CyJnrin 

are t y p i c a l  f o r  f l i g h t  regimes with p = 

5 t h  harmon i c 

4th harmonic 

3 rd  harmonic 

2nd harmonic 

f s t h arM on i c 

0 so 100 tSD hlQm 

Fig.1.35 Resonance Diagram of Blade. 

= 0.25 and are duplicated on 
almost a l l  hel icopters .  

We a lso see from Fig.1.36 
t h a t  considerat ion of variable 
induced ve loc i t ies ,  i n  this re
gime, yields no not iceable  re
finement i n  t h e  values of t h e  
var iab le  s t r e s s e s  However, 
when having t o  do only with 
one harmonic - f o r  example, the

/116 
fou r th  - it w i l l  be found t h a t  
i ts  value increases  g rea t ly  
when allowance i s  made f o r  t h e  
variable induced ve loc i ty  f i e l d .  
Therefore, such refinement i s  
highly important i f  this har
monic i s  present  and determines 
t h e  magnitude of forces  ac t ing  
on t h e  fuselage and causing it 
t o  vibrate. 

Above, we have sa id  noth
ing  on t h e  constant component 
of t h e  bending stresses. Gener
a l l y  t h e i r  magnitude, obtained 
on t h e  basis of calculat ion,  
proves t o  be so accurate  that 
it usua l ly  i s  not even measured 

i n  f l i g h t .  Calculation yields more reliable r e s u l t s  i n  this case 

20. P o s s i b i l i t i e s-of F u r t h z  Refinement of C a l c u k t i o n  Results 

As follows f r o m t h e  above, a ca l cu la t ion  of variable blade stresses s t i l l  
yields no results t h a t  could be completely sa t i s f ac to ry  t o  t h e  designer. If,  a t  
moderate f ly ing  speeds, t h e  r e s u l t s  of ca l cu la t ion  more o r  less s a t i s f a c t o r i l y  
agree wi th  experiment (although f u r t h e r  refinement of t h e  values of t h e  second 
harmonic i s  extremelv des i rab le) ,  a r a t h e r  remote coincidence is  observed at low

1 

f ly ing  speeds. 

I n  this connection, it is  highly importarrt t o  e s t a b l i s h  t h e  d i r ec t ion  i n  
which f u r t h e r  refinement of t he  results i s  sought. We can propose t h e  following 
i n  this respect .  
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I n  ca lcu la t ing  var iab le  stresses at low f l y i n g  speeds, t h e  most important 
refinements comprise: 

considerat ion of t h e  e f f e c t  of i n t r i n s i c  induced v e l o c i t i e s  (abandonment 
of t h e  Itsteady-flow hypothesisl1); 
use of t h e  vortex theory which takes  i n t o  account deformations of t h e  /117
free vortex system (abandonment of t h e  assumption that vo r t i ce s  are shed 
from a r o t o r  at a constant speed equal t o  t h e  average d isk  downwash h,,,). 
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~ig.1.36 Comparison of t h e  Values of Variable Stresses, 
Calculated under Consideration of a Variable Induced 
Velocity f ield,  with Stresses Measured i n  F l igh t .  

I n  ca lcu la t ing  var iab le  stresses at moderate f l y i n g  speeds, where the  main 
discrepancy i s  observed i n  values of t h e  second harmonic of t h e  stresses, appli
ca t ion  of t h e  vortex theory f o r  a f in i t e  number of blades and introduct ion i n t o  
t h e  ca l cu la t ion  of t h e  e f f e c t  of both e x t r i n s i c  and i n t r i n s i c  induced ve loc i t i e s  
would cons t i t u t e  a highly use fu l  refinement. 

I n  cases of a blade of low r i g i d i t y  i n  t o r s i o n  o r  of exc i t a t ion  by t h e  ex
ternal forces  of a r o t o r  vibrat ionmode coinciding wi th  the  f l u t t e r  mode a t  a 
frequency close t o  t h e  frequency of f l u t t e r ,  a considerat ion of t o r s i o n a l  blade 
deformations may yield not iceable  refinements. The method of such a ca lcu la t ion  
was presented i n  Sect ion 7, Chapter I V  of Vol.1. 
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Often, i n  ca lcu la t ing  variable stresses at c ru is ing  speed (just as a t  maxi
mum speed), a considerat ion of t h e  nonlinear r e l a t i o n s  c y  = f ( a )  and of flow com
p r e s s i b i l i t y  may lead t o  substarr t ia l  refinement, a po in t  t o  be discussed f u r t h e r  
i n  t h e  next Section. 

Sect ion 9 	 Calculation of Blad.e Bending Stresses, wi th  Consideration & 
of t h e  Nonlinear Dependencg of  Aero&namic Coeff ic ients  
o n  P r o f i l e  A n g l e  _of Attack and Mach Number 

1. Flight  Reg imes  

Consideration of t h e  nonlinear dependence of aerodynamic coef f ic ien ts  on 
t h e  p r o f i l e  angle of a t t ack  i s  necessary i n  f l i g h t  regimes i n  which these  angles 
a t t a i n  such s ign i f i can t  values t h a t  it no longer i s  poss ib l e  t o  use l i n e a r  de
pendence [eq.(8.1)1. Such regimes p e r t a i n  t o  f l i g h t s  at speeds close t o  maximum 
and t o  low-speed modes i n  which, as a consequence of high blade loading and ex
cessive nonuniformity of t h e  induced ve loc i ty  f i e l d  a t  ind iv idua l  segments of 
t h e  d isk  area, t h e  angles of a t t ack  en te r  t h e  nonlinear domain of t h e  dependence 
c y  = f ( a ) .  In a number of cases, consideration of t hese  nonl inear i t ies  i s  neces
sary a l s o  i n  other  regimes, including t h e  cruising-speed mode. 

I n  general, considerat ion of phenomena associated wi th  f l o w  compressibil i ty 
i s  necessary a t  high flying speeds f o r  hel icopters  haring ro to r s  with high blade 
t i p  speeds. 

2.  -Det-e-mnatipn of Aer-odynamic Loads 

In Section 8, we had s t ipu la t ed  that t h e  inf low angle t o  the blade p r o f i l e  @ 
i s  a small quantity;  therefore ,  t h e  a p p r o f i a t e  equation (8.23) was  used i n  de
termining this angle. Here, we s t i p u l a t e  t h a t  t h e  angle @ can vary wi th in  limits 
of 360'; therefore ,  i t s  magnitude will be calculated by means of t h e  formula 

where t h e  values of U, and U, are determined by t h e  expressions 

Equations (9.2) coincide wi th  t h e  formulas used i n  Section 8. T h i s  means 
t h a t ,  in t h e i r  der ivat ion,  it was  assumed that blade displacements are small so  
that we can put  

sin f; 
cos i: zs 1. I (9.3) 



I 

The value of t h e  angle @ determined from eq.(9.1>, when carrying out t h e  
calculat ion on a d i g i t a l  computer, i s  usually read out only i n  the  range F90° .  
T h i s  must be taken i n t o  account i n  c a h d a t i n g  t h e  angle of a t tack  by means of 
t h e  formula 

a = ( ? + @ .  
(9.4) 

Therefore, we can use e ~ ~ ( 9 . 1 )o d y  at U, > 0. If U, < 0, then, as follows 
from Fig.1.37, we have 

The i n f l o w  angle determined by eqs.(9.1) and (9.5) var ies  i n  the  range 
-90° < m < 270'. 

If we assume tha t  t h e  /119
blade s e t t i n g  can be changed from 
'p = -150 t o  cp = +45", then t h e  
aerodynamic coeff ic ients  should 
be prescribed within limits of 
t he  va r i a t ion  of t he  angle of 
a t tack  from -105' t o  +315O. 

The Mach number needed f o r  
determining t h e  aerodynamic co
e f f i c i e n t s  i s  calculated by 
means of t he  formula 

M=-. U 
a ,  

Here, as,, is  t h e  veloci ty  
of sound: 

Fig .1.37 Diagram of Flow Past a P ro f i l e  
f o r  Determining the  Inflow Angle @. 

where k i s  t h e  adiabat ic  ex
ponent and p i s  t h e  .atmospheric 

pressure.  

The aerodynamic coef f ic ien ts  required f0.r t h e  ca lcu la t ion  are determined on 
the  basis of wind-tunnel tests with t h e  p r o f i l e  exposed t o  a c i r cu la r  air stream. 
I n  computer calculations,  t h e  program campiled by engineer M.N.Tishchenko f o r  
determining t h e  aerodynamic coef f ic ien ts  i s  highly useful.  I n  this program, t h e  
e f f ec t  of t h e  Mach number M on t h e  aerodynamic coef f ic ien ts  i s  taken i n t o  ac
count only i n  t h e  range of ppof i le  angles of a t t ack  fromcr = -2" t o  cr = +15". 
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I n  t h e  remaining range of angle-of-attack var ia t ion ,  t h e  aerodynamic coeff i 
c i en t s  are considered as independent of M. 

The dependence of t h e  l i f t  coef f ic ien t  cy on t h e  angle of a t t ack  CY f o r  t he  
p r o f i l e  NACA-230, which was adopted i n  one of t he  versions of this program, i s  
shown i n  Fig.l.3�? as a t y p i c a l  example. 

m 
r . , r-,--,-.- 1 I 1 1 . 3 7 - P I 1 r . . , , I , , 

Fig.1.38 Dependence cy  = f ( a ,  M) Adopted i n  t h e  Program. 

If t h e  l i f t  coef f ic ien t  c, and t h e  drag coe f f i c i en t  c, a r e  known. then the  
aerodynamic forces  act ing i n  t h e  flapping piane T and i n  the plane o f - r o t a t i o n  Q 
can be determined from the  formulas 

1T =-
2 

(c&$ f cl.U,) Q ~ U; 

1Q =-
2 

(c1.U, -cJJ,) Q ~ U .  
(9  - 8 )I 


3 .  	Method o f  Blade Calcu.btion as a System whose Motion 
is  Cowled by Prescribed Vibration Modes 

A s  above i n  Section 8, t h e  ca lcu la t ion  of e l a s t i c  blade vibrat ions reduces 
t o  solving t h e  d i f f e r e n t i a l  equation 

[E/y"]"-[[Ny']'+mj;=T, (9.9) 

where, with t h e  adopted assumptions, t h e  aerodynamic force  T is  a nonlinear func
t i o n  of t h e  displacements of t h e  blade elements y. 

I n  this case, it is convenient i n  solving eq.(9.9) t o  use a method where 
t h e  blade motion i n  time i s  found by numerical i n t e g r a t i o n  of ordinary differen
t i a l  equations obtained from eq.(9.9) by Galerkincs method. In  this approach t o  
t h e  problem, these  equations are coupled o* over t h e  aerodynamic forces .  There
fore ,  i f  - at some arbitrary time - t h e  aerodynamic forces  can be calculated,  



t hen  t h e  blade deformations with respect  t o  each v ib ra t ion  mode are determined 
independently, provided these  modes are orthogonal. 

Let us  represent  t h e  blade v ibra t ion  mode as t h e  sum of a c e r t a i n  number of 
na tu ra l  v ib ra t ion  harmonics of t h e  blade: 

where 
j = 0, 1, 2, ..., j, ( j, being t h e  number of t he  higher overtone of 

natural blade v ibra t ions  taken i n t o  account i n  the  so lu t ion) ;
y ( J )  = mode of t h e  j - th  overtone of natural blade v ibra t ions  normed such 

t h a t  $1 = R at F = R; 
6 , =  coef f ic ien ts  determining t h e  magnitude of blade deformation with re

spect t o  the  j- th overtone. 

As above, we w i l l  designate t h e  coe f f i c i en t s  6, as t h e  coe f f i c i en t s  of /121
blade deformation. The values of 6 a r e  funct ions of time. 

The coef f ic ien ts  of blade deformation 6 , ,  i n  t he  present  method of calcula
t ion ,  a r e  taken as generalized coordinates of t he  system. Determination of t he  
l a w  of t h e i r  time-variance cons t i t u t e s  t h e  content of t h e  calculat ion.  

After twice d i f f e r e n t i a t i n g  eq.(9.10) with respect  t o  time, we obtain 

On subs t i t u t ing  e q ~ ~ ( 9 . 1 0 )and (9.11) i n t o  eq.(9.9) and successively mul t i 
plying a l l  terms of eq.(9.9) by y(') (where j = 0, 1, 2, ..., j,) and then in
tegra t ing  over t h e  blade radius ,  eq.(9.9), by v i r t u e  of t h e  orthogonality of t h e  
na tura l  v ibra t ion  modes, W i l l  decompose i n t o  j, + 1 independent equations of t he  
form 

$- CjBj =A,. (9.12) 


Here, 

Cj =JE /  [(y')"I2dr f 7N [(y')']z dr ; 
0 0 

R 
mi= m (pj)' dr; 

0 

R 
A,-=jT y(j)dr. 

0 




A s  mentioned above i n  Subsections 1and 2 of Sect ion 7, t h e  quant i t ies  en
t e r i n g  eq.(9.12) have a well-defined phys ica l  meaning. The quant i ty  C,, known 
as t h e  generalized blade r i g i d i t y  i n  deformation with respect  t o  t h e  mode of t h e  
j - th  overtone, represents  a l s o  double t h e  p o t e n t i a l  energy accumulated by t h e  
blade i n  bending i n  a cen t r i fuga l  fo rce  f ield wi th  respect  t o  t h e  mode of t h e  
same harmonic. The quantity m j  i s  t h e  equivalent blade mass reduced t o  its t i p .
It i s  equal a l s o  t o  double t h e  k i n e t i c  energy of blade v ibra t ions  wi th  respect  
t o  t h e  mode of t h e  j - th  overtone wi th  a frequency p = 1. The i n t e g r a l  A, on t h e  
right-hand s ide  of eq.(9.12) represents  t h e  generalized force  and i s  equal t o  
double t h e  work of aerodynamic fo rces  i n  displacements caused by blade deforma
t i o n s  a t  t h e  j - th  overtone. 

It i s  known that t h e  frequency of t h e  j - th  overtone of natural blade vibra
t i o n s  can be determined from t h e  formula 

Therefore, it i s  convenient t o  transform eqs.(9.12), r e l a t i n g  a l l  terms t o  
values of m , .  These can then be wr i t t en  as 

o r  

where 6 : { )  i s  the  coef f ic ien t  of quasi-s ta t ic  blade deformations vlrith respect  t o  
t h e  mode of t h e  j - th  overtone of aerodynamic forces  T (see Sect .7, Subsect .7). 

A s  follows from eqs .( 9.8) and (9.2), t h e  magnitude of t h e  aerodynamic /122
force  va r i e s  with respect  t o  t h e  blade azimuth and depends on t h e  blade deforma
t i o n s  or,  more prec ise ly ,  on t h e  values of $ and B determining t h e  magnitude of 
t h e  r e l a t i v e  flow ve loc i ty  U,. Therefore, f o r  ca lcu la t ing  t h e  aerodynamic 
forces ,  t h e  values of and p Dust be predetermined by means of 

where B ‘ j ’  i s  the  angle of r o t a t i o n  of t h e  e l a s t i c  blade axis r e l a t i v e  t o  t h e  
plane of ro ta t ion ,  corresponding t o  t h e  normed na tu ra l  v ibra t ion  mode of t h e  i - t h  
overtone. 

If t h e  coef f ic ien ts  of deformation 6 $  and t h e i r  first der iva t ives  6 ,  per
t a i n i n g  t o  some azimuthal blade p o s i t i o n  or t o  some time t are known, the  calcu
l a t i o n  can be performed i n  t h e  following sequence. 



First, determine the  values of i and B from eqs.(9.16). After this, der ive 
t h e  components of t h e  r e l a t i v e  flow ve loc i ty  U, and U, as w e l l  as t h e  ve loc i ty  U 
from e q ~ ~ ( 9 . 2 ) :  

O f  course, t o  determine t h e  ve loc i ty  U, it i s  a l s o  necessary t o  know t h e  
r e l a t i v e  d isk  flow r a t i o  X which, i n  the  general  case, i s  a var iable  changing 
with respect t o  blade radius  and azimuth. Determination of t h e  quantity X w i l l  
be taken up i n  Subsection 5 of this Section. 

If t h e  ve loc i t i e s  U, and U, a r e  known, then  t h e  i n f l o w  angle Q can be de
termined from eqs.(9.1) and (9.5), and t h e  p r o f i l e  angle of a t tack  (Y from 
eq.(9.4).

determining the  a e r o d m c  coef f ic ien ts  f o r  c i r c u l a r  blowing of the  p r o f i l e  and 


The Mach number is  deterf ined by eq.(9.6). These da ta  su f f i ce  f o r  

hence f o r  obtaining t h e  a e r o d y m d c  forces  T. 

Thus, at t h e  azimuth in question t h e  blade deformation, r a t e  of deformation, 
and t h e  aerodynamic forces  T ac t ing  on the  blade a r e  known. Consequently, gn 
t h e  basis of eq.(9.&) it becomes poss ib le  t o  der ive a l s o  the  coef f ic ien ts  6 
that determine the  accelerat ions of t h e  blade elements : 

Next, by numerical i n t eg ra t ion  of eqs.(9.&) with respect  t o  time we can 
determine the  new yalues of t h e  coe f f i c i en t s  of blade deformation 6, and t h e i r  
first der iva t ives  6, at t h e  next blade azimuth after a c e r t a i n  time A t ,  deter
mined by t h e  in t eg ra t ion  s tep .  The change from t h e  t+e t at  which the  coeffi-,. 
c i en t s  of deformation 6 5  and t h e i r  first der iva t ives  6 $  and second der iva t ives  6, 
a r e  known t o  t h e  next t h e  t + A t  can be accomplished by various conventional 
methods of numerical i n t eg ra t ion  of equations. 

As a t y p i c a l  exanple, we  a r e  giving t h e  formulas f o r  such a change, derived 
from the  Euler method: 

The cha rac t e r i s t i c s  of various methods of numerical i n t eg ra t ion  w i l l  be 
discussed i n  grea te r  d e t a i l  below. I n  pa r t i cu la r ,  it W i l l  be shown t h a t  t h e  
Euler method represented by eqs.(9.19) i s  not s u i t a b l e  f o r  ca lcu la t ing  e l a s t i c  
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blade vibrat ions.  

Numerical i n t eg ra t ion  of eqs .( 9 .a)with respect  t o  time permits determin
ing  t h e  deformation coe f f i c i en t s  and t h e i r  first der iva t ives  at a new blade azi
muth. After determining t h e  new valugs of aerodynamic forces  a t  this azimuth we 
can a l s o  der ive t h e  new coe f f i c i en t s  6,. This process can be continued u n t i l  



t h e  coe f f i c i en t s  of deformation are determined a t  a l l  blade azimuths i n  one rota
t i o n  of t h e  rotor. 

If t h e  i n i t i a l  values of t h e  coe f f i c i en t s  6, and b, are a r b i t r a r i l y  pre
scribed, an  in t eg ra t ipn  of t h e  equations over one r o t o r  revolut ion w i l l  cause 
t h e  values of 6, and 6,, obtained by i n t eg ra t ion  at t h e  same azimuth, t o  differ 
from the  values taken arbitrarily a t  the  i n i t i a l  time. However, if t h e  blade 
motion i s  stable, t h e  numerical i n t eg ra t ion  can be continued. Then, after sev
eral  revolut ions of t h e  r o t o r  t h e  motion W i l l  be es tab l i shed  and Will be re
peated i n  each subsequent revolution. T h i s  s teady motion i s  t h e  sought so lu t ion  
of eq49.9) .  

Thus, t h e  method of ca l cu la t ion  presented here i s  t h e  so lu t ion  of t h e  Cauchy 
problem, wi th  in t eg ra t ion  of t h e  equations of motion of the  blade wi th  respect  
-to t i m e  a t  given i n i t i a l  conditions.  

4. Mm@&al  F0rmu-b-s - f o r  a Blade Model y i t h  Discrete Parameters 

In  p r a c t i c a l  calculat ions,  a r o t o r  blade i s  usua l ly  conceived as a weight
less beam with attached concentrated loads s b u l a t i n g  i t s  mass. The aerodynamic 
forces  act ing on t h e  blade a l s o  can be conveniently represented as a series of 
concentrated forces .  Le t  us assume that aerodynamic forces  are applied a t  t h e  
attachment po in t s  of concentrated loads as though a separa te  f l a p  with a c e r t a i n  
area Si w e r e  attached t o  each load (see Sect.1, Subsect.9). Then, t h e  aerody
namic forces  can be determined by fo rmdas  analogous t o  eq.(9.8): 

where t h e  subscr ipt  i denotes a l l  quant i t ies  per ta in ing  t o  the  blade sec t ion  of 
number i (see Fig.l.51). The s i z e  of t h e  area of t h e  concentrated f l a p  S, i s  
determined by eq.( 1.2). 

For a r o t o r  blade which i s  not  represented as a beam with d i s t r ibu ted  para
meters but as a model with a f ini te  number of e l a s t i c a l l y  coupled concentrated 
masses, equations analogous t o  eq.(9.%) can be derived. However, t h e  quanti
t i e s  mj and A, entering t h e  equations are not defined as i n t e g r a l s  bu t  as sums 
of t h e  form 

where 
mi.= values of t h e  concentrated mass of t h e  system; 
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yiJ)  = values determining t h e  natural v ib ra t ion  mode of t h e  j - th  over
tone;  here, t h e  mode of natural v ibra t ions  should be represented 
by a series of d i s c r e t e  values of t h e  ordinates  yi determining /la
t h e  displacements of t h e  i - t h  mass of t h e  blade; 

Ti = d i s c r e t e  values of aerodynamic fo rces  determined by eq.(9.20). 

The ca l cu la t ion  of a blade model wi th  d i s c r e t e  parameters d i f f e r s  i n  no re
spect  from t h e  ca l cu la t ion  of a model wi th  parameters continuously d i s t r ibu ted  
over t h e  blade length. However, i n  d i g i t a l  computer ca lcu la t ions  it i s  much more 
convenient t o  inves t iga t e  a model wi th  d i s c r e t e  parameters. 

5. Consideration of a Variable Induced Velocity Field 

Application of t he  ca l cu la t ion  method presented above does not preclude the  
p o s s i b i l i t y  of considering a var iable .  induced ve loc i ty  field represented by t h e  
r e l a t i v e  disk flow r a t i o  A i n  eq.(9.2). For this, i n  determinations of aero
dynamic fo rces  ac t ing  on t h e  blade at  t h e  t i m e  t i n  question, t h e  in tegrodi f fe r 
e n t i a 1  equation of t h e  vortex r o t o r  theory must be solved [see eq.(5.29) i n  
Sect .5, Chapt .I1 of Vol.11 

Reduction of t h e  problem of e l a s t i c  v ibra t ions  of a blade t o  t h e  Caucb  
problem, a t  determination of blade motion beginning with some i n i t i a l  time, leads 
t o  appreciable s impl i f ica t ions  i n  solving t h e  i n t e g r o d i f f e r e n t i a l  equations of 
t he  vortex theory. 

When t h e  r o t o r  advances one s tep  wi th  respect  t o  azimuth, vor t ices  t h a t  
have t o  do only with var ia t ions  i n  c i r cu la t ion  over t h e  length  of this part icu
lar s tep  w i l l  be shed by t h e  blade. All vor t ices  shed from t h e  blade a t  p r i o r  
i n s t a n t s  of t i m e  are merely displaced i n  space but show no change i n  t h e i r  c i r 
culat ion.  Therefore, i n  solving t h e  i n t e g r o d i f f e r e n t i a l  equation per ta in ing  t o  
some d e f i n i t e  time, i t  i s  only necessary t o  f i n d  t h e  r e l a t i o n  between circula
t i o n  of t h e  bound vor t i ce s  and t h e  vor t ices  shed from t h e  blade during i ts  shift 
after t h e  last i n t e g r a t i o n  s tep .  The magnitudes of c i r c u l a t i o n  of a l l  remaining 
f r e e  vor t ices  are already known i n  this case and are determined by t h e  e n t i r e  
h i s to ry  of t he  process of motion. 

To s implify t h e  problem, we can take  at t h e  in i t ia l  time some schematic 
model of a vortex system consisting, f o r  example, only  of r o t o r  vor t ices  shed 
from the  blade t i p  wi th  constant c i r cu la t ion  over t h e  length.  It i s  assumed 
that, at the  start of calculat ion,  no free vor t i ce s  can exist s ince  t h e  average 
induced ve loc i ty  through t h e  r o t o r  is equal t o  zero. 

The method discussed here y i e lds  t h e  maxi” accuracy poss ib le  i n  the  cal
cu la t ion  of induced v e l o c i t i e s  f o r  a r o t o r  scheme wi th  a f in i t e  number of blades.  
However, use of this scheme i n  other  methods of ca lcu la t ion  of e l a s t i c  blade 
v ibra t ions  Will lead t o  ser ious  complications. 

Numerous d i f f i c u l t i e s  are encountered i n  using ca lcu la t ion  methods f o r  in
duced v e l o c i t i e s  based on a r o t o r  scheme wi th  an  in f in i te  number of blades, as 
applied t o  t h e  method of ca l cu la t ion  discussed i n  this Section. Thus, t he  method 
of successive approximations general ly  appears simplest .  However, i f  we use a 
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method i n  which t h e  induced v e l o c i t i e s  are calculated after completing t h e  cal
cu la t ion  of blade motion over each revolu t ion  of t h e  r o t o r  (when t h e  values of 
t h e  aerodynamic forces  T are known at a l l  blade azimuths and radii so that t h e  
values of t h e  c i r cu la t ion  at t h e  same poin t  can be determined) and i f  we intro
duce these  ve loc i t i e s  i n t o  t h e  ca lcu la t ion  of aerodynamic forces  during t h e  next 
revolu t ion  of t he  ro to r ,  it w i l l  be found that such a so lu t ion  process does /125
not converge Consequently, d i f f e ren t  methods bypassing these  d i f f i c u l t i e s  m u s t  
be used; as a rule, this leads t o  appreciable complications which ul t imately may 
prove t o  be unwarranted. 

6. 	Charac ter i s t ics  of Numerical I n t e m a t i o n  of D i f f e ren t i a l  
Equations of E la s t i c  Blade Vibrations 

For a successful  ca lcu la t ion  of e l a s t i c  blade v ibra t ions ,  it i s  of impor
tance t o  s e l e c t  t h e  most advantageous method of numerical integrat ion,  i.e., a 
method of high accuracy and requir ing a m i n i "  number of operations f o r  solving 
t h e  d i f f e r e n t i a l  equations of motion. Most of t h e  machine t i m e  i n  ca lcu la t ion  
is used f o r  this operation. Its major por t ion  is  spent on determining t h e  ex
ternal forces .  Therefore, t h e  computer time i s  determined mainly by t h e  number 
of times the  equation of motion must be handled. T h i s  number i s  determined by 
t h e  chosen method and in t eg ra t ion  s tep .  The smaller t h e  s tep,  t h e  longer t h e  
calculat ion.  

An analys is  shows that, when seeking a per iodic  so lu t ion  of t h e  problem of 
e l a s t i c  vibrat ions,  t he  required in t eg ra t ion  s tep  varies wi th in  very wide limits 
depending on t h e  type of numerical i n t eg ra t ion  method used. Poor r e s u l t s  are 
obtained by many conventional numerical i n t eg ra t ion  methods, such as t h e  above-
mentioned Euler method [see eqs .(9.19) 1* The well-known method of so lu t ion  by 
Taylor s e r i e s  was found t o  be j u s t  as unsui table  f o r  t h e  problem i n  question. 
T h i s  method leads t o  t h e  following formulas f o r  t he  change-over from the  time t 
t o  the  time t + A t :  

.. 
The value of 6 t + A t  = f ( & + A t ,  & , + A t )  i s  determined from a d i f f e r e n t i a l  equa

t ion .  Here, A t  i s  t h e  i n t e g r a t i o n  s tep.  

The widely known Runge-Kutta and Adam numerical i n t eg ra t ion  methods are 
more suitable f o r  t h e  given case but s t i l l  quite inconvenient. 

The best method of checking t h e  a p p l i c a b i l i t y  of a given numerical integra
t i o n  method t o  the  so lu t ion  of t h e  problem of blade v ibra t ions  i s  a numerical 
so lu t ion  of t h e  equation 

.i+-266 + ir =sin Y t ,  ( 9  *24) 
descr ibing v ibra t ions  of some mechanical model represent ing a mass attached t o  
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a spring wi th  a damper ( see  Fig.1.39). 

The r o t o r  blade can be conceived as a set of a c e r t a i n  number of such 
models, of d i f f e r e n t  na tu ra l  frequencies and d i f f e r e n t  damping coe f f i c i en t s  cor
responding t o  t h e  frequencies and damping coe f f i c i en t s  of d i f f e r e n t  harmonics of 
blade v ibra t ion .  

A t  r e l a t i v e l y  small s t eps  A t ,  t h e  use of Taylor series f o r  an  i n t e g r a t i o n  
of eq.(9.2&) leads t o  a so lu t ion  represent ing a v ibra tory  process  whose ampli
tude tends t o  some d e f i n i t e  value d i f f e r ing  from t h e  exact ana ly t i c  value by a 
quant i ty  of t h e  ca lcu la t ion  e r ro r .  With an  increase  i n  t h e  in t eg ra t ion  s tep ,  
t h e  so lu t ion  diverges at c e r t a i n  d e f i n i t e  values of A t .  If t h e  so lu t ion  does not 
diverge, t h e  g rea t e s t  e r r o r  arises i n  resonance, i.e., a t  v = 1. Therefore, /126 
we will now estimate t h e  e r r o r  with respect  t o  this most severe case. 

Fig.1.39 Effect  of Relat ive In tegra t ion  Steps 
on Accuracy of Solution. 

figure 1.39 shows t h e  change i n  v ib ra t ion  amplitude values obtained as a 
result of the  numerical so lu t ion-of  eq.(9.&) by means of Taylor series. The 
exact ana ly t i c  values of 60 and 60 were taken as t h e  i n i t i a l  values. Cases with 
r e l a t i v e  damping coe f f i c i en t s  equal t o  S = 0.1 and 2E = 0.2 and d i f f e r e n t  i r k  
t eg ra t ion  s t eps  were invest igated.  



The maximum values of 6 obtained during t h e  in t eg ra t ion  per iod wi th  the  
o rd ina l  number N w e r e  taken as t h e  v ib ra t ion  amplitude AN a t  this period and re
fer red  t o  t h e  ana ly t i c  value of amplitude 

1A=-=. 

2n 


It follows from Fig.1.39 t h a t ,  during t h e  numerical in tegra t ion ,  the  solu
t i o n  diverges f r o m t h e  exact ana ly t ic  curve. A steady vibratory process has an 
amplitude aLways g rea t e r  than  the  exact value. The l a r g e r  t he  relative integra
t i o n  s tep  AT, the  g rea t e r  w i l l  be t h e  e r ror .  Here, we W i l l  c a l l  t he  r e l a t i v e  
in t eg ra t ion  s tep  the  quantity 

- A tA T = - ,T (9.26) 

where 
A t  = i n t eg ra t ion  s tep  with respect t o  t i m e ;  

T = vibra t ion  per iod of the model. 

The magnitude of the  r e l a t i v e  damping coef f ic ien t  5 a l s o  noticeably af- /127
f e c t s  the  accuracy of the  so lu t ion .  It follows from t h e  ca lcu la t ions  t h a t ,  t o  
obtain a s a t i s f a c t o r y  accuracy, t h e  r e l a t i v e  in t eg ra t ion  s tep  should be of t h e  
order of 1/200 of t h e  o s c i l l a t i o n  period or even smaller. 

I n  a numerical i n t eg ra t ion  of equations descr ibing e l a s t i c  vibrat ions,  it 
i s  important not only t o  secure t h e  required accuracy but a l s o  t o  use an  inte
g ra t ion  s tep  i n  which the re  would be no divergent solut ion.  

The determination of the  limit s tep  of in tegra t ion ,  a t  which t h e  so lu t ion  
W i l l  s t i l l  be stable, can be accomplished i n  the following manner: 

Equations (9.23) and ( 9 . a )  can be regarded as some system of d i f fe rence  
equations. To determine t h e  s t a b i l i t y  of t h e  solut ion,  we  will discuss  a homo
geneous system of d i f fe rence  equations [without t h e  right-hand s i d e  of eq.( 9 .&)]. 

Equations (9.23) are w r i t t e n  i n  a somewhat more general  form, introducing 
some constant coef f ic ien t  n: 

At n = 0, these formulas coincide with the  Euler equations (9.19) w h i l e ,  
when n = 2,they  coincide wi th  t h e  Taylor equations (9.2’3). 

.. 
From eqe(9.&) f o r  t h e  case of s i n  v t  = 0, we der ive t h e  value of 6, ; sub

s t i t u t i n g  this i n t o  eq.(9.27), we ob ta in  the  follovxLng system of d i f fe rence  
equations : 

I 



The so lu t ion  of this system W i l l  be sought i n  t h e  form of 

Subs t i tu t ing  eq.(9 .a)i n t o  t h e  system of homogeneous d i f fe rence  equations 
From this equation,(9.28), we ob ta in  the  cha rac t e r i s t i c  equation r e l a t i v e  t o  CY. 

we f ind  CY: 

To keep t h e  values of 6, from approaching i n f i n i t y  as n -, the  condition 

la l<1  

i s  necessary. 

A t  r e l a t i v e l y  small A t  and E, t he  value of CY - as follows from eq.(9.30) -
i s  a complex quantity.  

After determining t h e  modulus CY,we obta in  the  condi t ion of a nondivergent 
so iu t ion: 

o r  

Hence, /Lzs 
22A t < - - - .

1-7. (9.33) 

If t h e  in t eg ra t ion  s tep  i s  r e l a t ed  t o  t h e  o s c i l l a t i o n  period of the  system T 
equal t o  217 i n  t h e  examined s implif ied model, we ob ta in  t h e  'condition of a nor+ 
divergent so lu t ion  

I-

A T < - - .  n ( 9  034.1 


x ( l  - - A )  



Then, f o r  t h e  Euler method a t  w. = 0, we f i n d  t h a t  t h e  so lu t ion  i s  poss ib le  
at 

-
rz
ZS-,
n ( 9  035) 

and, f o r  t h e  Taylor method a t  x = 9, 
- 2;AT<-- .  (9.36)x 

Thus, i n  order t o  avoid a divergent solut ion,  a step smaller by a f a c t o r  
of 2 i s  needed i n  t h e  f i l e r  method than  i n  the  Taylor method. Both methods give 
a divergent so lu t ion  no matter how small t h e  in t eg ra t ion  step,  provided t h a t  t h e  
r e l a t i v e  damping coef f ic ien t  n i s  equal  t o  zero. 

With an increase  i n  fi and A t ,  t he  value of CY becomes a r e a l  number. In  
this case, t h e  value of CY can never be g rea t e r  t han  uni ty  but may be a negative 
quantity g rea t e r  than  uni ty  i n  absolute  Value. 

The condition t h a t  a < 1is  observed i f  

(9.37) 

Hence, i n s t a b i l i t y  of t he  so lu t ion  f o r  t h e  Euler method a t  n = 0 will occur 

a t  AT> -F i - J G T  
i f  and only i f  5 > 1, whereas f o r  t h e  Taylor method ( n  = &) 

* - 1this happens at AT _. However, t hese  conditions are usual ly  covered by t h e  
2rr n 

more rigorous condition (9.36).  

If these  r e s u l t s  are t r ans fe r r ed  t o  a system representing a r o t o r  blade, 
then  t h e  magnitude of t h e  r e l a t i v e  s tep  must be se lec ted  on t h e  basis of t he  
period of t he  highest  harmonic of v ibra t ions  possible  i n  the  system, s ince  this 
w i l l  r e s u l t  i n  t he  smallest  value of t h e  required s tep  a t  which numerical in te 
g ra t ion  i s  possible .  

Figure 1.40 shows t h e  t y p i c a l  character  of va r i a t ion  i n  the  natural vibra
t i o n  period of a blade Tq and i n  t h e  r e l a t i v e  coe f f i c i en t  of aerodynamic damp
i n g  Ti with respect  t o  t h e  number of t h e  harmonic of t h e  vibratior,  j .  The value 
of t h e  v ib ra t ion  period i s  calculated i n  degrees wi th  respect  t o  the  blade radi
us. The same diagram shows t h e  dependence of +&on the  number of t h e  harmonic; 
p j  i s  the  frequency of t h e  j- th overtone of natural blade vibrat ions calculated 
i n  o s c i l l a t i o n s  p e r  minute. I n  t h e  range of lower harmonics, t he  quant i ty  pj 
changes g rea t ly  wi th  any v a r i a t i o n  i n  r o t o r  r p m  frm n = 0 t o  t h e  operating rpm 
n = nop 

If we l i m i t  ourselves i n  t h e  ca lcu la t ion  t o  a considerat ion of only t h e  
first four  harmonics of natural vibrat ion,  including t h e  fundamental, which 
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usual ly  i s  s u f f i c i e n t  f o r  obtaining t h e  accuracy required i n  prac t ice ,  then  t h e  
in t eg ra t ion  s tep  must be se lec ted  on t h e  basis of t h e  per iod and coe f f i c i en t  of 
relative damping of t h e  highest harmonic of natural vibrat ion,  t he  t h i r d  f o r  & 
this system. 

If we assume t h a t  t h e  v ib ra t ion  oer iod  wi th  r e m e c t  t o  t h e  t h i r d  harmonic 
cannot be shor t e r  than 45' 

1% 

201. 

150 

100 

50 

0 1 2 3 4 5 6  10 20 30 j 

Fig.l.40 Dependence of Vibration Period 
T$ of t h e  Relative Coefficient of 
Aerodynamic Damping Ti on t h e  Number of 
t h e  Natural Vibrat ion Overtone j. 

with  re
spect  t o  t h e  r o t o r  azimuth and 
t h a t  t h e  r e l a t i v e  coe f f i c i en t  of 
aerodynamic damping w i l l  not be 
lower than  n = 0.07, then - t o  ob
t a i n  a nondivergent so lu t ion  - t h e  
i n t e g r a t i o n  s tep  i n  conformity with 
eq.(9.36) should be less than 2' 
and i n  conformity with eq.(9.35) 
less than  1' with  respect  t o  azi
muth. The s tep  would have t o  be 
shortened much fu r the r  t o  obta in  
s a t i s f a c t o r y  accuracy (fig.1.39). 

T h i s  example shows t h a t  an  ap
p l i c a t i o n  of t h e  above in t eg ra t ion  
methods t o  blade ca lcu la t ions  gives 
unsa t i s fac tory  r e s u l t s .  For this 
p a r t i c u l a r  exanple, t h e  Runge-Kutta 
and Adams methods permit using an 
i n t e g r a t i o n  s tep  of t h e  order of 
3', but they are not t oo  suitable 
s ince  they  require s torage of an 
excessive number of var iables ,  cal
culated f o r  t h e  preceding i n s t a n t s  
of t i m e ,  i n  t he  computer-memory. 

Good r e s u l t s  are obtained by 
a previously mentioned in t eg ra t ion  
method (Chapt .IT,Sect .7 i n  Vol.1) 
wi th  expansion of t h e  so lu t ion  i n  

a Taylor series and with reca lcu la t ion  of each i n t e g r a t i o n  s tep.  T h i s  method i s  
completely suitable i n  appl ica t ions  t o  t h e  problem i n  question and i s  being used 
at present  i n  numerous computer programs. 

The change-over f r o m t h e  time t t o  t h e  t i m e  t + A t  i s  accomplished by this 
numerical i n t eg ra t ion  method, i n  t h e  following sequence: 

First rough calculat ion:  /130 
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Fig.l .41 Dependence of t h e  Variable 6 
and i t s  First and Second Derivatives 

with Respect t o  Time. 

Fig.l.42 Results of Numerical Solut ion of 
Eq.(9.26) as a Function of t h e  Relative 

In tegra t ion  Step. 

6 t+At  = f(6t+At 9 & : + A t )  5sHere, *.I I 

determined from a.. d i f f  e r e n t i a l  

equation. Then, 6,, i s  obtained 

from t h e  formula 


Here, gi: A t  = f (6:; A t  , i:t at )

i s  determined frm a differen 

t i a l  equation. 


The Values Of 6 t + A t ,  6 t + A t ,n '11 

and 'di1+At are considered f inal  
f o r  t h e  t i m e  t + A t .  

The change of var iab le  6 
and i t s  first and second deriva
t ives wi th  respect  t o  time, de
termined i n  conformity wi th  
eqs.(9.38), i s  shown i n  Fig.l.41. 

Figure 1.42 gives the  
steady so lu t ion  of eq.( 9 .a)o b  
ta ined  as a result of numerical 
i n t e g r a t i o n  by this method. The 
so lu t ion  i s  given f o r  d i f f e ren t  
values of t h e  in t eg ra t ion  s tep.  
The heavy l i n e  shows t h e  exact 
ana ly t i c  solut ion.  

A t  a relative s tep  of 1/72
and less, a numerical integra
t i o n  y i e lds  a so lu t ion  almost ex
a c t l y  coinciding wi th  t h e  analy
t i c  so lu t ion .  A t  a l a r g e r  rela
t ive s tep,  a subs t an t i a l  dif
ference occurs between t h e  exact 
and numerical solut ion,  which i s  
apparent from F'ig.l.42. 

A t  a relative s tep  of 
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t h e  so lu t ion  diverges 

To preclude t h e  p o s s i b i l i t y  of divergent so lu t ions  i n  t h e  system, t h e  in
t e g r a t i o n  s t ep  should not be g rea t e r  than  about 1/3 of the  per iod of t h e  highest  
v ib ra t ion  harmonic of t he  system, which has t h e  smallest per iod.  An important 
advantage of this method lies i n  t h e  f a c t  that t h e  l i m i t  i n t eg ra t ion  s t ep  i s  
p r a c t i c a l l y  independent of t h e  magnitude of t h e  relative d a q i n g  coe f f i c i en t .  

A comparison of t h e  limit s t eps  A $ l i p ,  f o r  t h e  examined in t eg ra t ion  methods 
as a func t ion  of t h e  number of t h e  higher harmonic j, of na tu ra l  v ibra t ion  of 
t h e  system i s  shown i n  F’ig.l.43 f o r  a blade wi th  t h e  parameters shown i n  t h e  
diagram of Fig.l.40. 

If we r e s t r i c t  ourselves t o  a considerat ion of only t h e  first four  har
monics of natural vibrat ion,  t hen  i n  conformity wi th  eq.(9.39) it s u f f i c e s  t o  
have an i n t e g r a t i o n  s tep  of about 15’ with  respect  t o  the  blade azimuth, i.e., 
by a f a c t o r  of about 7 grea te r  than i n  t h e  same method without recalculat ion,  i n  
order  t o  obta in  a nondivergent solut ion.  

The r e s u l t s  of solving eq.(9.24) permi.t an  approdmate determination of t h e  
e r r o r  i n  t h e  anpl i tude values corresponding t o  d i f f e ren t  harmonics of blade Vi
bra t ion  as a func t ion  of t h e  in t eg ra t ion  s tep  used. By error, we mean here t h e  
difference between t h e  exact ana ly t i c  value of t h e  v ib ra t ion  amplitude and t h e  
value obtained as a r e s u l t  of numerical in tegra t ion .  T h i s  d i f fe rence  i s  always 
p o s i t i v e  i n  in t eg ra t ions  by means of a Taylor series wi th  recursive calcula
t ion .  T h i s  means t h a t  t h e  numerical so lu t ion  always leads t o  underestimating 

/132 
t h e  v ibra t ion  amplitude. 

The ca l cu la t ion  e r rors ,  i n  percentage of t h e  exact values of t h e  amplitude 
f o r  d i f f e r e n t  blade v ibra t ion  harmonics with ordinary parameters as a func t ion  
of t h e  s tep  used i n  an  in t eg ra t ion  by Taylor series wi th  r eca l cu la t ion  are given 
i n  Table 1.11. 

TABLE 1.11 

I Calculat ion Errors i n  Percentaae of  Exact Value 
Number

of Overtone 
of Ar l i t u d e  for Integrat ion Step i n  Degrees 

10 20 

Fundamental <o. 1?O <0.1~; <0.106 0.39; 5% 25% 
1st <O.l?;, <0.1?; 0.4% 6% 12% 50?& 

2nd < O . l ? O  0.396 5% 25% 4596 80 % 
3rd <o.l?; 0.496 15% 30% 7596 
5 th 
10 th 

<O.l?O 
1 36 

296 20% 
30?6 1 90% 

70% 

20 th 403; 
30 th 90z 
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The presented da ta  show t h a t  
t h e  magnitude of t h e  required in
t eg ra t ion  s t ep  and hence t h e  cal
cu la t ion  time are determined 
mainly by t h e  parameters of t h e  
system representing t h e  r o t o r  
blade. The more degrees of free
dom t h e  system has and t h e  more 
natural v ib ra t ion  harmonics it /133 
possesses, t h e  smaller W i l l  be 
t h e  v ib ra t ion  period of t h e  high
est harmonic and t h e  smaller 
should be t h e  in t eg ra t ion  s tep.  
Therefore, t h e  ca lcu la t ion  time 
i s  subs t an t i a l ly  shortened i f  t h e  
number of degrees of freedom of 
the  system i s  reduced. All these

1 considerations are espec ia l ly  im
70 

- .. por tan t  when using d i r e c t  calcu-
Number of o v e r t o n e  l a t i o n  methods which do not em

ploy l imi t a t ions  imposed upon t h e  
Fig.l.43 Comparison of U t  Steps f o r  modes of blade vibrat ion.  These 
Two Numerical In tegra t ion  Methods. methods W i l l  be examined i n  Sec-

U t  step  i n  in t eg ra t ion  with ex- t i o n  10 of this Chapter. 
pansion of t h e  so lu t ion  i n  a 
Taylor series ; 
l i m i t  s tep  i n  in t eg ra t ion  wi th  re- 7. Numerical In tepra t ion  Method 
ca lcu la t ion  by eqs .( 9.38). Proposed by L.N.Grodko and 

0.P .Bakhov 

In t h e  numerical i n t eg ra t ion  of d i f f e r e n t i a l  equations of e l a s t i c  vibra
t i o n s  of a blade by t h e  method proposed by L.N.Grodko and O.P.Bakhov, t h e  value 
of t h e  coef f ic ien t  u i n  eqs.(9.27) i s  taken as equal  t o  unity.  

The s t a b i l i t y  condition (9.31) i s  s implif ied and takes  t h e  form 

Consequently, a t  u = 1there  cannot be a divergent so lu t ion  with a complex 
value of cy. From t h e  s t i p u l a t i o n  that cy i s  a complex number, t he  condi t ion 
(9.40) i s  va l id  only f o r  values A t  5 2 - S .  

From t h e  condi t ion (9.37) it follows that t h e  so lu t ion  cannot be divergent 
as long as 

Hence, a t  N. = 1, it follows that 
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A s  i n  a n  in t eg ra t ion  by a Taylor series wi th  double recalculat ion,  this 
method does not give a divergent so lu t ion  at 5 = 0 and has approximately t h e  same 
value of t h e  l i m i t  s tep .  

Its accuracy wi th  respect  t o  t h e  so lu t ion  of problems of e l a s t i c  v ibra t ions  
i s  no worse than  that f o r  t h e  preceding method. The volume of computational 
operations i s  cu t  almost i n  half. Therefore, this method of numerical integra
t i o n  can be recommended f o r  p r a c t i c a l  use. 

8. 	Sequence of Operations i n  Recalculation and- PrnactiEca.Bvalua&ion 
of Different In tegra t ion  Steps 

A s  a whole, t h e  ca lcu la t ion  of e l a s t i c  blade vibrat ions i s  car r ied  out i n  
t h e  following sequence: 

1. Assign a r b i t r a r y  i n i t i a l  values of 6, and i3 a t  t h e  azimuth J I  = 0. 

2. From eq.(9.20), determine t h e  magnitude of t h e  aerodynamic forces  Ti , 
f o r  whose determination t h e  fonowing parameters should first be calculated: $i, 
Pi, U X I ,  Uyi, 41, ai, Mi, cyi,  and CXI .. 

3. From eq.(9.18), determine t h e  values of 6, . The values of m j  and p: 
enter ing this equation are calculated beforehand after determining t h e  natural 
v ib ra t ion  modes of t h e  blade and remain constant during t h e  calculat ion.  

4. The change-over t o  t h e  next azimuth i s  accomplished i n  conformity wi th  /EL,
t h e  se lec ted  numerical i n t eg ra t ion  method, f o r  e x q l e ,  by means of eqs *(  9.38). 

11 'EThe values of 6 t+At ,  S t + A t ,  ami a:+,, f o r  t h e  t+e t + A t  are considered 
final. For changing t o  t h e  nexb azimuth, t h e  entire cycle i s  repeated. 

w 



T h i s  i n t eg ra t ion  method can be recommended as fairly exact and has been 
quite f u l l y  checked i n  p rac t i ce  i n  ca lcu la t ions  of e l a s t i c  blade vibrat ions.  

The numerical i n t eg ra t ion  is  car r ied  out over several ro t a t ions  of t h e  
ro tor ,  u n t i l  a l l  values of 6, i n  two successive revolut ions d i f f e r  by less than  
t h e  prescr ibed accuracy of t h e  calculat ion.  Calculations show t h a t  any pre
scr ibed accuracy can be achieved i n  this manner. 

I n  prac t ice ,  however, it is  assumed t h a t  t h e  ca l cu la t ion  is  completed as 
soon as t h e  accuracy of determining t h e  deformation coef f ic ien ts  becomes equal  
t o  R/lOOO ( R  being t h e  r o t o r  radius) .  If necessary, a g rea t e r  accuracy can be 
prescribed. 

The magnitudes of bending stresses a t  each azimuth can be determined by t h e  
formula 
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where O J  i s  the  normed value of bending s t r e s ses ,  i.e., stresses during blade 
bending with respect  t o  t h e  normed na tu ra l  v ibra t ion  mode of t h e  j- th overtone. 

The period of t h e  process of t r a n s i t i o n  t o  steady motion la rge ly  depends on 
the  assigned i n i t i a l  values of t h e  deformation coef f ic ien ts .  A t  properly posed
in i t i a l  values of 6, and 6 , ,  t h e  ca lcu la t ion  i s  completed after checking two 
revolut ions of t h e  ro tor .  A t  poorly determined i n i t i a l  values of 6 , ,  t h e  calcu
l a t i o n  may drag out t o  8 - 10 revolut ions.  

The p o s s i b i l i t y  of r e f in ing  t h e  f l i g h t  r e g i m e  parameters Bo, arot,p, and 
A,,, a f ter  checking each revolu t ion  should a l s o  be included i n  the  ca l cu la t ion  
program. The indicated parameters are ref ined such that t h e  r o t o r  produces t h e  
magnitude of t h r u s t  and propulsive force  prescribed i n  t h e  i n i t i a l  data.  Thus, 
it i s  l o g i c a l  that t h e  ca lcu la t ion  time i s  determined a l s o  by t h e  correctness of 
prescr ib ing  t h e  parameters of t h e  f l i g h t  r e g b e .  

To r e f ine  t h e  f l i g h t  regime parameters and a l s o  t o  solve other  problems, /135
various i n t e g r a l  r o t o r  cha rac t e r i s t i c s  such as t h r u s t  T r o t ,  longi tudinal  fo rce  H, 
t c rque  M,, e t c .  should be determined during t h e  ca lcu la t ion .  

On t h e  basis of p r a c t i c a l  requirements, blade v ibra t ions  can be represented 
s u f f i c i e n t l y  completely by fou r  natural v ibra t ion  harmonics. I n  this case, even 
considering Table 1.ll which shows that t h e  l a rges t  e r r o r s  arise i n  resonance, 
s a t i s f a c t o r y  accuracy can be obtained a t  a n  in t eg ra t ion  s t ep  A$ = 2.5'. 

However, f o r  a l l  p r a c t i c a l  purposes i n  t h e  absence of well-defined reso
nance o r  i n  t h e  presence of damping forces  i n  t h e  system s u f f i c i e n t  t o  produce 
a damping coef f ic ien t  g r e a t e r  than 5 = 0.1, the accuracy of t he  ca lcu la t ion  
used i n  compiling Table 1.11is not e n t i r e l y  l o s t ,  even a t  a s tep  A$ = 5' or, a t  
t i m e s ,  even a t  a s t ep  AJI = ID'. his f a c t  i s  of grea t  importance i n  saving time 
when using d i g i t a l  computers of moderate speed. Thus, wi th  t h e  Wtrela" compu
ter ,  only 6 min are required t o  determine t h e  motion of t h e  blade over one rem
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l u t i o n  of t h e  ro tor ,  a t  an  in t eg ra t ion  s tep  of 10'. On decreasing t h e  step,  t h e  
machine t i m e  increases  great ly ,  r i s i n g  'so much a t  a s t ep  of 2.5' t h a t  perform
ance of t h e  ca l cu la t ion  on this computer becomes d i f f i c u l t .  

t i ons  lo se  t h e i r  meaning when t h e  ca lcu la t ion  i s  performed on t h e  high-speed 


These considera-

M-x) computer. 

Comparison of Deformation Coeff ic ients  ObtainedFig .I..!+,!+ 
by Solving t h e  Equations with Galerkin's Method and 

awith Numerical In tegra t ion  f o r  cy = c y  CY and p = 0.3. 

A s  an  example, Fig.l..!+,!+ shows the  values of t h e  deformation coef f ic ien t  cal
culated f o r  a hel icopter  i n  a f l i g h t  regime wi th  a speed corresponding t o  p = 
= 0.3. For t h e  hel icopter  under study, this regime i s  f a r  from f l o w  separat ion;  
therefore ,  t h e  ca lcu la t ion  i s  performed i n  a l i n e a r  setup with t h e  assumptions 
described i n  Subsection 3 of Section 8 .  With these  assumptions, the ca lcu la t ion  
w a s  car r ied  out a t  in t eg ra t ion  s teps  of 2.5', 5', and 10'. To a l l  i n t e n t s  and 
purposes, t h e  r e s u l t s  of these  calculat ions,  shown i n  Fig.l.44 by a so l id  l i ne ,  
coincide f u l l y .  On t h e  basis of these data,  it can be concluded tha t ,  i n  f l i g h t  
regimes s u f f i c i e n t l y  remote from flow separa t ion  when t h e  l i n e a r  approach t o  the  
so lu t ion  of t h e  problem i s  used and low v ib ra t ion  harmonics p r e v a i l  i n  t he  solu
t ion,  a t  appreciable forces  of aerodynamic damping ac t ing  on t h e  blade, t h e  cal-



cu la t ion  can be performed wi th  an  in t eg ra t ion  s tep  A$ = 10' without s u b s t a n t i a l  
loss of accuracy. 

The p i c t u r e  changes f o r  regimes i n  which onsek of flow separat ion occws.  
Such flow separat ion leads t o  an increase  i n  v ibra t ions  r e l a t i v e  t o  higher har
monics and t o  a sharp decrease i n  t h e  coe f f i c i en t s  of aerodynamic damping. A s  

'? 70 
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Fig.l.45 Deformation Coeff ic ients  
a t  Inc ip ien t  Flaw Separation, for 

Lh = 0.4. 

a consequence, t h e  in t eg ra t ion  s tep  must 
be shortened. 

Figure 1.45 gives  t h e  computa
t i o n a l  da ta  f o r  t h e  damping coe f f i c i en t s  
using t h e  s teps  A$ = 5' and A$ = 10' 
f o r  t h e  same r o t o r  as above but i n  a 
regime a t  p = 0.4 with  inc ip i en t  flow 
separat ion.  The ca lcu la t ion  w a s  car
r i e d  out with considerat ion of t h e  non
l i n e a r  dependence of the  aerodynamic 
coe f f i c i en t s  on t h e  p r o f i l e  angle of 
a t t ack  CY and on t h e  Mach number M. Flow 
separat ion leads t o  a pronounced in
crease i n  the  v ibra t ion  amplitude with 
respect  t o  the  modes of higher har
monics which, as i s  known, even without 
separat ion have lower aerodynamic damp
ing  coef f ic ien ts .  Therefore, a de
crease i n  aerodynamic damping a t  f low 
separat ion pr imar i ly  a f f e c t s  t h e  vibra
t i o n  amplitudes wi th  respect t o  these  
modes. Due t o  this, ca lcu la t ion  with 
the  s tep  A$ = 10' introduces substan
t i a l  e r ro r s  i n t o  t h e  ca lcu la t ion  of t h e  
deformation coe f f i c i en t s  6, and 6,. 
I n  Fig.l.45 this i s  i l l u s t r a t e d  on hand 
of a comparison of t h e  calculat ion,  a t  
A$ = 5'. Therefore, t o  reduce t h e  er
ror i n  ca lcu la t ing  deformations i n  re
gimes with inc ip i en t  flow separat ion 
the  in t eg ra t ion  s tep  must be reduced t o  
values of t h e  order of A$ = (2.5-5)'. 

9 .  	Comparison of Results by Numerical 
In tenra t ion  Methods with C a l c u l a  
t i o n  of Harmonics 

A method of stress ca l cu la t ion  wi th  respect  t o  harmonics was presented 
above i n  a l i n e a r  arrangement, using t h e  assumptions set f o r t h  i n  Subsection 3 
of Section 8. 'Such a method W i l l  be successful  for f l i g h t  regimes s u f f i c i e n t l y  
remote from flow s ara t ion .  It has a number of advantages, t h e  first being t h e  
r e l a t i v e l y  shor t  caTcula t ion  t i m e .  

I n  Fig.1.44. t h e  deformation coe f f i c i en t s  calculated by t h e  harmonic method 
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Fig.1.46 M a x i m u m  Amplitude of Variable 
St resses  over t h e  Blade, as a Function 

of Flying Speed. 

presented i n  Sect ion El a r e  shown by 
a broken l i ne ,  f o r  comparison i n  
t h e  same f l i g h t  regimes at IJ. = 0.3 
wi th  a l i n e a r  dependence cy = c: a. 
A study of t h e  ca lcu la t ion  methods 
shows s a t i s f a c t o r y  agreement of the  
r e s u l t s .  The s l i g h t  d i f fe rence  can 
be a t t r i b u t e d  t o  some d i f fe rence  i n  
t h e  i n i t i a l  parameters of t he  f l i g h t  
regime. 

10. Some Calculation Results 

We w i l l  here present  ind iv idua l  
r e s u l t s  t h a t  character ize  the  new 
p o s s i b i l i t i e s  f o r  t heo re t i ca l  in
ves t iga t ions  offered by t h e  method 
of numerical i n t eg ra t ion  with con- /137
s ide ra t ion  of a nonlinear dependence 
of t h e  aerodynamic coef f ic ien ts  on 
the  angle of a t t ack  cy and t h e  Mach 
number M, i n  comparison with l inear 
methods of calculat ion.  

One of t h e  major advantages of numerical i n t eg ra t ion  i s  the  p o s s i b i l i t y  of 
making stress analyses under conditions c lose  t o  flow separat ion regimes. 

Calculation shows t h a t ,  on approach t o  flow separation, t he  aerodynamic 
damping of blade v ibra t ions  decreases s teeply  and t h e  amplitude of v ibra t ions  
having harmonics i n  resonance o r  close t o  resonance wi th  t h e  natural blade Vi
bra t ions  increases .  A study of t h e  deformation coe f f i c i en t s  p lo t ted  i n  Fig.1.45 
ind ica t e s  t h a t  v ibra t ions  a t  t h e  f irst  overtone occur mainly with the  second har
monic, those a t  t h e  second overtone with t h e  fourth,  and those a t  the  t h i r d  over
tone with the  s i x t h  harmonic t o  the  r o t o r  rpm, i.e., only with frequencies c lose  
t o  t h e  na tu ra l  v ib ra t ion  frequencies of t h e  blade i n  question. An espec ia l ly  
p.ronounced increase i n  v ib ra t ion  amplitude takes  p lace  wi th  respect  t o  modes of 
t h e  r e l a t i v e l y  higher v ib ra t ion  overtones, as demonstrated i n  Fig.l.45 on t h e  
example of t h e  coe f f i c i en t s  6, and 6,. 

The onset of f low separat ion i s  characterized by a marked increase i n  t h e  
amplitude of t h e  var iab le  blade stresses. Figure 1.46 shows the  values of maxi
mum amplitude of variable stresses over t h e  blade radius  as a funct ion of fly- /139 
i n g  speed, calculated wi th  considerat ion of t h e  l i n e a r  and nonlinear dependence 
c y  = f(a, M) .  A marked increase i n  stresses i s  a highly use fu l  c r i t e r i o n  f o r  
determining t h e  onset of separat ion i n  ca lcu la t ing  t h e  aerodynamic character is
t i c s  of a ro tor .  

The harmonic content of t h e  variable stresses set up during flow separa
t i o n  and t h e i r  d i s t r i b u t i o n  over t h e  blade radius  are shown i n  Figs.l.47 and 
1.&8. 



Fig.1.47 Dis t r ibu t ion  of Variable Fig.l.48 Dis t r ibu t ion  of Amplitude 
S t r e s s  Amplitudes and t h e  Two first of t h e  Third, Fourth, f i f t h ,  and 
Harmonic Stress Components over t h e  S ix th  Harmonic Components of S t resses  

Blade Radius a t  LL = 0.4. over t h e  Blade Radius a t  LI, = 0.4. 

It should be noted that a s u b s t a n t i a l  difference is  a l s o  observed i n  t h e  
r e s u l t s  of l i n e a r  and nonlinear ca lcu la t ions  i n  regimes s u f f i c i e n t l y  remote from 
flow separation. 

Figure 1.49 gives  t h e  d e f o r m t i o n  coe f f i c i en t s  calculated f o r  t h e  same 
he l icopter  a t  p = 0.3, with  a l i n e a r  and nonlinear dependence cy  = f(a, M ) ;  
Fig.l.50 shows t h e  corresponding harmonic colqponents of stresses and t h e i r  ampli
tude o A  constructed over t h e  blade radius .  As ind ica ted  by this diagram, t h e  
r e s u l t s  d i f f e r  substant ia l&.  

Thus, a h e a d y  t h e  few da ta  presented here show t h a t  t h e  ca lcu la t ion  of vari
able b h d e  stresses wi th  considerat ion of t h e  nonlinear dependence cy = f(a, M).
yields a l a rge  number of i n t e r e s t i n g  cha rac t e r i s t i c s  that have a s u b s t a n t i a l i n 
f luence  on t h e  r o t o r  s t rength.  
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Fig.l.49 Comparison of Deformation Coefficients Fig.l.50 Distribution of Variable Stress  
Calculated with Consideration of the  Linear Amplitudes and the  Four First Harmonic 
and Nonlinear Dependence c y  = f(a, M )  f o r  the  Components over the  Blade Radius f o r  IJ~ = 0,3. 
Regime p = 0.3 Far from Flow Separation. 
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Sect ion 10. Calculation of Flexural  Vibrations dth Direct Determination /14.2
-t h e  Paths of Motion of Points  t h e  Bladeof 

1. Pr inc ip le  -0-f t h e  Method of Calculation 

In Sections 7, 8, and 9 we presented methods of ca lcu la t ing  f l e x u r a l  blade 
v ibra t ions  where t h e  deformation mode was determined by Galerkincs method. For 
this purpose, t h e  blade deformations w e r e  expanded i n  a series i n  prescribed 
known functions.  A s  such functions, we proposed using t h e  natural flexural vi
b r a t i o n  modes of a blade i n  vacuum. In this respect ,  it was s t a t e d  that, f o r  
p r a c t i c a l  purposes, it i s  s u f f i c i e n t  t o  l i m i t  t h e  ca l cu la t ion  t o  t h e  first four  
harmonics of natural vibrat ions.  

Here, we w i l l  discuss  methods that eliminate this assumption and permit a 
determination of blade deformations by a d i r e c t  ca lcu la t ion  of t h e  pa ths  of mo
t i o n  of a c e r t a i n  number of o i n t s  of t he  blade, without expansion of t h e  Vibra
t i o n  mode i n  known functionsg. 

To determine the  motion of ind iv idua l  po in ts  of t h e  blade. it i s  convenient 
t o  use a 
blade i s  

For 
t i o n s  of 

where 

blade model with d i s c r e t e  parameters. I n  this case, t he  mass of t h e  
simulated by seve ra l  concentrated loads d i s t r ibu ted  over i t s  length. 

such a mechanical model, we can der ive a system of d i f f e r e n t i a l  equa
the  form 

(10.1) 


..i = 0, 1, 2, ..., z ;  

yi = second der iva t ive  wi th  respect  t o  t h e  f o r  displacements yi of t h e  


i - t h  concentrated load with mass mi;  t h e  values of yi are reckoned 
from t h e  plane of r o t a t i o n  of t h e  ro tor ;  

Ci = e l a s t i c  force  act ing on the  i - t h  m a s s  mi by adjacent segments of 
the mechanical blade model; 

T, = externa l  aerodynamic force  ac t ing  on t h e  i - t h  poin t  of t h e  blade 
where one of t h e  concentrated loads is  s i tua t ed .  

The system of equations (10.1) descr ibes  t h e  motion of a l l  masses of t h e  
mechanical blade model. Thus, it conprises equations wi th  variables yi equal 
i n  number t o  the  masses of t h e  mechanical model i n  question. 

However, not a l l  variables y enter ing t h e  system (10.1) are independent, 
s ince  t h e  motion should s a t i s f y  t h e  condi t ion of equilibrium of the  e n t i r e  
system: 

= ..2 (migl-Tl)=O. 
0 (10.2) 

’’
~ 

Such a method f o r  ca lcu la t ing  a he l icopter  blade w a s  first used by R.M.Zano
z ina . 



It i s  preferab le  t o  consider that t h e  displacements of a l l  masses, except 
f o r  t h e  roo t  mass mo,are independent variables. Then, t h e  motion of t h e  roo t  
mass, i f  we assume To = 0, can be determined i n  conformity with eq.(lO.l) as 

where 
2 


C,=Z (T,-miyr) .  
1 


T h i s  co rd i t i on  of equilibrium of forces  i s  automatically s a t i s f i e d  when /lk3
using t h e  formulas presented below. 

Thus, t h e  system i n  question can be described by independent var iab les  yi 
whose number i s  lower by one than  t h e  number of concentrated masses of t h e  me
chanicalmodel.  Consequently, t h e  number of degrees of freedom of this system 
i s  ecpal t o  t h e  number of segments of t h e  ca l cu la t ion  scheme and i s  lower by one 
than  t h e  number of concentrated masses. 

.-4 

-I 

Fig.l.51 Blade Model Examined i n  t h e  Calculation. 

The so lu t ion  of t h e  system of equat,ion (10.1) can be obtained by numerical 
i n t eg ra t ion  wi th  respect  t o  time. For this, it i s  necessary a t  each instant of 
t i m e  t o  determine t h e  forces  C ,  and Ti . a  The forces  Ti can be determined from 
eq~~(9.20)whose der iva t ion  is given i n  Sect ion 9. A determination of t h e  elas
t i c  forces  C, has many p e c u l i a r i t i e s ,  which we will discuss  here a t  some length. 
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2. Determination of E la s t i c  F 0 ~ c . e ~ -App.lied t o  a Point 
of- the Bkdeb>y Adjace~ntSegments-~ 

L e t  us make a more de t a i l ed  ana lys i s  of t h e  mechanical blade model used i n  
t h e  calculat ion.  First, le t  us examine a be-type model. W e  will represent 
t h e  blade as a weightless free beam governed by c e r t a i n  boundary conditions a t  
t h e  ends and divided i n t o  a segments, along whose edges concentrated loads are 
placed (F'ig.l.51). The lengths  of t he  segments can be d i f f e ren t .  

A s  before, we represent  t h e  flexural r i g i d i t y  of t h e  blade as a stepped 
curve so t h a t  it remains constant over each segment. We w i l l  assume t h e  cen

t r i f u g a l  force  as applied only 
t o  the  loads.  Therefore, i t s  
magnitude w i l l  remain constant 
over each segment. We will 
a l s o  assume t h a t  t he  aerody
namic forces  are applied only 
at t h e  po in t s  of attachment of 
t h e  loads as i f  a separate  
f l a p  wi th  an  a rea  SI were at
tached t o  each load. 

To produce t h e  conditions 
of blade attachment a t  t h e  
root,  we Will assume that the  
cen t r i fuga l  force  i s  sensed by 
a s p e c i a l  attachment of roo t  

Yo Y J  Y% i n  v e r t i c a l  d i rec t ion .  When 
s01Ving t h i s  problem it i s  not 

Fig.l.52 Polygon of Forces Acting on 
necessary t o  c rea t e  freedom of 
v e r t i c a l  motion of t h e  root  

Adjacent Blade Elements. mass. However, i n  other  prob-
l e m s  associated with a deter-
mination of synchronous vibra-

mass m,, able t o  move f r e e l y  

t i o n  modes of t h e  blade and fuselage,  this condi t ion is necessary. If t h e  &
fuselage v ibra t ions  are disregarded arid t h e  blade i s  considered as attached a t  
t h e  hub on a r i g i d  base, t h e  conditions of root  attachnent i n  t h e  ca lcu la t ion  
are establ ished by prescr ibing t h e  necessary - usual ly  r a the r  l a rge  - mass m,. 

It is l o g i c a l  that such a n  idea l ized  scheme dl1yie ld  a more accurate  de
s c r i p t i o n  of t h e  real  p a t t e r n  of blade v ib ra t ion  t h e  l a rge r  t h e  number of seg
ments i n t o  which t h e  blade i s  divided. The blade can be represented with suf
f i c i e n t  accuracy by a scheme i n  t h e  form of a beam consis t ing of 25 - 30 segments 
and of t h e  same number of concentrated loads.  

To determine t h e  e l a s t i c  fo rce  Cl, we W i l l  construct  t h e  equations of blade 
deformations. Figure 1.52 shows the  forces  ac t ing  on two adjacerrt segments of a 
deformed blade. let us write out t h e  equations of deformation of these  segments. 

Since t h e  i n e r t i a  and aerodynamic forces  f o r  t h e  mechanical model i n  ques
t i o n  are applied only along t h e  edges of t h e  segments, t h e  deformations of each 



segment can be d e t e d n e d  by t he  equation 

[E/y"]"- [Ny'] '  =o. 

The magnitude of t h e  f l exura l  r i g i d i t y  E1 and t h e  cent r i fuga l  force N re
main constant over each segment. Therefore, they can be removed from the  dif
f e ren t i a t ion  sign. Then, eq.(10.4) can be rewr i t ten  i n  the  form 

M "  -p2M =:0, (10.5) 
Nwhere M = EIy" is the  bending moment i n  the  blade sec t ion  and 1.1' = -. 
E1 

The solut ion of eq.(10.5) can be wr i t ten  as 

M,=Asinhpx +Bsinhpx, (10.6) 

where the  coeff ic ients  A and B can be obtained from the  boundary conditions. & 
Thus, f o r  t he  segment 1- 2, we have M = M a t  x = 0 and M, = M, at  x = I,, . 
Substi tuting these conditions in to  eq.f1O.6jy we obtain 

Here, a1 = pltlB and p1 = JT.-
E112 

With consideration of eq.(10.7) and of t h e  f a c t  t h a t  M, = EI,,y", eq.(10.6) 
can be wr i t ten  i n  t h e  form 

After twice in tegra t ing  eq.(10.8) and bearing i n  m i n d  t h a t  at  x = 0 y f  = B1; 
y = yl, and a t  x = t,yf = B,; y = y2, we obtain 

61( ~ a - - ~ ) = d , M , - i - e , M , + ~ ,  (10.9) 

o r  

Here , 



The equation of deformation f o r  t h e  segment 0-1can be wr i t t en  by analogy 
wi th  eq.( 10.10) : 

bo (y1-go) =-e,M, -dOM0 +PI. (10.11) 

Changing a l l  s igns  i n  eq.(lO.ll) and adding wi th  eq.(lO.9), we ob ta in  

d0Mo-t c,M,+d,M,= A,,  (10012) 

where 

After performing t h e  same operations f o r  other  adjacent segments, we ob
t a i n  a system of z equations of t he  following form: 

We have wr i t t en  this system of equations here i n  t h e  form of a t ab le .  /vc6
Any of t h e  equations of t h e  system represents  t h e  sum of t h e  products of coeffi
c ien ts ,  occupying one row i n  t h e  rectangular  Table 1.12, while t h e  unknown func
t i o n s  Mi simultaneously en ter ing  seve ra l  equations and shown i n  t h e  v e r t i c a l  
column are given i n  a separa te  row on top of Table 1.12. The unknown funct ion B o  
enter ing only t h e  first equation is wr i t t en  i n  this row. The right-hand s ides  
of t h e  equations A, are placed i n  a s p e c i a l  column. 

The system of equations i n  Table 1.12 i s  solved by t h e  method of elimina
t i o n  of unknowns. T h i s  method was  a l ready described i n  Subsection 5 of Section 4. 

Thus, t h e  system of equations wr i t t en  out above permits determining t h e  
values of t h e  angle of r o t a t i o n  of t he  blade at t h e  root  B o  and a l l  values of 
t h e  bending moments M, i f  t h e  deformation mode of t h e  blade is known as a set of 
values of y, .  
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To determine t h e  e l a s t i c  force  Ci ,  it is  necessary t o  perform a number of 
successive operations, t h e  first of which involves solving t h e  system repre
sented i n  Table 1.12. It is  expedient t o  include i n  this sequence of operations 
a determination of t h e  angles of r o t a t i o n  of t h e  e l a s t i c  blade axis p i  which are 
needed la ter  f o r  ca lcu la t ing  t h e  aerodynamic forces :  

F'rm t h e  known values of M i  and from t h e  condi t ion of equilibrium of the  
elements, we can ca lcu la te  t h e  shearing force Qi,l+l which is  constant over each 
segment of t h e  blade. Actually, equating t h e  sum of t h e  moments of a l l  forces  
ac t ing  on t h e  segnent i,i+lt o  zero, we ob ta in  t h e  .equation 

from which we can determine t h e  value Qi,i+l. 

Knowing t h e  value of t h e  
shearing forces  over t h e  blade 
length, we can determine a l s o  
t h e  e l a s t i c  force  C, applied t o  
t h e  mass mi by t h e  adjacent seg
ments : 

These computations permit 
determining a l l  values of elas
t i c  forces  C, exerted on t h e  
given k s s  m, by t h e  adjacent 
segments, i f  t he  deformation 
mode yi i s  known. 

3. Charac te r i s t ics  of Numerical 
F'ig.1.53 Bending Moments wi th  Respect t o  In tegra t ion  of Eqs .(-10.1) 

t h e  First Overtone of Natural Vibrations, 

Calculated wi th  a Different Number of In  Sect ion 9 ,  we described 


Masses. 	 t h e  bas ic  cha rac t e r i s t i c s  of 
appl ica t ion  of numerical in te 
g ra t ion  t o  the  so lu t ion  *of d i f 

f e r e n t i a l  equations of e l a s t i c  blade vibrat ions.  It was shown that t h e  success 
of numerical i n t eg ra t ion  is la rge ly  determined by t h e  magnitude of t h e  l i m i t  
s tep,  which i s  d i r e c t l y  associated with t h e  smallest v ib ra t ion  per iod of t h e  
mechanical model examined as a blade analog. The l i m i t  i n t eg ra t ion  s tep  should 
not be t o o  small, s ince  ca lcu la t ion  i n  this case w i l l  be extremely time-con
suming. 

A cha rac t e r i s t i c  of the.model under study i s  that it may have as many  natu
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r a l  v ibra t ion  harmonics as the re  are segments i n t o  which t h e  blade i s  divided 
over i t s  length i n  the  calculat ion.  As a l ready mentioned above, t o  reduce er
rors when changing from a blade t o  i t s  mechanical model analog, t h e  blade must 
be represented by a t  least 25 - 30 segments with the  same number of concentrated 
masses. Therefore, i n  determining t h e  Limit i n t eg ra t ion  s tep  i n  this case it i s  
necessary t o  proceed from the  per iod of the  highest  (30th) overtone of na tu ra l  
vibrat ions.  

Figure 1.40 shows t h e  r e l a t i o n  of t he  na tu ra l  v ib ra t ion  frequency and 
per iod of an  ordinary he l icopter  blade as a funct ion of t he  number of t he  over
tone. It follows from this diagram t h a t  t h e  per iod of t h e  30th overtone of natu
r a l  v ibra t ions  i s  about 1' with  respect t o  t h e  r o t o r  azimuth. It was s t a t e d  
above tha t ,  i n  using t h e  most suitable method of numerical i n t eg ra t ion  t o  obtain 
a nondivergent solut ion,  t h e  in t eg ra t ion  s tep  should be less than  one t h i r d  of 
t he  period of t he  highest  overtone. Consequently, f o r  t he  method of ca lcu la t ion  
examined here, t h e  in t eg ra t ion  s tep  should be at least 0.3' wi th  respect t o  the  
r o t o r  azimuth. T h i s  s t a b i l i z e s  t h e  so lu t ion  and permits neglecting t h e  appreci: 
able,  e r r o r  i n  determining t h e  amplitudes corresponding t o  high v ibra t ion  over
tones, s ince  t h e i r  magnitudes are usual ly  small and s t r e s s e s  i n  the  blade are de
termined mainly by severa l  first harmonics of natural vibrat ions.  The v ib ra t ion  
amplitude with respect t o  these  harmonics can be determined wi th  s a t i s f a c t o r y  
accuracy. 

It becomes understandable from the  above considerations tha t ,  i n  using t h e  
ca lcu la t ion  method with a d i r e c t  determination of t h e  p a t h  of motion of po in t s  
of a blade, it i s  advantageous t o  use a mode1 wi th  a m i n i m u m  number of concen
t r a t e d  loads. It i s  des i r ab le  t o  use only models with a number of loads not more 
than  12 - 15. It should be noted that, with such a small number of segments, 
t h e  above beam model introduces e r ro r s  i n t o  t h e  ca lcu la t ion  associated wi th  
spec i f i c  fea tures  of this model. To i l l u s t r a t e  this, Fig.1.53 shows the  mode of 
t h e  bending moment corresponding t o  t h e  first overtone of na tu ra l  blade vibra
t ions ,  calculated f o r  z = 28 ( s o l i d  l i n e )  and z = 12 (dashed l i n e ) .  It follows 
from Fig.1.53 t h a t ,  f o r  a small number of segments, t he  bending moment i n  the  
b h d e  model begins t o  show p e c u l i a r i t i e s  cha rac t e r i s t i c  f o r  highly f l e x i b l e  beams 
s t ressed  by t ransverse forces  i n  a f i e l d  of cen t r i fuga l  forces  i n  t h a t  bending 
moment concentrations appear at t h e  s i te  where t h e  masses are located. T h i s  
cha rac t e r i s t i c  w a s  mentioned already i n  Section 4, Subsection 9. The occurrence 
of such concentrations subs t an t i a l ly  reduces t h e  ca lcu la t ion  accuracy. There
fore ,  t h e  use of beam models wi th  a number of segments less than 25 ( z  = 25) i s  
not recommended. For a small number of masses, such e r r o r s  do not arise when /lk8
using a multihinge a r t i c u l a t e d  model, although v ib ra t ion  modes of higher harmow 
i c s  will be severely d i s to r t ed .  I n  Fig.1.53, t h e  bending moment calculated f o r  
a multihinge model wi th  a number of segments z = 12 i s  shown by a dot-dash l ine.  

Proceeding from these  considerations,  l e t  us examine i n  g rea t e r  d e t a i l  t h e  
method presented here as r e l a t e d  t o  a multihinge model. Furthermore, it w i l l  be 
shown i n  Subsection 6 of this Section that a multihinge model permits applying 
t h e  ca l cu la t ion  of e l a s t i c  v ibra t ions  by numerical integration-methods, a t  a n  in
verse order  of determining t.he variables, which is  p r a c t i c a l l y  impossible i n  the  
beam model. 
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4. 	Equations of Motion for a Mul t ih iwe  Art iculated 
Blade Model 

kt us represent  t h e  blade as a chain consis t ing of p e r f e c t l y  r i g i d  weight
less links interconnected by hinges. The weight of t h e  blade i s  concentrated i n  
t h e  hinges of this c h a h  i n  t h e  form of ind iv idua l  loads wi th  a mass mi. The 
flexural r i g i d i t y  of t h e  blade i s  a l s o  concentrated i n  t h e  hinges, based on t h e  
concept t h a t  a spr ing of r i g i d i t y  c i  preventing f r a c t u r e  of t h e  blade i n  this 
hinge is, so  t o  speak, bui l t  i n t o  each hinge (Fig.1.54). 

3 

Fig A.54 Diagram of Multihinge Art iculated 
Blade Model. 

The system of d i f f e r e n t i a l  equations of v ibra t ions  per ta in ing  t o  this blade 
model will be derived here, s t a r t i n g  wi th  t h e  equation descr ibing t h e  equilibrium 
of t h e  load with t h e  o rd ina l  number i = 2. Then, by analogy, we will construct  
a l l  remaining equations of t h e  system. 

The equation of equilibrium of t h e  load with m a s s  m, can be wr i t t en  i n  &
t h e  form 

m2Y2==4c,-tT,. (10.16) 

The e l a s t i c  force  C z  exerted on t h e  mass m2 by the  adjacent segments of t h e  
model i s  determined by t h e  formula 



I 

where QI2 and &e3 are t h e  shearing forces  on segments of t h e  model adjacent t o  
t h e  load. 

To determine t h e  magnitude of t he  shearing forces  Q12 and Q3,we will de
rive equations that equate t o  zero t h e  sum of t h e  moments of a l l  forces  r e l a t i v e  
t o  t h e  poin t  of t h e  load with a mass m2 (point  A) for both segments of t h e  model 
adjacent t o  this load. These equations have t h e  following form: 

(10.18) 


Determining Q12 and Q23 from this and subs t i t u t ing  these  values i n t o  for
mula (ID.l'7), we ob ta in  

C2=Q23 -Q12= 

The bending moment enter ing this equation can be expressed by blade ele
ment displacement, using t h e  formulas 

(10.20) 


Subs t i tu t ing  eqs.(10.20) for M1, M2, and M, i n t o  eq.(lO.19), we obta in  t h e  
following equation: 

where 

(10.22) 
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If re a l s o  r i t e  out a l l  remaining values of C, and s u b s t i t u t e  them i n t o  /150
eq.(10.16), then  t h e  system of d i f f e r e n t i a l  equations of blade v ibra t ions  can be 
represented i n  t h e  form shown i n  Table 1.13. 

Table 1.13 


I . . . . . . . . . . . .  
. . . . . . . . .  

~ , I I ... I ... 
G - 2  

Each equation of the  obtained system, occupying one row i n  Table 1.13, rep
resents  t he  sum of the  products of t he  known coef f ic ien ts  d,, e l ,  and f, and t h e  
variables yi which simultaneously en te r  severa l  equations. The variables y i  are 
set off v e r t i c a l l y  i n  a s p e c i a l  row i n  the  upper po r t ion  of Table 1.13. The 
right-hand s ides  of t h e  equations, representing the  sum of i n e r t i a  and aerody
namic forces ,  are given i n  a separate  column t o  t h e  r i g h t  of Table 1.13. 

T h i s  system of equations d i r e c t l y  co r re l a t e s  blade deformations with t h e  
forces  act ing on t h e  blade, without intermediate coupling across  bending moments, 
as had been t h e  case i n  analogous equations per ta in ing  t o  t h e  beam model de
scr ibed above i n  Subsection 3 of this Section and i n  equations used previously 
i n  Section 4 f o r  ca lcu la t ing  t h e  free v ibra t ions  of a blade. 

T h i s  form of d i f f e r e n t i a l  equations g rea t ly  s impl i f i e s  t h e  ca lcu la t ions  i n  
determining t h e  ' e l a s t i c  blade deformations, bu t  it a l s o  has c e r t a i n  shortcomings. 
One of these,  as already mentioned, i s  that t h e  e l a s t i c  blade a A s  i s  not repre
sented as smooth but  as a broken l i n e .  The mode of t h e  d i s t r i b u t i o n  of t h e  bend
ing  moment over t h e  blade length  is  a l s o  represented as a broken l i ne .  A second 
shortcoming i s  t h e  a r b i t r a r i n e s s  i n  se lec t ing  t h e  hinge r i g i d i t i e s  ci . 

Let  us present  one o f .t h e  methods of determining these  r i g i d i t i e s .  For 
this purpose, we inves t iga ted  two adjacent blade segments. The value of t h e  
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hinge r i g i d i t y  c i  i s  determined from t h e  s t i p u l a t i o n  that t h e  angles of r o t a t i o n  
of t h e  ends of adjacent segments Bo and B, of t h e  equivalent beam model coincide 
with t h e  angles Bo, and B,, for t he  hinge scheme Fig. 1.55): 

If ,  i n  comparing t h e s e  angles, we neglect t h e  e f f e c t  of cen t r i fuga l  forces  
and assume t h a t  t h e  bending moment over t hese  two segments i s  constant (M, = 

= M, = M, = const) ,  then  t h e  condi-
/151 

t i o n  (10.23) w i l l  y i e ld  t h e  follow
ing  formula f o r  determining t h e  hinge 
r i g i d i t y  : 

1_-- '01 I I12 
E112 (10.24.)C I  E101 I - .  

I n  p rac t i ce ,  these  assumptions 
can be obeyed only approximately. 
T h i s  leads t o  c e r t a i n  e r ro r s  i n  using 
such a ca l cu la t ion  method. 

5 .  	Sequence of @erat ions i n  Calcu
la t ing E l a s t i c  Vibrations by t h e  
Numerical In tegra t ion  Method 

A s  a whole, blade ca lcu la t ions  
by t h e  proposed method are car r ied  
out i n  t h e  following sequence: A t  
t h e  i n i t i a l  t i m e ,  which is usual ly  
r e l a t ed  wi th  the  azimuth I) = 0, an 

Fig.1.55 	 For Determination of Nnge arbitrary blade deformation mode y, 
Rigidi ty .  and t h e  d i s%r ibu t ionof t h e  rate of 

displacement of t h e  masses 9, are 
prescr ibed.  If a l l  values of yi are 

known, t h e  e l a s t i c  forces  C ,  can be determined by t h e  formulas presented i n  Sub
sec t ions  2 and 4 of this Section. The angles of r o t a t i o n  of t h e  e l a s t i c  blade 
axis p i  should be calculated at t h e  same time. For t h e  beam model, these  are 
derived from eq.(lO.l3). For t h e  a r t i cu la t ed  model, they can be determined as 
t h e  half-sum of t h e  angles of r o t a t i o n  of two l i n k s  of t h e  model adjacent t o  t h e  
po in t  i n  question: 

p
1-
- Pi-1.r 	 + Pf.i+l . 

2 

If t h e  values of B and y, are known, then  t h e  aerodynamic fo rces  Ti can be 
obtained from eq.(9.20j .  These da ta  s u f f i c e  t o  determine t h e  values y, by 
means of eqs . (U. l ) .  



N e x t ,  a change-over i s  made t o  t h e  next azimuth of t h e  blade by means of /152
formuhs  analogous t o  eq.( 9.43) : 

.. Y t + Y : + b t  . 
YQY = 2 * 

The values of ytf,At, ;:$At, a d  y r + A t  f o r  t h e  time t + A t  are considered 
f ina l .  The index i, referring t o  t h e  number of t h e  concentrated load, Js omit
t e d  i n  eqs.(10.25) so as t o  prevent excessive complication of t h e  expressions. 

A l l  operations are then  repeated, t o  change t o  t h e  new azimuth. T h i s  i s  
continued f o r  s eve ra l  revolut ions of t h e  r o t o r  u n t i l  t h e  motion of t h e  blade be
comes stable. The ca l cu la t ion  terminates wi th  t h e  revolu t ion  a t  which the  solu
t i o n  converges t o  t h e  es tab l i shed  solut ion,  wi th  t h e  prescr ibed accuracy. The 
accuracy of t h e  so lu t ion  i s  determined by t h e  d i f fe rence  i n  t h e  ordinates  of t h e  
mass displacement when ca lcu la t ing  t h e  motion i n  two successive r o t o r  revolu
t ions .  

Analysis of t h e  r e s u l t s  can be car r ied  out i n  any manner, depending on t h e  
purpose of t h e  ca lcu la t ion .  To solve problems of blade s t r eng th  analysis ,  t h e  
bending moments MI, every 10' of r o t o r  azimuth, are usua l ly  read i n t o  the  ex
ternal memory. After ca lcu la t ing  t h e  values of M i  and t h e  drag moments of t h e  
blade sect ions,  t h e  values of t h e  stresses and t h e i r  amplitude are determined 

(10.26) 

and t h e  stresses are expanded i n  harmonics. 

Calculation of e l a s t i c  v ibra t ions  by t h e  above method comprises a constant 
r e p e t i t i o n  of t h e  same operations,  which amounts t o  a determination of t he  
forces  C i  and T i  and t o  t h e  so lu t ion  of eq.(lO.l). Therefore, t h e  computer t i m e  
pr imari ly  depends on t h e  numter of such r epe t i t i ons .  T h i s  number i s  determined 
by only two fac to r s .  The first i s  t h e  dura t ion  of t h e  per iod of changing t o  a 
stable process, which depends only on t h e  correspondence of t h e  i n i t i a l  condi
t i o n s  of steady motion and on t h e  phys ica l  p roper t ies  of t h e  r o t o r  and i s  inde
pendent of t h e  method of ca lcu la t ion .  The second, a l ready  mentioned above, is  
t h e  required in t eg ra t ion  s tep .  
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6. 	Method of Calculat ion wi th  Inverse Order of Determining 
Variables i n  Numerical In tegra t ion  

In  Sect ion 9 and i n  this Section, we discussed d i r e c t  methods of numerical 
i n t eg ra t ion  of d i f f e r e n t i a l  ecpations f o r  t h e  case i n  which, on changing t o  a 
new t h e ,  we determined t h e  variable y and i t s  first der iva t ive  $, and then  t h e

/153 
second de r iva t ive  y f r o m t h e  d i f fe re
t i a l  equation. Here, we w i l l  examine 
a method of ca lcu la t ion  proposed by 
V.E.Baskin i n  which these  quant i t ies  
are determined i n  t h e  opposite order.  

I n  sequence, we w i l l  inves t iga te  
three t i m e s :  t h e  time t, a t  which t h e  
blade deformation must be determined, 
and t h e  two times tn,l = t, - A t  and 
t,, = t, - 2at preceding this. 

Assuming that the  second deriva
t i v e  9 remains constant over each in
t eg ra t ion  i n t e r v a l ,  a s  shown i n  

.. b) t 	 Fig.1.56c, the  value of Tn-l can be 
expressed by Fnm2and $n,l : 

'' -!/n-I 

A t  
- ~ n - 2  (10 27yirmn;Yn-1-

I Yn-I I I 
1 

t n-2 2 n-r t n  t If we now assume t h a t  t h e  first 
der iva t ive  $ a l s o  remains constant overC) t h e  in t eg ra t ion  in t e rva l ,  a s  shown i n  
Fig.1.56b by a broken l i ne ,  then  t h e  

Fig.1.56 Change of Variable y and values of fn - l  and $,-, can be deter-
i t s  Time Derivatives, i n  Numerical mined from t h e  formulas 

Integrat ion.  

(10.28) 

Subs t i tu t ing  eq.(10.28) ink0 eq.(10.27) yields t h e  expression f o r  yn-l : 

If t h e  in t eg ra t ion  s tep  i s  su f f i c i en t ly  small, then  we can put  approxim
a t e l y  

.. .. 
YfI =Yn-I 

I 



I 

and write eq.( lO.a)  i n  t h e  form 

Subs t i tu t ing  t h e  values of f, i n t o  t h e  system of d i f f e r e n t i a l  equations re
presented by Table 1.13, a system of a lgebraic  equations r e l a t i v e  t o  the  un
knowns y, i s  obtained. A s  above, this system i s  wr i t t en  i n  t h e  form of 
Table 1.a. 

I n  t h e  var iab les  y i n  Table le&, t h e  index denoting t h e  i n s t a n t  of time i s  
given as superscr ipt ,  w h i l e  t h e  index r e fe r r ing  t o  t h e  number of t h e  concen- & 
t r a t e d  load of t h e  model - as before - i s  given as subscr ipt .  

I n  compiling Table 1.14- 5%was a l s o  assumed t h a t  t h e  aerodynamic forces  cal
culated f o r  t h e  t i m e  t,,, can be set approximately equal t o  these  forces  f o r  t h e  
time t,. 

Table 1. 14 

... 

1 I ,I ... ! ... ... ... ... 
-... 

_ _  ... 

-

E L - 2  

4-


The assumption (10.30) permits expressing t h e  acce lera t ion  yn at t h e  time t, 
i n  terms of t h e  deformations ynW2,y,-i, and y,. After determi& t h e  i n e r t i a  " 
forces  as the  products formed by t h e  masses mi wi th  t h e  'corresponding accelera
t i o n s  and after adding these  t o  the  aerodynamic forces ,  we can obta in  t h e  t o t a l  
external forces  act ing on t h e  blade. Then t h e  deformations y, are determined as 
i n  a conventional s t a t i c  problem. T h i s  i s  based on solving t h e  system of equa
t i o n s  i n  Table l.&;The only s p e a i a l  feature of these  equations i s  t h e  fact  
that t h e  components of t h e  i n e r t i a  forces  expressed i n  terms of t h e  s t i l l  uncal
culated values of y,, are transposed t o  t h e  left-hand s i d e  and are determined 
simultaneously with solving t h e  system of equations 

Thus, t h e  determination of t h e  various parameters of blade motion by this 



method i s  car r ied  out i n  an  unconventional order. A s  it were, first t h e  accel
e ra t ions  and then  t h e  deformations are determined. For this reason, we ca l led  
this method of so lu t ion  Itinverse method of numerical integration11. Another fre
quently used designat ion i s  l l i q l i c i t  method11. 

The ca lcu la t ion  wi th  t h e  inverse  method of numerical i n t eg ra t ion  does not 
r e s u l t  i n  a divergent solut ion,  even a t  r a t h e r  l a rge  i n t e g r a t i o n  s teps .  There-

Y 
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Fig.1.57 Results of Numerical 
Solut ion of Eq.(9.26) by t h e  
11Inverse Method of Integrationll, 
as a Function of t h e  Relat ive 

In tegra t ion  Step. 

fore ,  t h e  s i z e  of t h e  required in t eg ra t ion  
s t ep  should be determined only on t h e  basis 
of t h e  magnitude of e r r o r s  r e su l t i ng  from 
t h e  use of this method. The magnitude of 
t h e  e r r o r  can be estimated by applying t h e  
inverse  method of in t eg ra t ion  t o  t h e  s o h 
t i o n  of eq.(9.&). The r e s u l t s  of this tal
cula t ion  are p lo t t ed  i n  Fig.1.57. 

It follows from these  ca lcu la t ions  tha t ,  
t o  achieve a s a t i s f a c t o r y  accuracy of t h e  
deformation values corresponding t o  frequen
c i e s  equal  t o  t h e  r o t o r  rpm, the in t eg ra t ion  
step should be l e s s  than  1’ with respect  t o  

t h e  r o t o r  azimuth (A T  = -&)-
In  ca lcu la t ing  by t h e  method with ir+ /155 

verse order of determining t h e  var iables ,  
t he  system of equations i n  Table 1.14-i s  

solved i n  sequence a t  each azimuth, using predetermined values of y;-” and d-’. 
A t  t h e  in i t ia l  t i m e ,  t hese  quant i t ies  can be taken a r b i t r a r i l y .  

The above method of ca l cu la t ion  is more laborious than  methods t h a t  use ex
pansion of t h e  so lu t ion  i n  accordance with prescr ibed v ib ra t ion  modes, and thus  
i s  very time-consuming i n  ca lcu la t ions  on d i g i t a l  computers. However, t h e  method 
o f f e r s  valuable advantages i n  estimating t h e  inf luence of various concentrated 
e f f e c t s  on a blade, f o r  example, i n  estimating t h e  e f f e c t s  produced by blade 
dampers and i n  a l l  cases when t h e  so lu t ion  cannot be represented wi th  s u f f i c i e n t  
accuracy by a limited number of prescr ibed modes. 

7. 	CmDarative Evaluation of Various Methods of Calcu la t i rq  
Flexural  Blade Vibrations 

I n  this Chapter, we have presented a l a rge  number of methods f o r  ca lcu la t ing  
f l e x u r a l b l a d e  vibrat ions;  naturally, this raises t h e  question as t o  w h a t  method 
t o  s e l e c t  f o r  p r a c t i c a l  app l i ca t ion  and w h a t  Criteria t o  use as basis f o r  this 
se lec t ion .  The answer i s  quite simple: For p r a c t i c a l  purposes, t h e  o p t i m u m  
method w i l l  always be t h e  one that most fully and accurately takes  i n t o  account 
a l l  c h a r a c t e r i s t i c s  of r o t o r  behavior, including t h e  variable induced ve loc i ty  
f ie ld  and t h e  nonlinear character  of t h e  dependence of aerodynamic coe f f i c i en t s  
on t h e  angle of a t t ack  and t h e  Mach number. However, it is  impossible here t o  
disregard t h e  ex i s t ing  l imi t a t ions  that t h e  more c q l e t e  and more accurate  t h e  
method of calculat ion,  t h e  more time w i l l  be required f o r  ca lcu la t ion  on d i g i t a l  
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TABLE 1.15 

Method o f  C a l c u l a t i o n  with Expansion of Method o f  C a l c u l a t i o n  wit41 
i n  Eigenfunct ions  and Determinat ion o f  t h e  Eigenfunct ions  and with D i r e c t  Determinat ion of t h e  
C o e f f i c i e n t s  of  Expansion o f  Time T r a j e c t o r i e s  o f  Motion of

Four ie r  S e r i e s  i n  Harmonics 	 by t h e  Method o f  Numerical I n d i v i d u a l  P o i n t s  o f  t h e  BladcI n  teLtra t i o n  o f  Transformkd
I Equat ions

Di f f eren ti al [ElyllJ'' - [ N ~ ' ] 't my '=  Te q u a t i o n s  

Form o f  p r e s e n t a t i o n  
o f  s o l u t i o n  

Method o f  transform: 
t i o n  of  e q u a t i o n s  Equat ions  a r e  n o t  t ransformed 

Uethod o f  determining C a e f f i c i e n t s  o f  expansion o f  t i m e  f a c t o r s ,  a r e  D i r e c t  method o f  numerical  I n v e r s e  method of numerical  
t i m e  f a c t o r s  determined from a system o f  a l g e b r a i c  e q u a t i o n s  i n t e g r a t i o n  i n t e g r a t i o n  

Vrtq = So00 o p e r a t i o n s / s e c  
A t r e q  = 2.5;.F0 

Vreq = 20000 o p e r a t i o n s / s e c  
-
3 nonuniform induced v e l o c i t y  f i e l d  expanded i n  v e l o c i t i e s  determined f o r  a r o t o r  wi th  f i n i t e  number o f  blades 

harmonic components ( f o r  a number of p o i n t s  over  the r a d i u s  zr 512) 

Vreq = 50000 o p e r a t i o n s / s e c  Vpeq = 100000 o p e r a t i o n s / s e c  Vreq = 500000 o p e r a t i o n s j s e c  

"he methods a r e  convenient  for t a k i n g  i n t o  account  t h e  n o n l i n e a  
r e l a t i o n  cy  = f(a,M) and c x . =  f(a,M). 

For t a k i n g  i n t o  account  t h e  r e l a t i o n  cy = f ( = , M )  'reg = 500000 o p e r a t i o n s / s e c  i Vreq = 200000 o p e r a t i o d s e c  
-and c x  = f (a ,M),  t h i s  method is  u n s u i t a b l e  i n  

p r a c t i c e  a t  z p  =f2 

Vreq = 250000 o p e r a t i o n s / s e c  V r e q  > 100000 o p e r a t i o n s / s e c  



computers. Therefore, i n  s e l ec t ing  t h e  optimum ca lcu la t ion  method, the  main 
c r i t e r i o n  i s  the  machine capab i l i t y  which p laces  a limit on the  use of t h e  most 
ref ined ca l cu la t ion  methods. 

To s e l e c t  t h e  most suitable ca lcu la t ion  method, we compiled Table 1.15 which 
a l s o  gives t h e  required speed of computation f o r  various methods of calculat ion.  
The table a l s o  shows t h e  bas ic  cha rac t e r i s t i c s  of t h e  d i f f e ren t  methods. 

Here, we w i l l  present  approximate values of t h e  required speed of operation 
p e r  second V,,, f o r  carrying out a ca lcu la t ion  wi th in  5 - 10 min. The required 
speed i s  given f o r  a l l  ca l cu la t ion  methods i n  four  var ian ts  of t h e  assumptions 
used. The required capaci ty  of t h e  computer memory i s  not estimated i n  Table 1.15 
s ince,  i n  modern computers, this usual ly  cons t i tu tes  no handicap f o r  the  pro
grammer. 

It follows from a pe rusa l  of t he  da t a  i n  Table 1.15 tha t ,  f o r  a low-speed /157 
computer (speed of t h e  order  of 5000 operations/sec), only one method known as 
t h e  method of ca lcu la t ion  i n  harmonics can be used t o  any g rea t e r  extent.  I n  
this method, the  so lu t ion  i s  expanded i n  eigenfunctions. The time f a c t o r s  i n  
these  funct ions are represented as a Fourier s e r i e s  i n  harmonics. The coeff i 
c i en t s  of this series are determined from a system of a lgebraic  equations derived 
from a d i f f e r e n t i a l  equation by means of Galerkints  method. T h i s  method i s  de
scr ibed i n  Section $. 

On low-speed computers, this method can be used only under t h e  assumption 
of a uniform induced ve loc i ty  d i s t r i b u t i o n  A = const. For taking i n t o  account 
t he  nonlinear dependence of aerodynamic coe f f i c i en t s  on the  p r o f i l e  angle of at
tack  and on t h e  Mach number, t he  method is  p r a c t i c a l l y  useless.  These r e l a t ions  
can be considered i n  this method only by making extensive assumptions. However, 
even wi th  such an  approach, t he  computation necessary f o r  constructing t h e  
mathematical formulas i s  so h b o r i o u s  t h a t ,  f o r  a l l  p r a c t i c a l  purposes, i t i s  
simply unfeasible.  

On moderate-speed computers (speed of 20,000 - 50,000 operations/sec),  t h e  
most convenient method is  t o  expand the  so lu t ion  i n  eigenfunctions and t o  deter
mine t h e  time f a c t o r s  of these funct ions by numerical in tegra t ion .  T h i s  method 
i s  presented i n  Section 9, and i s  N t e  convenient f o r  taking i n t o  account t he  
nonlinear co r re l a t ion  between aerodynamic coef f ic ien ts ,  p r o f i l e  angle of a t tack ,  
and Mach number. 

I n  cases i n  which t h e  variable induced ve loc i ty  f ie ld  must be considered, 
this method can be used only on high-speed computers. If, i n  determining t h e  in
duced ve loc i t i e s ,  t he  number of calculated poin ts  over t h e  radius  and azimuth of 
t h e  r o t o r  i s  l imited,  t h e  ca l cu la t ion  can be performed a l s o  on moderate-speed 
computers. 

The method of ca lcu la t ion  with d i r e c t  determination of t h e  t r a j e c t o r i e s  of 
motion of ind iv idua l  blade po in t s  (see Sect.10) can be used only on computers
with a speed g rea t e r  than  V > 100,000 operations/sec. A consideration of t h e  
var iab le  induced ve loc i ty  f i e l d s  and of t h e  nonlinear cor re la t ions  between aero
dynamic coef f ic ien ts ,  p r o f i l e  angle  of a t tack ,  and Mach number f u r t h e r  increases  
t h e  speed needed f o r  this method. Only the  inverse numerical in tegra t ion  method 
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i s  considered i n  t h e  last column of Table 1.15. I n  using t h e  d i r e c t  method of 
numerical in tegra t ion ,  t he  required computer speed f o r  t h e  method with d i r e c t  de
terminat ion of the  t r a j e c t o r i e s  of motion of i nd iv idua l  blade po in t s  may in
crease even more s teeply.  

The required computer speeds given in Table 1.15 a r e  obtained f o r  t h e  case 
i n  which t h e  computations requi re  5 - 10 min. Within this t i m e ,  it i s  poss ib le  
t o  make severa l  checkouts required i n  designing a blade wi th  va r i a t ion  i n  r o t o r  
parameters and f l i g h t  regime. 

If we l i m i t  ourselves t o  a ca lcu la t ion  a t  only one var ian t  of the  parameters, 
a longer computer time i s  admissible. I n  t h i s  case, t h e  required computer speed 
shown i n  Table 1.15 can be reduced accordingly. 

Using t h e  above considerations,  it i s  poss ib le  - f o r  each ind iv idua l  case -
t o  s e l e c t  the  optimum method based on t h e  p o s s i b i l i t y  of using various a s s q 
t i o n s  and ava i lab le  time i n  calculat ions on a computer. 

Sect ion 11. Fatigue Strenath and Blade Xfe /158 
1. Testing a Structure  t o  Determine i t s  Service .&ice 

The serv ice  l i f e  of a given s t ruc tu re  i s  usua l ly  es tabl ished on t h e  basis 
of r e s u l t s  of dynamic analysis .  

Depending upon how e s s e n t i a l  t h e  s t ruc tu re  i s  f o r  f l i g h t  sa fe ty ,  tests of 
one o r  severa l  design var ian ts  are performed. Frequently, only ind iv idua l  p a r t s  
of a s t ruc tu re  whose s t r eng th  i s  decis ive f o r  t h e  e n t i r e  u n i t  as a whole, are 
t e s t ed .  

I n  determining t h e  blade l i fe ,  it i s  conventional t o  tes t  ind iv idua l  spar  
segments with airframe components that set up stress concentrations i n  the  spar. 
Specimens of a t  least th ree  d i f f e ren t  spar segments a r e  tes ted .  A s  a ru l e ,  these  
segments include t h e  root  bu t t  and two segments along t h e  length of t h e  spar. 
Sometimes i t  becomes necessary t o  t es t  add i t iona l  specimens t o  check ind iv idua l  
design features of t h e  spar ( f o r  example, a t  po in t s  of t r a n s i t i o n  of t h e  spar 
cross  sect ion) .  

Specimens of blades are almost always t e s t e d  on resonance stands,  with ex
c i t a t i o n  by mechanical vibrators .  The length of t he  t es t  specimen is  chosen 
such t h a t  i ts  natural frequency i n  bending i s  wi th in  t h e  operating range of t h e  
vibrator .  Usually t h e  tests are conducted a t  a frequency of 1500.to 2500 cycles  
p e r  minute. I n  t h i s  case, t h e  length of t he  specimens i s  of t he  order of 3-4 m. 
I n  addi t ion  t o  a l t e rna t ing  bending stresses, t h e  specimen must be extended by 
longi tudinal  forces  c rea t ing  a constant s t a t i c  load close t o  t h a t  which t h e  
blade experiences i n  f l i g h t  due t o  t h e  e f f e c t  of cen t r i fuga l  forces .  Figure 1.58 
shows a stand f o r  t e s t i n g  of hel icopter  blade specimens .with a cen t r i fuga l  force  
of t h e  order of 100 tons  ( force) .  

In  general, complete blades r a the r  than ind iv idua l  sho r t  specimens are 
t e s t ed ,  because of t h e  excessive compleAty of t es t  stands required f o r . t h i s  pur
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pose and t h e  long t e s t i n g  t i m e ,  s ince  t h e  v ib ra t ion  frequency i n  this case can
not be higher than  300 - 400 cpm. 

2. 	 D i e e r s i o n  of- t h e  Charac te r i s t ics  of Ehdurance 
in Fatigue Tests 

A n  appreciable sca t t e r ing  of t h e  tes t  res; u l t s  i s  observed i n  f a t igue  tests 
on a c e r t a i n  number of specimens manufactured under Tdent ical  conditions.  Fail

ure of specimens tes ted  a t  the  
same s t r e s s  level occurs at  a /lrs
d i f f e r e n t  number of cycles N. 
The r a t i o  of t he  g rea t e s t  number 
of cycles  t o  the  least number 
o f t en  reaches 20 - 4.0. 

The dispers ion of t h e  char
a c t e r i s t i c s  of f a t igue  s t rength  
i s  explained by t h e  inhomogeneity 
of t h e  s t ruc tu re  of t h e  mater ia l  
and by the  d i f fe rence  i n  t h e  con
d i t i o n s  of manufacturing and pro
cessing t h e  specimens. Fai lure  
of specimens always begins from 
small f l a w s  wi th in  the  material 
and on t h e  surface'  of t h e  speci
men. I n  t h e  overwhelming ma-

Fig.1.58 Blade Test Stand. 	 j o r i t y  of cases, f a i l u r e  begins 
from a defect  s i t ua t ed  on t h e  
surface.  I n  this case, t h e  en

durance cha rac t e r i s t i c s  of t h e  specimen are determined by t h e  type and magnitude 
of these  defec ts  . 

The sca t t e r ing  of f a t igue  fa i lure  da ta  i n  tests of various specimens i s  
usual ly  characterized by a d i s t r i b u t i o n  funct ion of t he  number of cycles N t o  
failure of t h e  specimen. An analysis of t h e  t e s t  da t a  ind ica t e s  t h a t  t h e  dis
t r i b u t i o n  of logarithms of t h e  number of cycles log N t o  f a i l u r e  r a t h e r  c lose ly  
obeys t h e  normal d i s t r i b u t i o n  l a w  a t  almost a l l  average values of t h e  probabil
i t y  of failure, beginning approximately from a p robab i l i t y  of 0.01 - 0.02. 

Figure 1.59 shows the  d i s t r i b u t i o n  of t h e  p robab i l i t y  of failure P and t h e  
probabi l i ty  dens i ty  c p ,  corresponding t o  t h e  real cha rac t e r i s t i c s  of endurance of 
t h e  s t ruc tu re  (solid curves) and those  d e t e d n e d  by t h e  normal d i s t r i b u t i o n  l a w  
(broken curves) : 

(IqN-mloaN)2 



probab i l i t y  dens i ty  func t ion  of failure of t h e  s t ruc tu re ;  

probab i l i t y  of failure of t h e  s t ruc tu re  at a number of cycles  

of stress less than N; 

value of t h e  logarithm of t h e  number of cycles t o  failure of 

t h e  s t ruc tu re ;  

mea-square devia t ion  of t he  d i s t r i b u t i o n  of the  l o g a r i t h s  

of t h e  number of cycles t o  failure of t h e  s t ruc tu re ;  

mathemt ica l  expectation of t h e  d i s t r i b u t i o n  of t h e  logarithms 

of t h e  number of cycles. 


I n  t h e  range of l o w  p robab i l i t y  of failure, t h e  d i s t r i b u t i o n  func t ion  usu
a l l y  devia tes  from t h e  normal l a w  (Fig.1.59). 
feature of t h e  cha rac t e r i s t i c s  of endurance. 

Fig.l.59 Curves f o r  t h e  Dis t r ibu t ion  of 
Endurance 	i n  Tests and Corresponding t o  

Normal Law. 

T h i s  has t o  do with an  k o r t a n t  
I n  f a c t ,  f a t igue  f a i l u r e  clan take  
p lace  only after a c e r t a i n  number 
of cycles  of stress NO and can 
never occur earlier. T h i s  feature 
of t h e  cha rac t e r i s t i c s  of endur
ance leads  t o  t h e  concept of a 
zone of i n s e n s i t i v i t y  t o  N i n  which 
t h e  p robab i l i t y  of failure of t h e  
s t r u c t u r e  i s  equal t o  zero (P = 0 ) .  
I n  pa r t i cu la r ,  t h i s  permits an 
inpor tan t  conclusion as t o  t h e  pos
s i b i l i t y  of determining t h e  serv ice  
l i f e  of t h e  s t ruc ture ,  based on 
endurance conditions with a prob
a b i l i t y  of failure equal t o  zero, 
even i n  t h e  presence of su f f i c i en t 
l y  high a l t e rna t ing  stresses. 

Unfortunately, a determination 
of t h e  s e n s i t i v i t y  threshold No, 

wi th  any s a t i s f a c t o r y  accuracy, i s  v i r t u a l l y  impossible. Therefore, i n  deter
mining t h e  serv ice  l i f e  of a given s t ruc tu re  t h e  d i s t r i b u t i o n  l a w  of endurance 
is  usual ly  taken as norma1,and t h e  requirement P = 0 i s  replaced by t h e  require
ment of a very low p robab i l i t y  of failure. 

/160
The devia t ion  of t h e  values of t h e  logarithms of t h e  number of cycles from 

t h e  normal l a w  should be observed a l s o  i n  t h e  region of high p r o b a b i l i t i e s  of 
failure. A t  a r e l a t i v e l y  low l e v e l  of a l t e rna t ing  stresses this happens s ince  
the re  i s  almost always some specimen that does not f a i l  even at a very l a rge  num
ber of cycles of s t r e s s .  

3 .  Basic Character is t ics .  of t h e  Fatigue Strew&h of S t ruc ture  

The f a t igue  s t r eng th  of a s t ruc tu re  i s  character ized usual ly  by t h e  number 
of cycles N it i s  able t o  withstand p r i o r  t o  f a i l u r e  a t  a given upper l i m i t  of 
a l t e rna t ing  stresses 0 .  The higher t h e  upper l i m i t  of a l t e rna t ing  stresses 0, 

t h e  smaller the  number of cycles  of stress t h e  s t ruc tu re  dl1resist. 
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The curve character iz ing t h e  number of cycles  N t o  failure as a funct ion of 
t h e  upper l i m i t  of a l t e rna t ing  stresses o i s  ca l led  t h e  Ffrihler curve. 

The v6hler curve can be approximately described by t h e  equation 

amN==const at  o >a,andN <N,; 
o=o,sconst af N>N,. I 

Here, 
ow = maximum amplitude of stress below which t h e  s t ruc tu re  w i l l  with

s tand an  i n d e f i n i t e l y  la rge  number Of cycles  of s t r e s s  N without , 
f r ac tu re ;  this peak amplitude i s  usual ly  ca l led  t h e  f a t igue  l i m i t  
o r  endurance l i m i t ;  

N, = minimum number of cycles  of stress corresponding t o  the  f a t igue  
l i m i t  ; 

m = some exponent whose value i s  determined from test ,  r e s u l t s .  

The bf6hler curve can be p lo t t ed  f o r  d i f fe ren t  values of t h e  probabi l i ty  of 
failure. For this, a batch of t es t  pieces  i s  divided i n t o  severa l  groups and 
t e s t ed  a t  d i f f e ren t  ranges of a l t e rna t ing  stresses. 

After construct ing t h e  d i s t r i b u t i o n  functions of endurance f o r  various 
l eve l s  of a l t e rna t ing  stresses (Fig.1.60) and connecting po in t s  of t h e  same prob
a b i l i t y  of f a i l u r e ,  we can obta in  t h e  Wtc;hler curves corresponding t o  a d i f f e ren t  
p robab i l i t y  of failure. Usually, i n  so doing t h e  d ispers ion  of t h e  character is
t i c s  of endurance i s  smaller, t h e  higher t h e  level of a l t e rna t ing  s t r e s ses ,  and 
t h e  s e n s i t i v i t y  threshold No i s  more d i s t i n c t l y  expressed a t  lower s t r e s ses .  A t  
low stresses, t h e  s e n s i t i v i t y  threshold i s  reached a t  r e l a t i v e l y  high probabili
t ies  P, whereas at high s t r e s s e s  it shifts toward such small p robab i l i t i e s  t h a t  
it usual ly  goes unnoted. /161 

The tes t  da ta  almost always confirm t h e  presence of a f a t igue  l i m i t  o w .  A t  
a given stress B a c e r t a i n  number of specimens Usually win not f a i l  even a t  a 
very la rge  number of cycles of stress. The exis tence of a f a t igue  l i m i t  i s  cow 
firmed a l s o  i n  p r a c t i c a l  experience of operating various machines and mechanisms. 
We know of many d i f f e ren t  components t h a t  constant ly  operate under appreciable 
a l t e rna t ing  s t r e s s e s  and do not f a i l  at a number of cycles  of lo8 and more. 
There a r e  ind iv idua l  exceptions t o  this general  ru l e .  It has been noted t h a t ,  
f o r  c e r t a i n  s t r u c t u r a l  elements made of aluminum al loys,  t h e  f a t igue  curve con
t inues  t o  drop even a t  a n  endurance of t h e  order of lo8 - 10’’ cycles.  However, 
this drop i s  so negl ig ib le  t h a t  even i n  this case t h e  hf6hler curve can be ap
proxi.mc?;tely represented i n  t h e  form of eq.(U.3).  I n  any case, as applied t o  
t h e  basic  p a r t s  of a hel icopter ,  consideration of t h i s  drop y ie lds  no subs t an t i a l  
refinements. 

A d e f i n i t e  d i spers ion  i s  a l s o  observed i n  t h e  values of t h e  endurance l imi t s .  
The presence of a s e n s i t i v i t y  threshold with respect  t o  t h e  amplitude of stresses 
i s  cha rac t e r i s t i c  for t h e i r  d i s t r ibu t ion .  T h i s  threshold w i l l  henceforth be 
ca l led  t h e  minimum f a t igue  limit owmin.A t  stresses below owminnot a s ing le  

I n  con-specimen w i l l  fail, even at a very l a rge  number of cycles  of stress. 
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~ i g . l . 6 0  Dis t r ibu t ion  of Endurance at Different Levels 
of Alternating S t resses .  

Fig.l.61 lf6hler Curves Correspond- fig.1.62 lf&iLer Curves Corresponding 
ing  t o  Different Probabi l i ty  of t o  Different  Probabi l i ty  of Fai lure  

Fai lure  on a Logarithmic Scale. 

f o m i t y  with t h e  above fea tures  of t h e  cha rac t e r i s t i c s  of fa t igue ,  t h e  V6hler 
curves should have the  slope depicted i n  Fig.l.61. 

If t h e  curves corresponding t o  a d i f f e ren t  robab i l i t y  of f a i l u r e  are re
placed by an approximate ana ly t ic  r e l a t i o n  (ll.37, t hen  the  hf6hAer curves on a 
logarithmic sca l e  will have t h e  slope shown i n  ~ig.1.62.  The zone of insensi
t i v i t y  corresponding t o  zero probabi l i ty  of f a i l u r e  i s  hatched i n  this graph. 
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A t  such a p l o t t i n g  of t h e  W'c;hler curves, t h e  number of cycles N, corresponding 
t o  t h e  endurance l i m i t  and t h e  exponent m d i f f e r  f o r  curves corresponding t o  
different p r o b a b i l i t i e s  of failure. 

It should be noted t h a t  construct ion of t h e  W'6hler curves as shown i n  
Egs . l . 61  and 1.62 i s  poss ib le  only i n  tests wi th  small laboratory specimens, 
s ince  a very l a rge  number of t es t  p ieces  i s  required.  

Construction of such curves i s  p r a c t i c a l l y  impossible when estimating t h e  
s t r eng th  of a s t ruc ture ,  s ince  only a very small number of specimens can be used 
i n  such estimates. Often this number does not exceed n = 3 - 5 (where n i s  t h e  

number of t e s t e d  specimens). I n  this case, 
t h e  tests yield only n values of t h e  nun
ber of cycles  t o  f r a c t u r e  a t  a prescr ibed 
magnitude of loads f o r  a s t r eng th  esti
mte. With such a limited number of data,  
some idea  on t h e  f a t igue  cha rac t e r i s t i c s  
of a given s t ruc tu re  can be gained only on 

I t h e  basis of c e r t a i n  asswlrptions wi th  re-

i l l spect t o  t h e  W'dhler curves. 

The range of a l t e rna t ing  stresses at 
-80 - 4 0  0 40 

4L.l
80 G,Kg/tnm* which t h e  s t ruc tu re  w i l l  withstand a pre

compress ion Tens ion  scr ibed number of cycles N t o  failure de
pends a l s o  on t h e  magnitude of t h e  con-

Fig.1.63 Hay's Diagram f o r  Speci- s t a n t  component of t h e  stresses of t he  
mens of Tubular Blade Spars. cycle om ( s t a t i c  load) .  The g rea t e r  t h e  /163

s t a t i c  load, t h e  smaller t h e  range of 
s t r e s s e s  a t  which t h e  s t ruc tu re  w i l l  with

stand a given number of cycles.  T h i s  dependence is  usual ly  characterized by
Hay's diagram. A s  an  example F'ig.1.63 shows t h e  configurat ion of such a diagram. 

For tubular  s t ee l  spars  at  o m  = 20 - 30 kg/mm2 a n  increase  i n  s t a t i c  load 
by a n  amount Ao, leads t o  a decrease i n  t h e  f a t igue  l i m i t  by an  amount AD, M 

M O.4Aom . For duralumin spars  a t  om = 6 - 8 kg/m2, the  value i s  Ao, M 0.3A0, . 
It should be mentioned tha t ,  i n  t h e  region of constant compressive stresses, 

t h e  f a t igue  Limits increase  subs tan t ia l ly .  T h i s  f a c t  i s  u t i l i z e d  when confer
ring s t rength  t o  components by cold-working (see Subsects.lb and 17). 

4. Stresses-S e t  UD i n  t h e  Blade S t ruc ture  i n  F l igh t  

In Section 1of this Chapter (Subsect.3) it was mentioned tha t ,  under t h e  
e f f e c t  of aerodynamic forces ,  t h e  blades of a he l icopter  i n  f l i g h t  are subjec t  
t o  appreciable a l t e rna t ing  stresses i n  two d i f f e r e n t  types of regimes designated 
as low-and high-speed modes. 

Figure 1.64 s h m  t h e  type of va r i a t ion  i n  amplitudes of a l t e rna t ing  
stresses wi th  respect t o  flying speed, for two blade s t ruc tures :  one wi th  a s teel  
and one wi th  a duralumin spar. A s  ind ica ted  i n  this diagram, m a x i "  a l t e r n a t i n g  
stresses can arise both at low speeds (braking regime) and a t  maxi" f l y i n g  
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speed. As demonstrated before, t h e  blades perform flexural v ibra t ions  such t h a t ,  
a t  each poin t  of t h e  spar, t h e  stresses vary i n  accordance wi th  a per iodic  l a w  
dupl icat ing each revolut ion of t h e  ro to r .  A s  a t y p i c a l  example, F’ig.1.65 shows 
t h e  recording of stresses obtained i n  blade sec t ions  a t  relative r a d i i  F = 0.73 

and F = 0.8 i n  hor izonta l  f l i g h t  at rela
t i v e l y  high speed. The same diagram gives  

0. 	 t h e  harmonic content of t h e  stresses set up 
i n  these  blade sect ions.  

30 

Usually, i n  a hor izonta l  f l i g h t  a t  p = 
= 0.2 - 0.4 t h e  first harmonic component of 

20 	 t h e  stresses reaches d u m  values. The 
second harmonic is  lower i n  amplitude and 
general ly  amounts t o  30 - 70% of t h e  first 

10 	
harmonic. The first and second harmonics, 
genera l ly  t o t a l i n g  70 - 90%, determine t h e  
magnitude of t h e  t o t a l  a l t e rna t ing  blade /l64
stresses i n  these  regimes, s ince  t h e  higher 

0 0.1 0.2 0.3 P 	 harmonics usual ly  are small. Their magni
tude almost always decreases with an  increase  

Fig.1.64. Character of Vari
a t i o n  i n  Amplitudes of Alter
nat ing S t resses  as a Function 
of Flying Speed i n  Blades of 
LaJ (Tubular S tee l )  and Mod
erate (Duralumin Spar) Rigid
i t y  i n  t h e  Flapping Plane. 

i n  order  of t h e  harmonic. Such a type of 
va r i a t ion  i n  magnitude of harmonics can be 
a t t r i b u t e d  t o  a decrease i n  magnitude of t h e  
harmonic components of aerodynamic forces  
on change-over t o  higher harmonics. 

For a l l  blades t h e r e  are exceptions t o  
this rule, having t o  do with t h e  occurrence 
of o r  p r o x h i t y  t o  resonance. 

I n  low-speed modes, t h e  harmonic content of t h e  e f f ec t ive  stresses i s  d i f 
f e ren t .  Here t h e  higher harmonics predominate, and harmonics c lose i n  frequen
c i e s  t o  the  frequency of t h e  natural v ibra t ions  of t h e  second and t h i r d  over
tones are mainly dis t inguished.  An espec ia l ly  pronounced increase  i n  a l t e rna t ing  
stresses i n  these f l i g h t  regimes (see Fig.l.64) takes  p lace  f o r  blades of low 
r i g i d i t y  i n  t h e  f lapping plane (see Sect.3, Subsect.3). For such blades, stresses 
wi th  t h e  fou r th  and s i x t h  harmonics are predominant (F’ig.1.66). Low-speed modes 
may cause damage t o  t h e  s t ruc tu re  of such blades (see Table 1.21). 

For a blade of moderate r i g i d i t y  i n  t h e  f lapping plane, t h e  increase i n  al
te rna t ing  stresses a t  low speeds i s  appreciably weaker (see Fig.1.64.) and pre
dominance of higher harmonics i s  not so  marked (Fig.1.67). For such blades ( j u s t  
as f o r  blades of high r i g i d i t y )  high-speed f l i g h t  modes may lead t o  basic  damage 
po ten t i a l .  

Along with a l t e rna t ing  stresses due t o  flexural vibrat ions,  t he  blade spar  
i s  extended and bent by constant ( i n  magnitude) cen t r i fuga l  forces  and by t h e  
constant component of t h e  aerodynamic forces .  Therefore, t h e  spar  material 
works under a l t e rna t ing  stresses wi th  a l a rge  s t a t i c  load. The s t a t i c  load mark
edly lowers t h e  f a t igue  s t r eng th  of t h e  spar .  



5. 	 Hypothesis of I&near.Su"&ion of D-wae P o t e n t i a l  
ar&Average Equivalent A q l i t u d e  of Alternating 
Stresses 

I n  d i f f e ren t  f l i g h t  regimes, a l t e rna t ing  stresses of widely d i f f e r ing  mag
nitude are set up i n  a s t ruc ture .  I n  this case, t h e  dura t ion  of ind iv idua l  
f l i g h t  regimes may d i f f e r  subs tan t ia l ly .  Thus, a f l i g h t  a t  c ru is ing  speed i s  
usua l ly  t h e  regime of longest durat ion.  In  he l icopters  used for cargo t ranspor t ,  

R e c o r d i n g  of s t r e s s e s :  

H a r n o n  i c con t e n t  

1 2 3 4 5 6	 7 
of h a r m o n i c  

Fig.1.65 Recording of S t resses  i n  
Two Sections of a Helicopter Blade 
i n  Horizontal F l igh t  Regime (p = 
= 0.3) and t h e i r  Harmonic Content. 

,To t a l  s t r e s s e s  

CS 

12.4 

of h a r m o n i c  

Fig .1.66 Oscillogram of Alternating 
S t resses  i n  a Blade with a Tubular 
S t e e l  spar of Low Rigid i ty  i n  t h e  
Flapping Plane during Braking, and 

t h e i r  Harmonic Content. 

this regime occtrpies 60 - 70% of t h e  serv ice  l i f e .  The maximum f ly ing  speed /166
of cargo hel icopters  used i n  t h e  na t iona l  economy i s  r a r e l y  reached. Such heli
copters  a l s o  spend very l i t t l e  t i m e  i n  low-speed modes which general ly  a r e  only 
t r ans i en t  regimes during takeoff and approach t o  landing. 

However, hel icopters  can be used f o r  widely d i f f e r i n g  types of work, where 
t h e  dura t ion  of i nd iv idua l  f l i g h t  regimes varies. A s  an e x q l e ,  Table 1.21 gives  
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1 2 3 9 5 6 7 8  
Number of harmonic 

Fig.1.67 Harmonic Content of 
Alternat ing Stresses i n  a 
Blade of Moderate Rig id i ty  
wi th  a Pressed Duralumin Spar 
i n  Braking Reghe. 

Here, 

t h e  values of t h e  r e l a t i v e  dura t ion  of dif
fe ren t  regimes cyi common f o r  one of t h e  m i l i 
t a r y  t r anspor t  hel icopters .  

The serv ice  l i f e  of a given s t r u c t u r e  
should be determined wi th  considerat ion of 
t h e  time base of a he l icopter  i n  f l i g h t  re
gimes of d i f f e r i n g  a l t e rna t ing  stress l e v e l  
which cont r ibu te  t o  t h e  s t ruc tu re  a d i f f e r e n t  
po r t ion  of f a t i g u e  damage po ten t i a l .  To t ake  
this i n t o  account it i s  convenient t o  use t h e  
hypothesis of l i n e a r  sunanation of damage po
t e n t i a l s .  T h i s  hypothesis presupposes t h e  
p o s s i b i l i t y  of summing i nd iv idua l  components 
of damage p o t e n t i a l  contributed by d i f f e r e n t  
s t r e s s  l e v e l s  and s t i p u l a t e s  t h a t  failure of 
a s t r u c t u r e  takes  p lace  as soon as 

where 
- ANiAN,= y -. 

d Ni 

N, = number of cycles t o  failure f o r  a s t e a d i l y  sustained stress l e v e l  
wi th  amplitude a,; 

AN, = number of cycles of stress wi th  amplitude o, experienced by t h e  
s t ruc tu re  i n  t h e  i - t h  f l i g h t  regime. 

AN,The r a t i o  A i ,  = -i s  usually ca l led  t h e  damage p o t e n t i a l  of a s t ruc tu re  
Ni 

i n  a regime wi th  an  amplitude of stresses oi, w h i l e  ANxis designated as t o t a l  
damageability. 

It has been proved by o ther  authors that, a t  a c e r t a i n  a l t e r n a t i o n  of stress 
regimes, failure of a s t r u c t u r e  may t ake  p l ace  as soon as 

However, t h e  cases discussed i n  those papers, f o r  t h e  most p a r t ,  do not 
cover stress conditions of t h e  hel icopter  parts. Therefore, we can almost al
ways use eq.(ll.l+.) i n  t h e  calculat ions.  

A s  a consequence of t h e  d ispers ion  of t h e  c h a r a c t e r i s t i c s  of endurance, t h e  
damage p o t e n t i a l  of ind iv idua l  spechens  of a given s t ruc tu re  may d i f f e r  even 
for one and t h e  same stress l eve l .  S t ruc tures  wi th  t h e  lowest values of endur
ance are subject  t o  maxi” damageability. Therefore, one can talk of damage 
p o t e n t i a l  as corresponding t o  a c e r t a i n  p robab i l i t y  of f a i l u r e .  

If, i n  eq.(ll.l+), t h e  values of N, corresponding t o  an  assigned p robab i l i t y  
of failure P a s d  are given, t hen  t h e  p robab i l i t y  of failure will a l s o  be equal  t o  
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- - 

-
P a s d  a t  ANx = 1. T h i s  makes it poss ib le  t o  ob ta in  t h e  formula f o r  ca lcu la t ing  
t h e  safe nmber  of cycles  of stress N, with  t h e  assigned p robab i l i t y  of failure 
P a s d  determining t h e  serv ice  l i f e  of s t ruc tu res  based on endurance conditions: 

Here, 
cyI 

- AN, = r e l a t i v e  durat ion of t h e  regime wi th  stress 0,; 
N E .  1 

Ne. = number of cycles  of stress during t h e  l i f e  of t h e  s t ruc- /167 
ture when determining t h e  r e l a t i v e  durat ion of ind iv idua l  
f l i g h t  regimes cyi (genera l ly  speaking, we can t ake  any 
a r b i t r a r y  i n t e r v a l  of t h e  service t i m e  of a he l icapter  wi th  
a number of cycles  N t h a t  need not a t  a l l  be equal t o  t h e  
number of cycles of stress during t h e  rated serv ice  l i f e  
of t h e  s t ruc tu re  N8.  1 ); 

N, = number of cycles of s t r e s s  of amplitude CY, a t  which t h e  
p robab i l i t y  of failure i s  equal t o  t h a t  assigned ( P a r d ) .  

If t h e  ac t ing  s t r e s s e s  are lower than  t h e  m i n i "  f a t i gue  l imi t ,  then 
damageability i s  not introduced i n t o  t h e  s t ruc tu re .  I n  this case, t h e  number of 
cycles N, i n  eq.(11.5) can be set equal t o  i n f i n i t y .  

Let  us introduce t h e  concept of r e l a t i v e  dura t ion  of regimes E which add a 
damage p o t e n t i a l  t o  t h e  s t ruc ture :  

where Nd i s  t h e  number of cycles of stress during t h e  Life of t he  s t ruc tu re  
which contr ibutes  t o  damageability. 

Thus, during t h e  se rv ice  l i f e  R, t h e  s t r u c t u r e  i s  damaged only during a time 
equal t o  ER. 

It o f t en  proves convenient, f o r  g rea t e r  c l a r i t y  of t h e  calculat ions,  t o  in
troduce t h e  concept of average equivalent amplitude of a l t e rna t ing  stresses. 

The average equivalent amplitude of stresses is  an  amplitude constant i n  
t i m e  and ac t ing  during a p a r t  of t h e  s e rv i ce  l i f e  equal  t o  ER, which cont r ibu tes  
damageability t o  t h e  s t r u c t u r e  equal t o  t h e  damageability introduced by ampli
tudes of a l t e rna t ing  stresses d i f f e r i n g  i n  magnitude i n  a l l  f l i g h t  regimes en
countered during t h e  s e r d c e  of a hel icopter .  

I n  introducing this concept, it is assumed t h a t  a t  stresses g rea t e r  t han  
t h e  f a t igue  limit, t h e  endurance of t h e  s t r u c t u r e  can be determined as 
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N , = N ,  r:)". (11.6) 

Then, subs t i t u t ing  eq.( l l .6)  i n t o  eq.( ll.4), we ob ta in  

where surmnation is  performed only for those regimes that raise t h e  damage PO
t e n t i a l  t o  t he  s t ruc tu re .  

If we introduce one equivalent stress l e v e l  wi th  an  ampztude oeq and wi th  
a number of cycles determined from t h e  s t i p u l a t i o n  that s t r e s s e s  aeq a c t  con
t inuously during a p a r t  of t h e  serv ice  l i f e  ER, i.e., that Neq = eNS.t, t hen  we 
can write 

Consequent l y, 

The ca lcu la t ion  of equivalent stresses f o r  a blade of a hel icopter  a t  t h e  
maximally s t ressed  sec t ion  at a r e l a t i v e  rad ius  'F = 0.74. i s  given as an example 
i n  Subsection 12; see a l s o  Table 1.21. The spar  of this blade i s  a s tee l  tube 
squashed i n t o  an  e l l i p s e  over i t s  e n t i r e  length,  beginning from radius  F = 0.3. 
The finimum f a t igue  limit of t h e  tubular  blade a t  this s t a t ion ,  based on r e s u l t s  
of dynamic t e s t s ,  can be taken as equal t o  ownin= 13 kg/mm". 

S t r e s s  analysis of a blade with a tubular  s t ee l  spar i s  usual ly  car r ied  out 
i n  two planes:  i n  t h e  plane of m i n i "  (o,.)and i n  t h e  plane of maximum r i g i d i t y  
(a,). In this case, it my happen that, at some poin t  of t h e  perimeter of t h e  
spar  sect ion,  t he  amplitude of a l t e rna t ing  stresses reaches a magnitude ax = 

= ,&= greater, t han  t h e  amplitude oy. 
However, usual ly  owing t o  t h e  phase difference of t h e  stresses act ing i n  

these  two planes,  such a magnitude of a l t e rna t ing  stresses i s  almost never 
reached. Therefore, i n  ca lcu la t ing  t h e  serv ice  l i f e  of a blade we can use t h e  
approxjmate formula: 

The coef f ic ien t  5 can be calculated i f  a simultaneous recording of stresses 
ax and oy i s  ava i lab le .  If the re  are no da ta  f o r  determining 5 ,  then s u f f i c i e n t l y  



reliable results can be obtained by assuming 5 = 0.5. 

6. 	 Dimersion of &he-Amplitudes of Al.ter-wtinn Stresses  
ii n-anAssigned. F l i g h t  Regime 

In measuring a l t e rna t ing  stresses i n  f l i g h t  it has been found that, at an 
assigned f l i g h t  regime, t h e  magnitudes of stresses differ during t h e  f l i g h t  re
gime and i n  d i f f e r e n t  f l i g h t s .  T h i s  makes it necessary t o  introduce t h e  average 
equivalent amplitude of a l t e rna t ing  stresses i n  a l l  f l i g h t  regimes. 

To determine this amplitude, we can use spec ia l  oscj-llogram decoders which 
permit determining t h e  number of amplitudes of stresses n, located i n  t h e  range 

d'k=okR

where o, and o k - 1  are t h e  amplitude levels of a l t e rna t ing  s t r e s s e s  se lec ted  f o r  
t h e  calculat ion.  

Then, t h e  average equivalent amplitude of a l t e rna t ing  s t r e s s e s  i n  t h e  re
gime i n  question can be determined by a formula analogous t o  eq.(11.9): 

(11.10) 


Here, 	 
n, = r e l a t i v e  number of cycles  with amplitude ok 

where 
nk = number of Cycles with amplitude 0, w h i l e  nx i s  the  t o t a l  number 

of cycles recorded by t h e  decoder; 
e i  = r e l a t i v e  number of cycles with s t r e s s e s  g rea t e r  than  t h e  m i n i "  

f a t igue  limit i n  t h e  i - t h  f l i g h t  regime. 

Summation with respect  t o  k i s  car r ied  out only f o r  those time i n t e r v a l s  i n  
t h e  i - t h  regime i n  which the  amplitude of stresses 0, i s  g rea t e r  than  t h e  mini
mum f a t igue  l i m i t  o w n i n .  

When determining t h e  average equivalent amplitude during t h e  e n t i r e  se rv ice  
l i f e  of a hel icopter  by means of eq.(ll.9), t h e  amplitude i n  each f l i g h t  regime 
should be calculated from eq.(l l . lO),  w h i l e  the  relative durat ion of the  regimes 
r a i s ing  t h e  damage p o t e n t i a l  of t h e  s t ruc tu re  i s  calculated by t h e  formula 

i 


To simplify t h e  decoding, it i s  general  p rac t i ce  t o  replace determination /169
of t h e  equivalent amplitude by t h e  maximum amplitude i n  each regime; this raises 



t h e  r e l i a b i l i t y  margin but leads t o  some decrease i n  serv ice  l i f e  of t h e  s t ruc
t u r e  

7. 	Method of Calculating Service Li fe  with t h e u s e  
of Reliability Coeff ic ients  

The problem of determining t h e  serv ice  l i f e  of a given s t ruc tu re  reduces t o  
f inding some safe number of cycles of stress i n  serv ice  N, a t  wl-ich t h e  prob
a b i l i t y  of failure of t h e  s t ruc tu re  i s  very small and equal t o  t h e  assigned 
value. Lf it were poss ib le  t o  t e s t  a s u f f i c i e n t l y  la rge  number of specimens, it 
would be easy t o  f ind  N, after determining t h e  d i s t r i b u t i o n  cha rac t e r i s t i c  of 
t h e i r  se rv ice  l i f e  (Fig.1.68). Numerous methods of ca l cu la t ion  of se rv ice  l i f e  
[see,  f o r  example (Ref.43)I a r e  based on this approach. However, it i s  usual ly  
necessary t o  determine t h e  serv ice  l i f e - of a s t ruc tu re  on t h e  basis of dynamic 
tests of a f e w  specimens n of t he  s t ruc ture ,  where it i s  impossible t o  determine 
t h e  d i s t r i b u t i o n  of se rv ice  l i f e  with t h e  required accuracy. Therefore, t h e  
method of ca lcu la t ion  of se rv ice  l i f e  of a s t ruc ture ,  based on the  introduct ion 
of c e r t a i n  margins of r e l i a b i l i t y  with respect  t o  the  number of cycles llNand 
amplitude of a l t e rna t ing  s t r e s s e s  V0,has become popular i n  p r a c t i c a l  engineering. 

fig.1.68 Determination of Safe Number of Cycles, 
Based on t h e  Service Life  Dis t r ibu t ion  Curve. 

To ca lcu la te  t h e  serv ice  l i fe  by this method, it is  necessary t o  make a 
stress ana lys is  of a s t ruc tu re  i n  various f l i g h t  regimes, t o  deter;mine t h e  equi
valent s t r e s ses ,  and t o  conduct dynamic t e s t s  of one o r  severa l  specimens of t h e  
s t ruc tu re  at s t r e s s e s  of 

%d =%%9 - (1l.m 
The margin of r e l i a b i l i t y  is  introduced here t o  take i n t o  account the  

possible  d i f fe rence  i n  values of a l t e rna t ing  s t res .ses  i n  i d e n t i c a l  units of d i f 
f e ren t  hel icopters .  

180 




After t e s t i n g  t h e  specimens and obtaining t h e  minimum value of cycles t o  
failure Nmin,we determine t h e  safe nmber  of cycles of stress i n  service,  by 
means of t h e  formula 

The margin of reliabil i ty qN is introduced t o  take i n t o  account t h e  dis- /170
pers ion  of t h e  endurance cha rac t e r i s t i c s .  

Then, t h e  serv ice  l i f e  of a s t ruc tu re  i n  hours can be determined from t h e  
formula 

where f i s  t h e  frequency of s t r e s s ing  t h e  blade i n  serv ice  (cycles  pe r  minute). 

In some cases, t h e  endukance of a s t ruc tu re  migM depend on t h e  frequency 
of stress appl icat ion.  Therefore, if dynamic tests are car r ied  out  at a frequency 
g rea t e r  than  t h e  frequency of s t r e s s ing  i n  f l i g h t ,  it W i l l  be necessary t o  irr
troduce an  add i t iona l  margin f o r  t h e  frequency of s t r e s s ing  vi. T h i s  margin i s  
introduced mainly f o r  components made of duralumin and f o r  tests car r ied  out a t  
a frequency which is by a f a c t o r  of 5 - 10 higher than  t h e  frequency of stress
i n g  i n  f l i g h t .  I n  this case, t he  value i s  taken as equal t o  T i  = 1.5 - 2.0. 
When allowing f o r  t hese  f ac to r s ,  t h e  formula f o r  determining t h e  service l i f e  
can be w r i t t e n  i n  t h e  form 

If we assume t h a t  t h e  d i s t r i b u t i o n  of t h e  endurance c h a r a c t e r i s t i c s  obeys 
t h e  normal l a w  and t h a t  t h e  parameters of this l a w  are known, then, as already 
mentioned, t he  magnitudes of t h e  required r e l i a b i l i t y  margins with respect  t o  
t h e  number of cycles 7lN and a q l i t u d e  of a l t e rna t ing  stresses could be deter
mined by calculat ion,  after assigning a cer ta in ,  s u f f i c i e n t l y  small probab i l i t y  
of f a i l u r e  of t h e  s t ruc tu re  i n  service.  However, such ca lcu la t ions  cannot l a y  
claim t o  high accuracy. Therefore, we can use t h e  method of assigning t h e  magni
tudes of t hese  coef f ic ien ts  on t h e  basis of he l icopter  operating experience, 

On t h e  basis of such experience, t h e  safety f a c t o r  with respect  t o  t h e  am
p l i t u d e  of a l t e rna t ing  stresses To can be taken as equal t o  1.2, whereas t h e  
f a c t o r  wi th  respect t o  t h e  number of cycles  of stress yN varies as a func t ion  of 
t h e  number of t e s t e d  specimens and t h e  degree of e s s e n t i a l i t y  of t h e  uni t  f o r  
f l i g h t  safety 

A l l  units and components of a hel icopter  can be divided i n t o  four  groups 
based on degree of essentiality f o r  f l i g h t  safety:  

Grom I - units whose failure l e a d s ' t o  immediate and complete d is rupt ion  of 



operab i l i t y  and safe ty ,  wi th  a diff icul t ly  de tec tab le  inc ip i en t  f a t igue  crack. 
T h i s  group includes blades whose spar  i s  covered and does not permit p o s t f l i g h t  
inspect ion,  a va r i e ty  of components of t h e  hub and cont ro ls  of t h e  main and aux
i l i a ry  r o t o r s  not access ib le  t o  inspection, t h e  ro to r  sha f t ,  e t c .  

Grour, I1- u n i t s  whose failure could lead  t o  imediate and complete disrup
t i o n  of ope rab i l i t y  of t h e  s t ruc tu re  and f l i g h t  safety, but  where e a r l y  detec
t i o n  of i nc ip i en t  f a t i g u e  cracks is  poss ib le .  T h i s  group includes blades wi th  a 
r e l i a b l y  operating system signal ing t h e  appearance of cracks, as w e l l  as a l l  
other  u n i t s  c l a s s i f i e d  i n  Group I provided t h a t  i nc ip i en t  f a t igue  cracks can be 
detected i n  p r e f l i g h t  inspect ion.  

T A B U  1-16 

SAFETY FACTORS WITH RESPEGT TO 
NUMBER OF C Y C W -

Specimens n 
Group 

I V__~~ 

1 2  6.0 6 2,.5 
8 4.0 4 2.0 
6 3.0 3 1.5 
4 2 .5  2 1.o 

>L" The f a c t o r s  TN given f o r  Group I 
of  t h e  units are double t h e  usua l  
values, s ince  they  include a l s o  
t h e  f a c t o r s  Tc o f t e n  introduced t o  
allow f o r  inaccuracy of t h e  hy
pothes is  of l i n e a r  sumat ion  of 
damageability . 

Grow I11 - u n i t s  whose fa i lure  leads 
t o  p a r t i a l  l oss  of ope rab i l i t y  and ell-
dangers f l i g h t  safety,  but  permits forced 
landing without damage t o  t h e  hel icopter .  
T h i s  group includes numerous fuselage 
p a r t s  and even t h e  reduction gear  frame
work i f  it is redundant. 

Grow IV - u n i t s  whose f a i l u r e  
al-

/171 
causes par t ia l  loss of operabi l i ty ,  
lass continuance of f l i g h t ,  does not lead 
t o  rapid failure of other  units, and per
mits de tec t ing  rupture i n  ground inspec
t i o n .  T h i s  group includes numerous ele
ments of t h e  fuselage,  s t a b i l i z e r  of t he  
hel icopter ,  and of other  r e l a t ed  s t ruc
tural elements. 

The more e s s e n t i a l  t h e  un i t ,  t h e  
g rea t e r  should be t h e  magnitude of t h e  
s a f e t y  f a c t o r  wi th  respect  t o  t h e  number 
of cycles .  The following values of these  
f a c t o r s  are proposed here (Table 1.16). 

&I p r a c t i c e  it i s  poss ib le  t o  re
a l i z e  s a f e t y  f a c t o r s  f o r  t h e  number of 
cycles  requrired i n  Groups I and I1 of 
he l icopter  p a r t s  only at a very low fre

quency of s t r e s s  a l t e rna t ion  i n  f l i g h t .  In  es tab l i sh ing  t h e  serv ice  l i f e  with 
such l a rge  s a f e t y  f a c t o r s  f o r  a l l  bas ic  he l icopter  units, tests up t o  a very 
la rge  number of cycles, much g rea t e r  than  lo7 cycles,wouB be required;  this 
would take  a grea t  d e a l  of time. Therefore, an  accelerated method of dynamic 
tests with a s a f e t y  f a c t o r  f o r  t h e  number of cycles  of TN = 1o r  of even less 
than Unity is gaining i n  popular i ty .  I n  this case, t h e  required r e l i a b i l i t y  i s  
secured by introducing ordy t h e  s a f e t y  f a c t o r  f o r  s t r e s s e s .  To convert t h e  fac
t o r  TN t o  t h e  f a c t o r  for we general ly  use eq.( l l .S)  with t h e  exponent m = 6. 
With this approach, t h e  required f a c t o r  of s a f e t y  f o r  t h e  amplitude of alternat
ing  stresses differs, depending on the  number of t e s t e d  specimens and is g rea t e r  
f o r  duralumin, m a k i n g  it necessary t o  introduce an add i t iona l  f a c t o r  f o r  t h e  d i f 
ference of t h e  frequency i n  tests and i n  f l i g h t .  
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I?,,, t h e  safe number of cycles i s  determined 
1 1.8 2.0 with  respect  t o  t h e  minimum number of cycles  
2 1.7 1.9 of stress of t h e  specimen t o  failure N, = -3 1.6 1.8 - "in 
6 1.5 1.7 

8. 	Method of A.F.Selikhov f o r  Calcu&tirv: t h e  Required Safety /L72
Factor with Respect t o  the  Number of Cycles +ilN 
_- _ _ . ~ - ~ 

A s  mentioned above i n  Subsection 2, t he  endurance of a s t ruc tu re  has a sen
s i t i v i t y  threshold with respect  t o  t h e  number of cycles No s o  t h a t  t he  d is t r ibu

t i o n  funct ion i n  the region of 
low p robab i l i t i e s  of f a i l u r e  de

~ -. 'f y (lOg>JmL") d a t e s  from the  normal l a w .  
/ n = l O O  Theoretically,  one could s e l e c t  

a s a f e t y  f a c t o r  f o r  t he  number 
of cycles  such t h a t  t he  prob-
a b i l i t y  of f a i l u r e  of t h e  s t ruc-
ture would be equal t o  zero. 
However, as shown elsewhere 
(Ref.&), f o r  a s u f f i c i e n t l y  ac-
cura te  determination of t he  sen-
s i t i v i t y  threshold a la rge  num-
ber of specimens i s  required so  
t h a t  i t  usual ly  i s  impossible t o  
determine i t s  magnitude f o r  a 

6.2 6.4 6.6 6.8 7.0 7.2 I o g N  s t ruc tu re .  Therefore, one gener-
a l l y  assumes t h a t  t he  logarithms 
of t h e  number of cycles t o  fail-

Fig.1.69 Dis t r ibu t ion  of M i n i "  Endurance ure log N are d i s t r ibu ted  ac-
Values f o r  a Different Number of Specimens. cording t o  the  normal l a w  and 

t h e  serv ice  l i f e  of t he  s t r u c t u r e  
i s  not based on t h e  condi t ion 

t h a t  the probabi l i ty  of failure i s  P = 0 but on the  condi t ion t h a t  this prob
a b i l i t y  i s  su f f i c i en t ly  small, say equal  t o  P = 1/10,000. If the re  ac tua l ly  i s  
B threshold of . s e n s i t i v i t y  present ,  then  t h e  s t i p u l a t i o n  of such a small prob-



a b i l i t y  of failure, calculated i n  accordance wi th  t h e  normal l a w  of d i s t r ibu t ion ,  
tends t o  be more rigorous than  t h e  requirement P = 0 which could be imposed i f  
t h e  value of No were calculable .  Therefore, a determination of safety f a c t o r s  
on the  basis of a somewhat g rea t e r  p robab i l i t y  of failure, say P = l/lOOO and 
even P = 1/100, i s  e n t i r e l y  permissible.  

To determine t h e  required safety fac to r s  f o r  t h e  number of cycles we can 
use t h e  method proposed by A.F.Selikhov. T h i s  method involves t h e  following: 

Assuming that t h e  d i s t r i b u t i o n  of t h e  logarithms of t h e  numbers of cycles  
t o  failure of a s t ruc tu re  obeys t h e  normal l a w  

t h e n  t h e  d i s t r i b u t i o n  of t h e  minimum endurance values o f  a c e r t a i n  batch of speci
mens of this s t ruc tu re  can be d e t e r d n e d  from t h e  formula 

where 
n = nmber of t e s t e d  specimens; 

Q(x) = Laplace funct ion m l o g N  - log ' 

S I O K N  f l  > *  

The character  of t h e  d i s t r i b u t i o n  of ym1( log  N) f o r  values S,, = 0 .l5 
and n = 5, 10, and l00 i s  indica ted  i n  Fig.1.69. The values of t h e  mathematical 
expectations and t h e  mean-square deviat ions of this d i s t r i b u t i o n  as a funct ion 
of SlogN and n can be found from t h e  curves presented i n  Figs.l.70 and 1.71. 

The mathematical expectation of t h e  minimum endurance value can be deter
mined by t h e  formula 

mlqNmln "hyN- AmZogN. 

The value of AmloKN i s  determined as a func t ion  of t h e  mean-square devia
t i o n  SloKN and of t h e  number of t e s t e d  specimens, from the  curve i n  Fig.l.70. 

The mean-square devia t ion  of t h e  m i n i m u m  endurance value Slo mi II referred 
t o  SloKN i s  given i n  F'ig.l.71. 

* Thus, i f  t h e  cha rac t e r i s t i c s  of t he  d i s t r i b u t i o n  of endurance of t h e  /173
s t ruc tu re  are known, eq.(ll.15) can be used f o r  determining t h e  d i s t r i b u t i o n  of 
t h e  minimum endurance values when t e s t i n g  a smallqumber of specimens n. Know
ing  this d i s t r ibu t ion ,  we can determine t h e  probabiu . ty  of failure of a s t ruc
ture at a number of cycles  of stress of 
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where 
'qN = r e l i a b i l i t y  coe f f i c i en t  wi th  respect  t o  t h e  number of cycles;  

N m i n  = m i n i m u m  value of t h e  number of cycles t o  failure of t h e  s t ruc tu re  
i n  tests. 

Taking t h e  logarithm of eq.(11.16), we ob ta in  

hgNs =E --logqhl, 
where 

E 

If dynamic tests of fu l l - sca le  models a r e  car r ied  out a t  loads equivalent 
t o  the  loads ac t ing  on t h e  s t ruc tu re  i n  question i n  f l i g h t ,  it can be taken as 
c e r t a i n  t h a t  t h e  d i s t r i b u t i o n  of endurance i n  dynamic tests and under se rv ice  
conditions i s  iden t i ca l .  A d i f fe rence  i n  these d i s t r ibu t ions  can arise only from 
e r ro r s  i n  the  dynamic tests and from the  sca l e  e f f e c t  i n  cases i n  which t h e  
volume of t h e  loaded 'mater ia l  i n  t h e  s t ruc tu re  i s  g rea t e r  than  i n  t h e  specimen. 
An example would be t h e  case i n  which a specimen cut  out of a blade i s  loaded i n  
t h e  t e s t  only on i t s  midsection. If dynamic t e s t s  are car r ied  out a t  loads d i f 
fering from those ac t ing  i n  f l i g h t ,  then  the  cha rac t e r i s t i c s  of t h e  d i s t r i b u t i o n  
of endurance i n  serv ice  subs t an t i a l ly  differ f romthose  obtained i n  t e s t s  and 
can be determined only a p p r o h a t e l y  by a conversion based on spec i f i c  assump
t ions  wi th  respect t o  the  hGhler curve. 

If t h e  d i s t r i b u t i o n  of endurance under se rv ice  conditions c p e e r v  has been 
determined, then  t h e  condi t iona l  p robab i l i t y  of failure of one a r b i t r a r i l y  taken 
specimen of a s t ruc tu re  i n  serv ice  at t h e  given outcome of dynamic t e s t s  s a  /174
can be determined from t h e  expression 

(11.u) 


The t o t a l  p robabi l i ty  of failure of this specimen of t h e  s t ruc tu re  i n  
serv ice  w i l l  be equal t o  t h e  sum of t h e  condi t ional  p robab i l i t i e s  mult ipl ied by 
t h e  absolute  p o s s i b i l i t y  of each outcome cpmi (<,)dS, : 

After ca lcu la t ing  t h e  value of this in t eg ra l ,  we can construct t h e  depend
ence of t h e  p robab i l i t y  of failure of t h e  s t ruc tu re  P on t h e  adopted magnitude 
of t h e  f a c t o r  of safety wi th  respec t  t o  the  number of cycles  'QN. 

If t h e  d i s t r i b u t i o n  of endurance i n  service and i n  tests is  i d e n t i c a l  
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- -  

t hen  t h e  p robab i l i t y  P depends only on two fac to r s :  t h e  number of t e s t e d  speci
mens  n and t h e  r a t i o  of t h e  l o g a r i t h  of t h e  f a c t o r  of s a f e t y  log  TN t o  t h e  
mean-square devia t ion  of t h e  l o g a r i t h m  of t h e  numbers of cycles  t o  failure of 
t h e  specimens SI, (Fig J.72) 

A %gN 

1
in1 

ww 


50 R 

Fig.l.70 Change i n  Magnitude of Fig J.71 Mean-Square Deviations 
Mathematical Expectation of M i n i - of M i n i "  Endurance Values as a 
mum Endurance Values as a Function Function of t h e  Number of Tested 
of t he  Number of Tested Specimens. Specimens. 

Thus, t o  determine t h e  required s a f e t y  f a c t o r  f o r  t h e  number of cycles,  we 
can conduct d y d c  tests on n specimens of t h e  s t ruc tu re ,  determine t h e  mean-
square devia t ion  Slog  and Nmin and, after assigning a c e r t a i n  p robab i l i t y  of a 
failure P a a d ,  dercve TN f r o m t h e  curves i n  Fig.1.72. After this, t h e  safe number 
of cycles t o  failure can be determined from eq.(11.12). 

This approach i s  poss ib le  when only f e w  specimens are t e s t ed .  The value of 

Slog can be taken from t h e  resdts  of other  tests of similar structures". 

If we assume beforehand t h a t  S l o g N= 0.2 ( t h i s  value i s  close t o  t h e  m i n i 
mum mean-square deviat ions observed f o r  most hel icopter  u n i t s )  and ass ign  t h e  
p r o b a b i l i t i e s  of failure indicated i n  Table 1.18, then  values of t h e  s a f e t y  fac

+* A similar approach as r e l a t ed  t o  t h e  ca l cu la t ion  of a i rp lane  s t ruc tu res  w a s  
proposed by V.L.Raykher. 
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Fig.1.72 Diagram f o r  Select ing t h e  
Magnitude of t h e  Safety Factor V N  
with  Respect t o  t h e  Number of Q c l e s  

of S t r e s s .  

t o r s  c lose  t o  those given i n  Table 1.16 
can be obtained. Usually, t h e  values 
of Slog are higher. Therefore, t h e  
s a f e t y  f ac to r s  obtained by this method 
are l a r g e r  t han  those given i n  t h e  table 
(Table 1.16). 

The main problem i n  using t h e  
method presented here l i e s  i n  defining 
t h e  probabi l i ty  of failure of t h e  s t ruc
ture t o  be assigned i n  ca lcu la t ions  of 
se rv ice  l i f e .  Frequently, t h e  prob
abilities recommended by d i f f e ren t  
sources d i f f e r  by three o r  four  orders  
of magnitude [see, f o r  example (Ref.43)I.
The values f o r  t h e  p robab i l i t y  pro- /176
posed here ( i n  Table 1.18) were se lec ted  
with t h e  a i m  of having them correspond, 
wi th  more o r  l e s s  r e l i a b i l i t y ,  t o  num
bers of cycles smaller than  t h e  sensi
t i v i t y  threshold N o .  Therefore, these  
p robab i l i t i e s  should be regarded as 
c e r t a i n  conditiona1 values perta in ing 
t o  t h e  normal l a w  of d i s t r ibu t ion .  The 
a c t u a l  values a r e  much lower o r  even 
equal  t o  zero. 

9 .  	Determination of S log  a t  Given Fiducia l  Probabi l i ty- _  _ _  - - -~ 

A s  follows from the  preceding Subsection, t h e  l o g a r i t h  of t h e  f ac to r  of 
s a f e t y  wi th  respect t o  t h e  number of cycles  log vN needed f o r  ensuring t h e  given 
p robab i l i t y  of failure i s  d i r e c t l y  propor t iona l  t o  the  mean-square deviat ion i n  

t h e  d i s t r i b u t i o n  of <he logarithms ' o f  
t he  numbers of cycles t o  f a i l u r e  of t h e  

TABLE 1.18 	 s t r u c t u r e  SlogN .  The g rea t e r  Slo N J  

t h e  g rea t e r  should be t h e  f a c t o r  TN. 
Therefore, t h e  r e l i a b i l i t y  of determin-

Group of  U n i t s  
P r o b a b i l i t y  of Failure ing t h e  serv ice  Life of a s t ruc tu re  de

~ ~ ~ ~ ~ t i ~ l i ~ ~of Efferent 
of Structure pending on t h e  admiss ib i l i ty  of numerfor Safety  

1
Group I 

qooo 
1

Group I1 
1000 

1-Group I11 
100 

1-Group IV 
10 

ous adopted assumptions i s  la rge ly  re
l a t ed  with t h e  accuracy of determining 
s l o g  N 

Usually, 3 - 5 specimens of a f u l l -
s c a l e  s t ruc tu re  are t e s t e d  t o  e s t a b l i s h  
i t s  serv ice  l i f e .  I n  many cases it is 
considered s u f f i c i e n t  t o  t e s t  only one 
specimen. There i s  no doubt t h a t ,  wi th  
such a small number of t e s t e d  s t ruc
t u r e s ,  t he re  i s  no p o s s i b i l i t y  f o r  a 
s u f f i c i e n t l y  accurate  determination of 
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Slog . Therefore, it i s  assumed i n  t h e  method proposed by A.F.Selikhov (see  
Subsect.8) t h a t  Slog cannot be determined i n  a l l  cases. With a small number of 
t e s t ed  specimens, we can take SlogN based on t h e  t e s t  r e s u l t s  of analogous speci
mens of another s t ruc tu re  t e s t ed  e a r l i e r .  Such an approach g rea t ly  s impl i f ies  
t h e  process of es tab l i sh ing  t h e  service l i f e  and proves extremely usefu l  i n  
p rac t i ce  

A determination of Slor with suf f ic ien t  r e l i a b i l i t y  is possible  by t e s t i n g  
at least t e n  specimens of t h e  s t ruc ture .  For an estimation of this r e l i a b i l i t y ,  
one of ten uses t h e  concept of f i d u c i a l  p robabi l i ty  d i s t r i b u t i o n  of SlogN .  

The f i d u c i a l  p robabi l i ty  f3 is usually selected such t h a t  it i s  possible  t o  
consider confident t h a t  t h e  value SlogN l i e s  i n  t h e  in t e rva l :  

where -
Slog = estimation of Slog obtained f o r  a l imited number of t e s t  re

sults; 
q = coef f ic ien t  grea te r  than uni ty  i n  magnitude. 

It follows from t h e  aforesaid t h a t  t h e  unknown value of SlogN may l i e  w i t k  
i n  t_he confidence limits, with a probabi l i ty  f 3 .  Consequently, this can be equal 
t o  qSlogN. In  this case, t h e  logarithm of t h e  sa fe ty  f a c t o r  f o r  t h e  number of 
cycles log TN i n  conformity with t h e  method presented i n  Subsection 8 increases 
i n  proportion t o  t h e  quantity q, which i s  the reason f o r  t h e  f a c t  that t h e  cal
culated value of t he  service Life  decreases. 

The value of t h e  coef f ic ien t  q depends on t h e  number of t e s t ed  specimens 
and on the  adopted value of t h e  f i d u c i a l  p robabi l i ty  f 3 .  

Table 1.19 gives t h e  values of t he  coef f ic ien t  q and the  values of t h e  
f i d u c i a l  p robabi l i ty  f3 corresponding t o  them, which we have taken from t h e  book 
of E.S.Wenze1 IlTheory of Probabi l i tyn.  

A s  follows from Table 1.19$ i f  - f o r  example - a t o t a l  of 25 specimens i s  
t e s t ed  and t h e  f i d u c i a l  p robabi l i ty  i s  not l e s s  than  YO%, then t h e  experimentally 
obtained value of slogmust be increased by a f a c t o r  of 1.15 when calculat ing 
the  service Life. 

I n  assigning t h e  f i d u c i a l  probabi l i ty ,  it must be borne i n  m i n d  t ha t  t h e  /177
r e l i a b i l i t y  of determining SlorN should not exceed t h e  r e l i a b i l i t y  of determin
ing a l l  other parameters enter ing i n t o  the  ca lcu la t ion  of service l ife.  T h i s  
per ta ins  pr imari ly  t o  parameters determining t h e  l a w  of d i s t r ibu t ion  of endurance 
i n  the  region of  small p robab i l i t i e s  of f a X u r e ,  such as t h e  threshold q of sen
s i t i v i t y  No, and t o  t h e  character of t he  d i s t r i b u t i o n  l a w  i t s e l f  which only ap
p r o x i m t e l y  can be taken as logarithmically normal. 

Therefore, t h e  f i d u c i a l  p robabi l i ty  p, character iz ing t h e  r e l i a b i l i t y  of 
determining SlogN, can be lowered subs t an t i a l ly  t o  values a t  which t h e  coeffi
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c i e n t  q will be not much greater than Unity. 

Based on these  considerations,  i n  determining t h e  f a c t o r s  TN we o f t en  as
sume q = 1and use t h e  value of Slog as not being t h e  value corresponding t o  
t h e  upper l i m i t s  of t h e  confidence i n t e r v a l  a t  s u f f i c i e n t l y  high B .  

10. Dispersion i n  the  Stress Levels f o r  Various S t r u c t u r a l  
Reliability Margin wi th  Remect t o  t h e  -

Amplitude o f x l t e r n a t i n g  Stresses 'Q,- ._ . -

The amplitudes of a l t e rna t ing  stresses set  up i n  f l i g h t  i n  ind iv idua l  speci
m e n s  of hel icopter  p a r t s  of i d e n t i c a l  s t r u c t u r e  d i f f e r  considerably. 

Actual measurements have shown that, i n  i d e n t i c a l  f l i g h t  regimes, t h e  ampli
tudes of a l t e rna t ing  stresses d i f f e r  both f o r  t h e  blades of one and t h e  same 
r o t o r  and f o r  blades of d i f f e ren t  ro to r s .  This can be a t t r i bu ted  t o  the  disper
s i o n  of t he  parameters of series-produced blades because of differences i n  t h e i r  

s i z e  and shape and hence i n  t h e i r  
weight. Usually, t he re  a r e  deviat ions 

TABLE 1.19 from the  t h e o r e t i c a l  contour of t h e  
p r o f i l e  and differences i n  t h e  geo-

Values of Fiducial  Probabi l i ty  B metric twist of t h e  blade. Further-
i n  % f o r  D i f f e r e n t  q more, when i n s t a l l i n g  t h e  blades on 

1.06-1 1.1 I 1.15 1.20 11.25 I 1.3 	 t h e  he l icopter  and adjust ing t h e  coning 
of t h e  ro to r ,  c e r t a i n  d i f fe rences  arise 
i n  t h e  blade s e t t i n g  angle. A l l  this 

n=5 14.6 24.1 35.5 46.1 55.6 63.7 ul t imate ly  leads t o  some d i f fe rence  i n  
n=10 20.8 34 49 62 72.2 79.7 t h e  operating conditions of ind iv idua l  
n=25 32.7 51.8 70.6 83.2 90.5 94.4 blades and, as a consequence, t o  a dis
n=50 45.2 68.2 86 94 97.4 98.8 pers ion  of t h e  amplitudes of alternat

ing  s t r e s s e s  set up i n  i d e n t i c a l  f l i g h t  
regimes. 

There is  a l s o  a d i f fe rence  i n  f l i g h t  regime parameters associated wi th  t h e  
manner of p i l o t i n g  by ind iv idua l  p i l o t s .  

h o t h e r  difference,  which i s  not smaller but  might even be grea te r ,  i s  ob
served i n  t h e  stress amplitudes of a l l  o ther  he l icopter  p a r t s .  The d ispers ion  
i n  stress amplitude i s  espec ia l ly  great i n  cmponents where a l t e rna t ing  loads 
from indiv idua l  blades should be equal  t o  zero when added ( i f  t h e  blades are 
i d e a l l y  iden t i ca l ) ,  f o r  a l l  harmonics wi th  t h e  exception of harmonics t h a t  are 
mult iples  of t h e  number of blades. If t h e  blade parameters are d i f f e r e n t  - and 
this i s  p r a c t i c a l l y  always t h e  case - t hen  t h e  small a l t e rna t ing  loads wi th  har
monic frequencies t h a t  are mult iples  of t h e  number of blades i n  these  he l icopter  
units will be supplemenbed by relatively high loads wi th  o ther  harmonics, having
magnitudes propor t iona l  t o  t h e  magnitude of t h e  d i f fe rence  i n  blade parameters. 
The sca t t e r ing  of t h e  values of t h e  a l t e rna t ing  stresses i n  such units may be 
very great .  Usually, such units include t h e  following: automatic p i t c h  control,  
r o t o r  con t ro l  components, and fuselage p a r t s ;  i n  t h e  latter, it i s  mai* t h e  
reduct ion gear frame t h a t  is  espec ia l lg  stressed by a l t e rna t ing  loads. 



To allow f o r  a l l  above f a c t o r s  i n  ca lcu la t ing  t h e  serv ice  life, we w i l l  /178
introduce t h e  re l iabi l i ty  coe f f i c i en t  wi th  respect  t o  t h e  amplitude of alter
nating stresses %. T h i s  coe f f i c i en t  should ensure opera t iona l  r e l i a b i l i t y  of 
any s t r u c t u r a l  specimen i n  a group of he l icopters  wi th  considerat ion of t h e  ex
i s t i n g  sca t t e r ing  i n  t h e  a l t e rna t ing  stress values. 

Usually, some he l icopter  i s  arbitrari ly se lec ted  for measuring t h e  alter
nating stresses i n  a s t ruc tu re .  The a l t e rna t ing  stresses omea s  obtained i n  tests 
with this hel icopter  are then  used f o r  conducting dynamic tests. T h i s  means-that t h e  tests are made wi th  stresses o t e s t  - Tu o m e a e .  Therefore, t h e  method 
presented above (see  Subsect.8) of determining t h e  r e l i a b i l i t y  margin vN and a 
safe l i f e  yields r e s u l t s  t h a t  can be applied o‘nly t o  a specimen of t h e  s t ruc tu re  
i n  which stresses equal t o  o t e s t  are act ing.  For a l l  o ther  specimens of this 
s t ruc tu re  t h e  serv ice  l i f e  w i l l  be longer i f  t h e  a c t i v e  stresses oact  < o t e s t  
and shor t e r  i f  o a C t> I S t e s t o  

Let us determine the  value of t h e  re l iabi l i ty  coe f f i c i en t  Tu from t h e  con
d i t i o n  that t h e  p robab i l i t y  of failure of t h e  he l icopter  un i t  i n  question Pc, 
w i th  considerat ion of t h e  ex i s t ing  d ispers ion  in t h e  amplitudes of a l t e rna t ing  
stresses, i s  equal t o  the  assigned p robab i l i t y  Pasd. Usually, this value is 
taken t o  be t h e  same as t h e  p robab i l i t y  of failure Po of t h e  un i t  i n  which the  
a l t e rna t ing  stresses o t e s t  adopted i n  dynamic tests are ac t ive .  

Thus, i f  t he  value of V N  i s  chosen from t h e  condi t ion t h a t  t h e  probabi l i ty  
of failure of t h e  specimen wi th  stresses o t e s t  i s  equal  t o  Po = P a s d ,  then  t h e  
p robab i l i t y  of failure of o ther  specimens of this s t r u c t u r e  can be determined 
by means of t h e  formula 

Here, P, i s  t h e  p robab i l i t y  of failure of t h e  he l icopter  un i t  i n  which stresses 
equal t o  IS are s e t  up. I n  this case, t h e  endurance d i s t r i b u t i o n  c p s e r v  deter
mined on t h e  basis of dynamic tests f o r  some se lec ted  equivalent stress l e v e l  
which enters eq.(11.20) should be recalculated wi th  considerat ion of t h e  f a c t  
that, i n  d i f f e ren t  specimens of t h e  s t ruc ture ,  d i f f e r e n t  equivalent stresses are 
set up. 

If we assume t h a t  t he  endurance changes i n  accordance with t h e  l a w  

cmN=const, (11.21) 

then  t h e  cha rac t e r i s t i c s  of t h e  d i s t r i b u t i o n  y s e r v( 5 )  can be set equal t o  
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where 
(Slog )o = mean-square devia t ion  of d i s t r i b u t i o n  of t h e  number of cycle

l o g a r i t h m  at stresses oact  differ ing from those used i n  t h e  
dynamic tests; 

(mlo )a = mathematical expectation of this d i s t r ibu t ion ;  
o t e s t  = stresses i n  t h e  t es t ;  
oaCt= stresses ac t ing  i n  some hel icopter  specimen. 

kt u s  assume t h a t  t h e  d i s t r i b u t i o n  of t h e  ac t ing  a l t e rna t ing  stress ampli
tudes i n  d i f f e r e n t  specimens of a s t ruc tu re  can be taken as logari thmical ly  
normal. Then t h e  p robab i l i t y  of failure of t h e  he l icopter  u n i t  i n  question w i l l

/119 
be equal  t o  

where ylOgD a c t  i s  t h e  d i s t r i b u t i o n  l a w  of t h e  ac t ing  a l t e rna t ing  stress ampli
tudes (Fig.1.73). 

Here, it must be borne i n  mind t h a t  t h e  value of o t e s t  adopted f o r  dynamic 
tests i s  se lec ted  a r b i t r a r i l y ,  based on t h e  r e s u l t s  of measuring stresses i n  one 
randomly chosen he l icopter  or i n  s eve ra l  hel icopters .  Therefore, t h e  p robab i l i t y  
d i s t r i b u t i o n  of failure P, f o r  units wi th  d i f f e ren t  ac t ing  s t r e s s e s  w i l l  shift 
along t h e  ax is  log o ( see  Fig.1.73) depending on t h e  adopted value of u t e s tso 
t h a t ,  a t  oact= o t e s t, t h e  p robab i l i t y  of failure P, would be equal  t o  Paad  i n  
view of t h e  f a c t  t h a t  t h e  value of r\, w a s  se lec ted  from this condition. Hence, 
it is c l e a r  t h a t  t h e  value of Pmea8 will depend on t h e  quant i ty  o t e e t. 

Consequently, t h e  probabi l i ty  P m e a s  i s  a condi t iona l  probabi l i ty  f o r  a 
spec i f ic ,  randomly se lec ted  value of ot e . The t o t a l  p robabi l i ty  of failure of 
a u n i t ,  a r b i t r a r i l y  se lec ted  from a group of hel icopters  Pc, can be obtained as 
t h e  sum of condi t iona l  p robab i l i t i e s  Pmea6  mult ipl ied by t h e  p robab i l i t y  of oc
currence, i n  this unit, of stresses which had been taken as t h e  basis f o r  t h e  
dynamic tests Y l O  g om, d log  o: 

If t h e  stresses are measured i n  one and t h e  same helicopter,  t hen  we can 
consider t h a t  
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If t h e  measurement i s  made on 
several specimens of a s t ruc tu re  /180
arid if ,  i n  t h e  dynamic tests, t h e  
following stresses are assigned : 

where om a v  i s  t h e  average ampli
tude of a l t e rna t ing  stresses 
measured on several specimens of a 
s t ruc ture ,  then  t h e  d i s t r i b u t i o n  
paramet er' y10 & 'J, e 8 8 should be de-

Fig.1.73 Character of t h e  Dis t r ibu t ion  termined as t h e  d i s t r i b u t i o n  para-
-of  y l o g  and P, f o r  Different otes - meters of t h e  average values of al

- Toomeas t e rna t ing  stresses 

It follows from eq.(U.25) that the  t o t a l  p robabi l i ty  of failure Pc depends 
upon t h e  quant i ty  7,. Therefore, after assigning Pc = Pas*,we can determine 
t h e  necessary value of To. It i s  evident t h a t  i n  this case t h e  required value 
of ?ladepends on t h e  l a w  of a l t e rna t ing  stress d i s t r i b u t i o n  f o r  d i f f e ren t  speci
m e n s  of i d e n t i c a l  hel icopter  units yl0 g o a c t  . To determine t h e  cha rac t e r i s t i c s  

of t h i s  d i s t r i b u t i o n  l a w  we can use da t a  from d i f f e ren t  s t r e s s  analyses which 
are o f t en  performed on t h e  sqne hel icopter  units i n  tests made f o r  d i f f e ren t  pur
poses. 

It i s  l o g i c a l  that t h e  dispers ion of t h e  average equivalent a l t e rna t ing  
stresses may d i f f e r  f o r  d i f f e r e n t  un i t s .  

The mean-square devia t ion  i n  the  d i s t r i b u t i o n  of a l t e rna t ing  stresses f o r  
d i f f e r e n t  r o t o r  blades usual ly  l i es  i n  the  range of 

s/oyn =O.02 -0.035. 

If, as i s  o f t en  done, we assume a normal d i s t r i b u t i o n  l a w  of t h e  a l t e rna t ing  
stress amplitudes, then  these  values of S,, & Will correspond t o  the values 

(n .26)  

where 
Sa = mean-square devia t ion  i n  the  d i s t r i b u t i o n  of a l t e rna t ing  stress 

amplitudes f o r . d i f f e r e n t  blades;  
mu = mathematical expectation of this d i s t r ibu t ion ,  i.e., average stress 

i n  these  blades. 
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For small yo, we can assume S l o g  = yu log e. 

For units whose load depends on t h e  quality of adjustment of t h e  ro tor ,  
such as automatic p i t c h  control,  reduct ion gear  frame, and others ,  t h e  coeff i 
c i e n t ~ ~i s  somewhat la rger .  

It follows from t h e  composition of eq.(ll.25) that the  t o t a l  p robab i l i t y  of 
failure Pc depends mainly on two parameters: 

a=--mSrqd 

‘hgN ’ 
b=-, fb0V.s 

where m i s  t h e  exponent of t h e  hf6hler 

The t o t a l  p robab i l i t y  of failure 
fai lure  Po of t h e  s t r u c t u r a l  specimen 

0 I 2 b- Iog?G 
s1096 

Fig.1.74 Results of Calculating t h e  

SbJ. 

curve. 

Pc depends a l s o  on the  probabi l i ty  of 
wi th  stresses etas t, used i n  t h e  calcula

t i o n .  

Figure 1.74. shows the  calcu
l a t i o n s  of t o t a l  p robabi l i ty  Pc 
f o r  d i f f e r e n t  values of a b, and 

Po according t o  eq.(l1.25j i n  t h e  

case where t h e  s t r e s s e s  w e r e  

measured only i n  one specimen of 
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t he  he l icopter  s t ruc ture .  The cal 

cula t ions  were car r ied  out a l s o  

f o r  d i f f e r e n t  values of t h e  number 

of t e s t e d  specimens, but it was 

found t h a t  t h e  t o t a l  p robab i l i t y  

of failure does not depend appre

c iab ly  on this number. I n  Fig .1.74 


-t h e  broken curves represent nape
-= 5 and t h e  s o l i d  curves, nspec  

= 20. 

If it i s  required t h a t  Pc = 

= Po = P a e d ,  then  we can Obtain 
f ina l  graphs from which it i s  easy 
t o  determine the  necessary margin
T o  if t h e  values of Slogs, S I o g N ,  
and Paed are known. These graphs 

A s  i nare given i n  Fig.1.75. 
Probabi l i ty  of Fa i lure  n i t h  Cons idera  F’ig.1.74, t h e  broken curves per
t i o n  of Dispersion i n  t h e  Values of t a i n  t o  t h e  case n rpec  = 5 and 
St resses  Acting i n  Different  Specimens t h e  s o l i d  curves, t o  t h e  case 

o f .  a Structure .  n s p e c  = 20-
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As an example, le t  us f ind  t h e  required margin To f o r  a helicopter blade i f  
it i s  known that ya = 0.0e ( S 1 , , ~  = 0.035), and SlogN = 0.4. 

Fi r s t ,  w e  determine the  value of t h e  coeff ic ient  a: 

mSzo9, 6~0.035 =0.525.a=----
'li?gN 0.4 

Then, assigning t h e  value Pc = 1/u)OO, we obtain from the  curves i n  
Fig .1.75 : 

6=1.28 ( at n,,=5); 
from where 

logqa= 1.28*0.035=0.0448, 
and 

q,=1.11. 

If t h e  d i s t r ibu t ion  l a w  'pa is  unknown, we usually take To = 1.2. T h i s  & 
value of &, as already mentioned i n  Subsection 7, i s  of ten  used i n  p r a c t i c a l  
calculations.  

a= 
SIOgN 7


0.8 / 

0.6 
\ I
O= 

1 ~ 0 0  

0.4 

0.2 

0 0.5 1.0 1.5 

Fig.1.75 Diagram f o r  Selecting the  Re l i ab i l i t y  Margin Tu. 

11. Method of Determining the  Rel iab i l i ty  Margin Tu 
Proposed by A.F.Selikhov 

I n  our presentation, ce r t a in  methods and arguments d i f f e r  somewhat from 
those suggested by A.F.Selikhov, but the  basic p r inc ip l e  of t h e  approach t o  
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solving t h e  problem i s  borrowed from t h a t  author. 

Here, i n  determining To t h e  method described i n  Subsection 8 was used ex
cept that t h e  d ispers ion  i n  t h e  amplitudes of stresses ac t ing  i n  f l i g h t  i s  taken 
i n t o  account i n  t h e  cha rac t e r i s t i c s  of t h e  endurance d i s t r ibu t ion .  

If, as before, it is  assumed that - upon a change i n  stress amplitude -
t h e  endurance under serv ice  conditions changes i n  conformity wi th  t h e  law (lle21), 
i.e., t h a t  

t hen  we can d e t e h n e  the  cha rac t e r i s t i c s  of t h e  endurance d i s t r i b u t i o n  i n  
serv ice  wi th  consideration of t h e  d ispers ion  i n  the  amplitudes of ac t ing  stresses. 

I 

I The mathematical expectation of this d i s t r i b u t i o n  w i l l  be equal  t o  


where m l o g o  i s  the  mathematical expectation of t h e  d i s t r i b u t i o n  of stress 
a c t  

amplitudes i n  d i f f e ren t  specimens of t h e  invest igated s t ruc tu re  ( t h e  average 
value of t h e  amplitudes of a l t e rna t ing  s t r e s s e s  i n  d i f f e r e n t  specimens of t h e  
s t ruc tu re ) .  

If t h e  tests are car r ied  out a t  stresses of /183 
ofest= %msay, 

then, a f t e r  pu t t i ng  

The mean-square devia t ion  i n  t h e  l o g a r i t h m  of the  numbers of cycles t o  
failure under se rv ice  conditions can be determined from t h e  formula 

If t h e  dynadc  t e s t s  are car r ied  out a t  an  amplitude of stresses o t e s t  
= To oav (where oaV i s  t h e  average amplitude measured i n  f l i g h t  on d i f f e r e n t  
specimens of t h e  s t ruc tu re ) ,  then  t h e  d ispers ion  of t he  cha rac t e r i s t i c s  of en
durance i n  t e s t s  w i l l  depend on t h e  d ispers ion  of t h e  ac t ing  stresses i n  d i f f e r 
en t  hel icopter  specimens. The amplitude establ ished i n  tests i s  a random quan
t i t y  depending on t h e  r e s u l t s  of stress ana lys is .  A s  before ( see  Subsect .e), 
we are in t e re s t ed  i n  t h e  c h a r a c t e r i s t i c s  of t h e  d i s t r i b u t i o n  of t h e  logarithms 
of t h e  mini" number of cycles  t o  failure. 
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where 
N2 = m i n i "  number of cycles t o  f a i l u r e  of a s t ruc ture ,  w i t h  considera

t i o n  of t h e  f a c t  that t h e  amplitude of t h e  tests can be establ ished 
as d i f f e ren t ,  depending upon t h e  r e s u l t s  of measuring t h e  average 
stress amplitude 5av; 

Nmln  = m i r T i "  number of cycles t o  f a i l u r e  of a s t ruc tu re  at a c e r t a i n  
f ixed value of t h e  stress q l i t u d e  i n  t h e  tests ote . 

Then, 

t h e n  

We put 

Then, m2 = m l o g  N, 

of t h e  numbers of 

log~t~#t=logq,+log maav

log maav miop,, -
i n  9 arid t h e  value of the  mean-square deviat ion of t he  logarithms 

cycles i n  tests w i l l  be 

where (SI ,,)av i s  the  mean-square deviat ion i n  t h e  values of t he  average loga
rithm of t h e  s t r e s s  amplitude measured i n  d i f f e ren t  specimens. 

This value depends on t h e  number of measurements n m e a B :  

With consideration of eq.( 11.33), t h e  mean-square deviat ion i n  the  endurance 
d i s t r ibu t ion  i n  t e s t s  can be determined by means of t h e  formula 



Using t h e  same reasoning as above (see  Subsect.�?), we a r r ive  a t  t h e  f a c t  
that t h e  p robab i l i t y  of failure i n  this case can be determined by an expression 
similar t o  eq.(l l .19):  

If t h e  d i s t r i b u t i o n  of the  logarithms of t h e  mhimum number of cycles t o  
failure i n  t e s t s  can be represented approximately by t h e  normal d i s t r i b u t i o n  l aw,  
then eq.( l l .36)  can be rewr i t ten  i n  t h e  form 

If we introduce new var iab les  

then  eq.(l l .37) i s  transformed i n t o  

where the  upper limit f (Fz )  i s  determined by t h e  expression 

Subs t i tu t ing  here t h e  values of m l  and m2, we' obta in  

It follows from this expression that the  probabi l i ty  of failure Pc can be 
determined f o r  each %, i f  we know t h e  values of 
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We can propose t h e  following method of determining t h e  required margin la: 

F i r s t ,  construct t h e  dependence of S2/S1 on log % + log V N  + A m 1 . g ~  
- f o r  

S1 
assigned values of P c  ( see  Fig.1.76). Then, after determining SI and S2 from /185 
e q s . ( l l . a )  and (ll.35), use Fig.1.76 f o r  determining t h e  assigned value Pas* 

Amlog (see Fig.l.70), and SI, it is easy t o  determinefrom where, knowing IN, 
a l s o  ?la. 

The method proposed here is r a t h e r  simple, although it involves somewhat 
more complicated computations f o r  determining t h e  serv ice  l i f e  i n  comparison with 

-SZ
SI 

0.8 

0.6 


0.4 

0,2 


Fig.1.76 Graph f o r  Determining 

log TU -k log T N  + b l o  g N as a 
S1 


Function of S1/S2, for Different 
Assigned P robab i l i t i e s  of Fai lure  

s t ee l  spar.  

t h e  method proposed i n  Subsection 10, 
where t h e  margins were calcu
l a t e d  on t h e  basis of values taken 
d i r e c t l y  from the  graph. 

It fonows from the  above for
mulas that, under t h e  assumptions 
adopted here, t h e  margins of reli
a b i l i t y  TN and Tu can be combined 
i n t o  a s ing le  c r i t e r i o n  7\ = TN7; or 
one r e l i a b i l i t y  margin can be sub
s t i t u t e d  f o r  t h e  other .  T h i s  i s  
convenient i n  carrying out calcula
t i o n s  and conducting dynamic tests, 
a f a c t  a l ready mentioned i n  Sub
sec t ion  7, but it o f f e r s  no advan
t age  i n  se l ec t ing  t h e  margins TN and 
Tu s ince  t h e i r  values are determined 
from d i f f e r e n t  conditions.  

12. 	Ekamle of Calculation of 
Service Wfe 

A s  an exitmple, l e t  us ca lcu la te  
t h e  serv ice  l i f e  f o r  a blade of a 
he,avy he l icopter  wi th  a tubular  

I n  determining t h e  serv ice  l i f e  of a blade, t h e  ca lcu la t ion  i s  first per-
.formed f o r  sec t ions  located a t  d i f f e r e n t  r e l a t i v e  r a d i i ,  after which t h e  serv ice  
l i f e  obtained f o r  .the weakest s ec t ion  is es tab l i shed  f o r  t h e  e n t i r e  blade. 



Let t h e  weakest s ec t ion  be that a t  a r e l a t i v e  radius  F = 0.74. 

We now assume that t h e  r e s u l t s  of t h e  dynamic tests of f i v e  specimens of 
t h e  spar at an a l t e rna t ing  stress amplitude *15 kg/mm2 are as follows (see 
Table 1.20) : 

From tests, we draw t h e  conclusion that t h e  endurance Limit ow of  t h e  /186
specimens Nos.2, 3, 4, and 5 i s  higher than  cr,, = 15 kg/nnn2. Consequently, t h e  

probabi l i ty  P t h a t  t h e  endur
&ce limit-owis  lower than  

TABIE 1.20 15 kg/mn2 can be taken as 
equal t o  0.2. 

~~ 

No. of ,Specimen Number of Cycles Test Results On s e t t i n g  Sloguwequalof Stress 
~~- t o  0.07 (see Subsect.l3), it 

No.1 9.8~106 Specimen f a i l e d  Will be found t h a t  t h e  endur-
No. 2 20*106 ance Limit o,,% = 13 kg/mm2 
No.3 20*106 Specimens d i d  not  corresponds t o  a 5% probabil-
No. 4 203106 f a i l  i t y .  T h i s  limit Will be con-
No.5 2ou106 sidered minimum. 

The margin f o r  t h e  number 
of cycles  can be taken e i t h e r  

on the  basis of p r a c t i c a l  experience by assigning t h e  se rv ice  l i f e  i n  accordance 
wi th  Table 1.16 or on t h e  basis of t h e  method of A.F.Selikhov (see  Subsect.8)* 
Based on Table 1.16 f o r  Group I1 (blade equipped with a spar-damage warning de
vice)  and n = 5, t h e  r e l i a b i l i t y  margin rJN can be taken as equal t o  about 2.7. 

In t h e  second case, S l q l Nmust be known. It i s  obvious t h a t  merely from 
t h e  r e s u l t s  of tests it i s  impossible t o  deternine the  value of SloIN. However, 
i t  i s  poss ib le  t o  ass ign  a c e r t a i n  value t o  S l o g N  based on r e s u l t s  of tests with 
similar specimens. 

Le t  us put  SlogN = 0.4. Then, assigning t h e  value Paed = 1/1000 (Group I1 
of uni t s )  we obtain log IN2.3 SlogN,  i.e., T N  = 8.3, from Fig.1.72. Thus,= 
t h e  required r e l i a b i l i t y  margin for t h e  number of cycles rJN according t o  Seli
khovTs method i s  subs t an t i a l ly  g rea t e r  than  t h a t  obtainable from serv ice  l i f e  de
terminations.  I n  many cases, this d i f fe rence  i s  p a r t i a l l y  compensated by in t ro
ducing t h e  concept of f a t igue  l i m i t  i n t o  t h e  ca lcu la t ion  and by r e f in ing  t h e  re
quired r e l i a b i l i t y  margins la. 

A s  mentioned above, i n  def ining t h e  serv ice  l i f e  with the  use of t h e  re l i 
a b i l i t y  coef f ic ien ts  se lec ted  on t h e  basis of p r a c t i c a l  experience, t h e  value of 
Tu can always be taken as equal t o  1.2. However, this coef f ic ien t  can be re
f ined  i n  conformity wi th  the  method proposed i n  Subsections 10 and 11. For this 
purpose, more complete da t a  are necessary on t h e  d ispers ion  of t h e  alternating 
stress amplitude for d i f f e r e n t  specimens of t h e  s t ruc ture .  

Let us  assume that t h e  stresses are measured i n  only one specimen. However, 
on t h e  basis of experience i n  measuring similar u n i t s  of other  hel icopters  it can 
be assumed t h a t  ya = 0.08 and thus  S l o g u= 0.035. Then, by means of t h e  methods 
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presented i n  SUbsectiOri 10 and 11 we obta in  7\0 = 1.11. Nevertheless, we w i l l  
t ake  va = 1.2. 

The m i n i "  value of N m l n  of f i v e  t e s t e d  specimens ( n  = 5) a t  an a l t e rna t ing  
s t r e s s  amplitude of CJ = F15 kg/m2 i s  Nmin = 9.8 x lo6 cycles.  

The number of cycles corresponding t o  t h e  minimum f a t igue  l i m i t  i s  deter
mined from t h e  formula 

while the  values of N, a r e  obtained from t h e  formula 

I n  t h e  ca lcu la t ion  of se rv ice  l i f e ,  we w i l l  assume tha t ,  i n  a l l  regimes 
where the  ac t ing  s t r e s s e s  a r e  below the  minimum value of t he  f a t igue  l i m i t ,  no 
increase i n  damage p o t e n t i a l  f o r  the  s t ruc tu re  takes  place.  

We wi l l  not ca lcu la te  t h e  equivalent s t r e s s e s  i n  individual  f l i g h t  regimes, 
but  w i l l  assume them as equal t o  t h e  maxi" measured s t r e s s  -Etudes .  I n  
this case, t h e  value of c i  will be e i t h e r  zero 'or uni ty .  

The ca lcu la t ion  of equivalent s t r e s s e s  i s  given i n  Table 1.21. 

If we assume t h a t  t h e  endurance obeys t h e  l a w  (11.21) a t  a l l  a l t e rna t ing  
s t r e s s  l eve l s  and that the re  is  no f a t igue  l i m i t  ( i n  this case E ,  = 1i n  a l l  re
gimes), then  a l l  f l i g h t  regimes a r e  equivalent i n  damageability t o  the  regime 
w i t h  a s t r e s s  amplitude of creq = 11.5 kg/mm2 ac t ing  during t h e  e n t i r e  service /188
l i f e  of t he  blade. I n  this case, 

"=N (A)"=
1.2x11.5 16.2~loG; 

If it i s  assumed t h a t  t h e  m i n i "  endurance limit i s  crWmln = 13 kg/mm2, 
then  one regime [see eq.(l l .9)1 with an amplitude oeq = 13.6 kg/m2 will be 
equivalent t o  a l l  f l i g h t  regimes. The durat ion of this regime, as follows from 
Table 1.21, Will be about 23% of t h e  serv ice  l i f e  O f  t h e  blade ( 6  = 0 . 2 3 ) .  

Then t h e  l i f e t ime  i t s e l f  can be determined i n  t h e  following manner: 
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N, =N*=0,707~106; 
q N  

The same r e s u l t s  can be obtained from t h e  t o t a l  damageability without mak
ing use of t h e  concept of equivalent stresses [see eq.(l.l.5)]: 

N, =+-=3.09~ lo6;1 

7 %  

Ni

i 


TABWE 1.21 


EXAIVLPU	OF CAIXULATION OF B.T.d.DE SEEVICE LIFE WITH RESPECT 
TO A SECTION OF RELATTVE RADIUS I; = 0.74 

aw mln=13 kg/m+; k 0 . 5 ;  n=5; Slog~=O.4;rio=1,2 

Fl ight  R e g i m e  

_. 

Hovering 
Low speeds 

V=20 km/hr 
V=30 km/hr 
V=60 km/hr 
Takeoff 
C1 imb 

Cruis ing  speed 

Maximum speed 

GIi ding 
Braking 
1st stage-a,,,,x 

N ,  mIn=23%106 

=0.5 
ai 

a% 
__ ~ 

0 0.1 6 .O 8.8 9.7 11.64 M 3 

1 0.03 7.2 10.5 ,1.6 13.92 1.84*106 0.016~10-6 
1 0.02 L0.5 13.2 ,5.02 18.02 0.39xlOG O.O51x10-~ 

1 0.05 12.4 12.5 15.05 18.06 0.39~106 0.128~10-6 
1 0.02 9.5 12.4 14.0 16.8 0.59~106 0.034*10-6 
0 0.06 6.0 5.6 6.9 8.28 a, 0 
0 0.55 8.0 9.0 10.5 12.60 00 0 

1 0.10 8.0 10.5 11.09 13.31 2.4~106 0.042*10-6 

0 0.05 7.5 7.2 8.8 10.56 on 0 

1 0.00: l5,2 18.4 21.11 25.33 0.05~106 0.04~10-6 

2nd stage-0.7 anlax 1 0.00 10.64 12.88 14.79 17.75 0.43~106 0.016~10-6 

3rd stage-hoverin 0 0.01 6,O 8.8 9.72 11.66 00 0 

0= 229 C 0.327~10-6 

201 




These r e s u l t s  show that on in t roduct ion  of t h e  concept of f a t igue  l i m i t  o r  
endurance limit, t h e  serv ice  l i f e  of a blade W i l l  be greatey when derived from 
calculat ion.  

However, it must be borne i n  m i d  that t h e  margins wi th  respect t o  t h e  num
ber of cycles  presented i n  Table 1.16 were introduced i n t o  the  ca lcu la t ions  with
out assumption of t h e  exis tence of a f a t igue  limit. Therefore, they should not 
be used i n  ca lcu la t ions  wi th  a f a t igue  limit. 

13. 	Possible Ways of Determining t h e  Minimum Endurance 
Limit of a St ruc ture  

The above example ind ica t e s  t h a t  subs t an t i a l ly  higher values f o r  t h e  serv ice  
l i f e  of a s t ruc tu re  can be obtained when making use of t h e  concept of minimum 
endurance limit. Therefore, a determination of t hese  values i s  mandatory i n  
many casesI  

A s u f f i c i e n t l y  accurate  determination of t h e  values of owninfrom t h e  re
s u l t s  of tests is  v i r t u a l l y  infeasible. O r d ?  a highly approximate determination 
of this value i s  possible .  Even then, an appreciable  increase  i n  t h e  number of 
test specimens i s  required.  Nevertheless, i n  ca lcu la t ions  of se rv ice  l i fe ,  even 
approximate endurance limits w i l l  c lose ly  approach t h e  ca l cu la t ion  r e s u l t s  t o  
r e a l i t y  and o f f e r  t h e  p o s s i b i l i t y  of developing more competent t echn ica l  solu-

/189 
t i ons .  Therefore, it. i s  always advisable t o  r e s o r t  t o  a determination of endur
ance limits, using both approximate and simp* formal methods of c a l c u h t i o n .  

-- n, =fail +IJ 7 0  
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Fig.1.77 Dis t r ibu t ion  of Endurance Limits. 

Primarily, an  attempt must be made t o  def ine and determine t h e  parameters 
of t h e  d i s t r i b u t i o n  l a w  of endurance limits. Toward this end, f a t igue  tests 
m u s t  be performed wi th  specimens a t  seve ra l  a l t e r n a t i n g  stress leve ls ,  located 

. i n  t h e  region of endurance limit d i s t r ibu t ion .  The tests should be car r ied  out 



I on t h e  base of a s u f f i c i e n t l y  l a rge  number of cycles. I n  se l ec t ing  t h e  t es t  
I base, it i s  general ly  assumed that, f o r  s teel  Specimens, this base can be set  

somewhat g rea t e r  than  lo7 cycles, f o r  example 2 x lo7 cycles, whereas f o r  duralu
min specimens the  base must be somewhat higher than  2 X lo7 cycles (frequently,  
a base of 5 x lo7 cycles  i s  used). 

The p robab i l i t y  that  t h e  endurance l i m i t  i s  higher than  t h e  assigned al
t e rna t ing  stress level i s  defined as t h e  r a t i o  of t h e  number of specimens t e s t ed  
a t  t h e  given base a t  no failure nno-iail t o  t h e  t o t a l  number of specimens tes ted  
at this and at a lower level of stresses n: 

The r e su l t an t  d i s t r i b u t i o n  of endurance limits can coincide with t h e  normal 
l a w  only i n  a small sec t ion  corresponding t o  the  average values of p robab i l i t y  
(Fig.1.77). A t  small probab i l i t i e s ,  t he  d i s t r i b u t i o n  of t h e  endurance limits 
deviates  from t h e  normal l a w  and has a c e r t a i n  s e n s i t i v i t y  threshold o w n i n .A t  
l a r g e  p robab i l i t i e s ,  beginning wi th  some stress ofa i  , a l l  specimens f a i l  with
out having been subject  t o  t h e  assigned base of t h e  t es t .  

The d i s t r i b u t i o n  of endurance limits a t  average p robab i l i t y  of f a i l u r e  i s  
best represented by t h e  lognormal d i s t r i b u t i o n  l aw.  T h i s  can be used a l s o  f o r  
determining t h e  minimum endurance limit 

Available r e s u l t s  of tests on blade specimens show t h a t ,  for this l aw ,  we /190 
can take  values of S log  equal  t o  about 

S/opw~ 0 . 0 5-0.07, 

where Slog i s  the  mean-square devia t ion  of t h e  d i s t r i b u t i o n  of f a t igue  l i m i t  
logarithms. 

It i s  impossible t o  propose a s u f f i c i e n t l y  reliable method f o r  d e t e d n i n g  
CJ

'm in 
. Thus, we can suggest only a pure ly  formal method which, however, yields 

s u f f i c i e n t l y  good r e s u l t s  i n  prac t ice .  It can be assumed t h a t  t h e  minimum en
durance limit coincides wi th  t h e  value of o w  corresponding t o  5% probabi l i ty  of 
a logari thmical ly  noma1 d i s t r i b u t i o n  l a w  of endurance limits. 

If such a n  approach i s  used, t h e  values of ownincan be ref ined by a method 
i n  which f a t i g u e  tests are ca r r i ed  out a t  two a l t e rna t ing  s t r e s s  levels, c lose 
i n  amplitude. The t e s t  specimens, a t  least 15 - 20 of them, are divided i n t o  
two groups. 

The first group i s  t e s t e d  a t  maximum a l t e rna t ing  stress which s q p o s e d l y  
does not exceed t h e  minimum endurance l i m i t ;  f o r  this reason, it i s  des i rab le  t o  
prevent any of t h e  specimens from failing at a number of cycles  corresponding t o  
t h e  se lec ted  tes t  base. The results of t e s t i n g  this group serve t o  confirm that 
t h e  minimum endurance limit may ac tua l ly  correspond t o  t h e i r  t es t  level. 
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The second group of specimens i s  t e s t ed  at somewhat higher a l t e rna t ing  
s t r e s ses ,  so t h a t  a c e r t a i n  percentage will f a i l  without having operated t h e  
ra ted  number of cycles.  After determining t h e  p robab i l i t y  that the  endurance 
limit i s  below t h e  amplitude of t h e  second test level and after assigning some 
value of Slogu, ,  we c a h d a t e  the  value of ow corresponding t o  t h e  5%probabili
ty .  If t h e  t e s t  da ta  of t h e  first group do not cont rad ic t  this r e s u l t ,  then t h e  
r e su l t an t  value of 0w570can be taken as t h e  m i n i "  endurance l i m i t .  

Occasionally, it i s  assumed f o r  grea te r  r e l i a b i l i t y  t h a t  t h e  minimurh endur
ance limit corresponds t o  smaller probabi l i ty  values, say, a probabi l i ty  of 
1/100. However, it s e e m  that s t i l l  lower values of this p robab i l i t y  a r e  not 
advisable. 

It should be noted that i n  many cases an a r b i t r a r y  concept, which could be 
ca l led  t h e  reduced endurance l i m i t ,  i s  used f o r  character iz ing the  f a t igue  
s t rength .  

The reduced endurance limit is  determined by converting t h e  t e s t  r e s u l t s ,
by means of eq.( l l .3) ,  t o  an  a r b i t r a r y  base which o f t en  i s  taken as N b a s o  
= lo7  cycles f o r  s t e e l  and Nbase = 2 x lo7 cycles f o r  duralumin: 

where 
o t e s t  = a l t e rna t ing  s t r e s s  amplitude i n  t h e  t e s t ;

N, = number of cycles t o  f a i l u r e  corresponding t o  a probabi l i ty  of 
f a i l u r e  equal t o  P;  

m = exponent of t h e  hfhhler curve, usual ly  taken as m = 6. 

If we t a k e  N, corresponding t o  the  p robab i l i t y  of f a i l u r e  as equal t o  5%, /191 
then the  value of owredfurnishes  an approximate idea  as t o  t h e  magnitude of t he  
minimum endurance limit. The m i n i "  value of t h e  number of cycles t o  f a i l u r e  
of a given s t ruc tu re  N m i n  of ten  i s  subs t i tu ted  f o r  N, as t h e  cha rac t e r i s t i c  of 
f a t igue  s t rength.  We must emphasize that the  reduced eridurance l imi t ,  i r respec
t i v e  of t h e  manner i n  which it is  determined, does not correspond t o  t h e  concept 
of endurance limit i n  the sense i n  which it i s  used above, i n  this Section. 

It i s  a l s o  of importance t h a t  t h e  d i s t r i b u t i o n  of the  reduced endurance 
limits has a mean-square deviat ion ecpal  t o  

which i s  almost always g rea t e r  than t h e  value of Slogu , .  



I-!+. 	 AdvantaRes and Disadvantages of Various Approaches i n  
Determiniw t h e  Necessary ReJEability Margins. and 
Es t iga t ion  of t h e i r  Accuracy 

The simplest  approach, as already shown above (see Subsect.7), i s  t o  calcu
late t h e  serv ice  l i f e  under appl ica t ion  of t h e  coe f f i c i en t s  TN and To taken on 
the  basis of p r a c t i c a l  experience i n  defining t h e  serv ice  l i f e .  These coeff i 
c i en t s  have been checked on a l a rge  number of he l icopters  and many hundreds of 
units have successful ly  l i ved  out t h e  serv ice  l i f e  thus establ ished.  However, 
it must be borne i n  m i n d  that t h e  use of t h e  coe f f i c i en t s  TN and & has been con
firmed by p r a c t i c e  only i n  combination wi th  some method of ca lcu la t ing  t h e  
serv ice  l i f e  which, i n  pa r t i cu la r ,  differs by t h e  following assumptions:

1. No endurance l i m i t  exists, and t h e  l46hler curve i s  described by 
eq . ( l l .Z l ) .  Accordingly, t h e  coe f f i c i en t s  8 and c i  are taken 
as equal t o  uni ty .  

2. 	 I n  each f l i g h t  regime, t h e  s t r e s s  amplitude i s  considered equal t o  
i t s  maximum measured value i n  this regime. 

However, such an  approach t o  t h e  ca l cu la t ion  of se rv ice  l i f e  has substan
t i a l  shortcomings : 

1. I n  determining t h e  serv ice  l i fe ,  one disregards t h e  d i f fe rence  i n  t h e  
d i spers ion  of the  c h a r a c t e r i s t i c s  of endurance which may be d i s s imi l a r  f o r  u n i t s  
of d i f f e r e n t  design which,furthermore, are d i s s imi l a r  wi th  respect  t o  t h e  ma
terials used and t h e  manufacturing process.  The magnitude of d i spers ion  of 
stresses ac t ing  i n  d i f f e r e n t  specimens of a given s t r u c t u r e  i s  a l s o  disregarded. 

2. Rejection of t h e  concepts of endurance l i m i t  and exclusive use i n  the  
ca l cu la t ion  of t h e  maxi" stress amplitudes i n  each f l i g h t  regime lead t o  isl
cor rec t  ideas  as t o  t h e  share  of damage p o t e n t i a l  contributed by d i f f e r e n t  f l i g h t  
regimes. 

Therefore, an attempt should be made t o  use improved methods,incorporating 
t h e  basic  p r inc ip l e s  of t he  theory of probabi l i ty .  One of t h e  poss ib le  var ian ts  
of this approach i s  given i n  Subsections 8, 10, and 11. 

It i s  necessary t o  poin t  out  that this method, i n  the  form i n  which i t  i s  
presented here, gives completely s a t i s f a c t o r y  values of se rv ice  l i f e  r a t h e r  
c lose  t o  those obtained by t h e  preceding method. O f  course, t he re  i s  some re
d i s t r i b u t i o n  i n  t h e  values of t h e  safety f ac to r s .  The margin INis substant ia l 
~ J T  l a rge r  whereas t h e  margin Tu i s  smaller. Furthermore, t h e  concept of m i n i - /192 
mum endurance limit should be used i n  t h e  ca lcu la t ion .  Otherwise, t h e  serv ice  
l i v e s  W i l l  be underestimated. 

In apply5ng this method, such l a rge  p r o b a b i l i t i e s  of f a i l u r e  (equal  t o  
1/u300 o r  even more) o f t e n  raise doubt. Actually, this means  t h a t  one uni t  out 
of 1000 should f a i l  during i t s  ra t ed  serv ice  l i f e .  Therefore, we must again em
phasize t h a t  t h e  ind ica ted  p r o b a b i l i t i e s  are pure ly  condi t iona l  values, corre
sponding t o  t h e  noma1 d i s t r i b u t i o n  l a w  of endurance. I n  r e a l i t y ,  i n  the'region 
of small values of p robab i l i t y  of failure, this l a w  devia tes  from t h e  normal and 
a sensitivity threshold i s  observed i n  t h e  endurance cha rac t e r i s t i c s .  Its values 
=e i n  t h e  p robab i l i t y  region of about 1/lDO o r  f l u c t u a t e  about this value. Con-



secpently,  assignment of a condi t ional  p robab i l i t y  of 1/u)OO is  ac tua l ly  equi
valent  t o  t h e  requirement of a very small o r  even zero probabi l i ty .  Therefore, 
we cannot agree with those authors who are not a f r a id  t o  s t i p u l a t e  a p robab i l i t y
of t h e  order of 1Cr6 o r  even l(r7, under app l i ca t ion  of t h e  normal l a w  of d i s 
t r i b u t i o n  of endurance. There i s  no s u f f i c i e n t l y  va l id  reason for such demands. 

Generally, anyone familiar wi th  t h e  above method w i l l  ob jec t  t o  doing away 
wi th  refinements of experimentally obtained values of t h e  meassquare devia
t i o n s  SlogN, based on t h e  r a t h e r  high values of f i d u c i a l  p robab i l i t y  accepted 
i n  p r a c t i c a l  appl ica t ions  of t h e  p robab i l i t y  theory. If such a refiEement i s  
made, t h e  ca lcu la t ion  would have t o  incorporate  a two-fold value of Slog ( see  
Subsect.9), which would lead t o  an increase i n  t h e  required margin TN and thus  
t o  a decrease i n  se rv i ce  l i f e .  

I n  addi t ion  t o  t h e  above considerations (see Subsect .9), another inaccuracy 
i n  t h e  proposed method of ca lcu la t ion  should be pointed out.  Usually, t h e  
equivalent stresses ac t ing  i n  d i f f e r e n t  f l i g h t  regimes are replaced by t h e i r  
maximum values, leading t o  an  underestimation of se rv ice  l i fe .  These two inac
curacies  mutually cancel  out, and an el iminat ion of one should d e f i n i t e l y  be ac
companied by el iminat ion of t h e  other .  I n  such a case, t h e  values of t h e  serv ice  
l i v e s  obtained by ca l cu la t ion  do not change subs t an t i a l ly .  

There is  no doubt that i n  time, as new experimental da ta  are col lected,  
more extensive refinements Will have t o  be introduced i n t o  t h e  method of calcu
l a t i n g  t h e  serv ice  l i fe .  P rac t i ca l  experience i n  operating hel icopters  and t h e  
ever  g rea t e r  number of r e s u l t s  of dynamic tests W i l l  a l s o  fu rn i sh  an incent ive  
i n  this d i rec t ion .  

15. Blade S t r e n d h  Requirements i n  Desi,qn Se lec t ion  

A hel icopter  blade operates under conditions severely taxing i t s  s t rength .  
During i t s  e n t i r e  se rv ice  l i fe ,  t h e  blade i s  subject  t o  excessive s t a t i c  and 
var iab le  loads. T h i s  cha rac t e r i s t i c  of t h e  blade operating conditions imposes 
extremely s t r ingent  requirements on 5ts s t r u c t u r e  and pr imar i ly  on the  f a t i g u e  
s t r eng th  of i t s  main element, t h e  spar. Consequently, t h e  blade spar  should be 
made only of materials wi th  high f a t igue  s t r eng th  cha rac t e r i s t i c s .  

Blade designs wi th  tubular  steel spars and pressed duralumin spars are /193
t h e  most common type a t  present .  

Ekcellent r e s u l t s  can be expected when manufacturing spars  of various syn
t h e t i c  materials. Blade designs with a glass-laminate spar  are already known. 
However, p r a c t i c a l  experience operating such blades i s  s t i l l  in su f f i c i en t .  For 
this reason, we w i l l  not fu r the r  discuss  t h e  s t r eng th  aspects  of such types. 

The most important requirement for blades w i t h  steel and duralumin spars  
is  t h a t  of mazimum el iminat ion of any stress raisers which lower the  f a t igue  
s t rength.  The use of b o l t s  and r i v e t s  i s  impermissible i n  blades. The frame of 
t h e  blade is fastened t o  t h e  spar exclusively by glued j o i n t s .  

F i t t i ngs  with l a rge  stress raisers can be t o l e r a t e d  only i n  segments with 
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s m a l l  a l t e rna t ing  stresses, f o r  example, i n  t h e  blade root  c lose t o  t h e  hub 
hinges. I n  this case, desp i t e  t h e  small a l t e rna t ing  stresses, t h e  sec t ion  of 
t h e  spar  near t h e  roo t  j o i n t  must be increased by a f a c t o r  of 3 - 4. Only a 
very appreciable reduct ion i n  a l t e rna t ing  stresses w i l l  permit t h e  use of f i t 
t i n g s  with stress raisers. 

Fatigue s t r eng th  i s  a l s o  d i s t i n c t l y  lowered by small technological de fec t s  
which a l s o  a c t  as stress raisers. Consequently, i n  t h e  manufacture of blade 
spars t h e  process used m u s t  be aimed a t  complete e l iminat ion of a l l  apparent de
f e c t s  of t h e  spar.  

To el iminate  t h e  p o s s i b i l i t y  of some f l a w s  remaining undetected, t h e  spars 
must be subjected t o  rigorous inspec t ion  under appl ica t ion  of a l l  modern methods 
of nondestructive materials t e s t ing .  

Below, t h e  s t r eng th  proper t ies  of a blade with s teel  and duralumin spars  
W i l l  be invest igated i n  g rea t e r  d e t a i l .  

16. _ -Strength of..a Blade wi th  Tubular Steel ,%ar 

Cold-rolled tubing of high-alloy steels 30KhGSA o r  4OKhIWA quenched and 
tempered t o  a s t r eng th  of ob = U O  - 130 kg/mm2 i s  carmnonly used f o r  t h e  blade 
spar .  

After hot- and cold-rolling, shaping, and quenching, t h e  outer  and inner 
surfaces  of t h e  tube are polished. Recently, cold-working of t he  spars  has be
come a mandatory operat ion after pol ishing.  

A thus  manufactured spar  without cold-working may have a minimum endurance 
limit of t h e  order of oWm = 12 - 13 kg/mm2 a t  a n  average component of t h e  
cycle om = 20 - 25 kg/rm2. However, t h e  s t r eng th  i s  reduced g rea t ly  i f ,  i n  
manufacturing t h e  spar ,  various technological  defec ts  and miscalculations are 
permitted.  The following can be mentioned as t h e  most dangerous types: 

In t e rna l  cracks and lam. During hot-rolling, p l a s t i c  deformation may be 
accompanied by p a r t i a l  tearing of t h e  mater5al. T h i s  usual ly  occurs a t  a re
duction i n  temperature of t h e  workpiece during rolling and a l s o  as r e s u l t  of con
tamination of t h e  s tee l  by nonmetallic and gas inclusions,  the  formation of 
f i lms ,  high porosity,  segregation, and other  meta l lurg ica l  defects .  The cracks 
run  i n t o  t h e  workpiece at a n  acute  angle, SO that it i s  o f t en  d i f f i c u l t  t o  t r a c e  
t h e  outcropping of t h e  crack on the  surface.  

On f u r t h e r  cold-roll ing,  t h e  degree of deformation increases  and t h e  crack 
fo lds  over i n t o  t h e  w a l l  of t h e  tube a t  a n  ever smaller angle t o  i ts  surface.  /194.
Usually a series of such i n t e r n a l  cracks i s  observed. They are small, being’ 
about 0.1 - 1.0 mm deep and 3 - 10m wide. 

Laps appear upon cold-roll ing on t h e  outer  surface.  They are usua l ly  due 
t o  extensive surface roughness af ter  hot-roll ing.  Subsequent p l a s t i c  cold-work
ing  leads t o  a n  uneven flow of t h e  material during which defec ts  known as l aps  I 



and seams may form. Laps are a l s o  able t o  form by flow of metal i n t o  t h e  gap 
between t h e  r o l l  grooves and formation of a f i n  which folds over upon subsequent 
deformation. 

Both defec ts  can be detected by magnaflux inspec t ion  of t h e  polished sur
face.  Figure 1.78 shows cha rac t e r i s t i c  	i n t e r n a l  cracks a t  t h e  inner  surface of 

a spar.  The micrograph was obtained dur
ing  magnetic inspect ion.  The endurance 
limit of a tube  wi th  seams and laps  
drops t o  ownin= 5 - 7 kg/mm2. 

Rolled-in s c a l e  .on inner s-wf&c=e. 
After hot-roll ing,  a layer  of s ca l e  i s  
l e f t  on t h e  tube surface,  which has a 
g rea t e r  hardness than  t h e  metal. An
neal ing i s  done after each s tep  i n  cold-
ro l l i ng .  Although annealing proceeds i n  
an  i n e r t  atmosphere, t h i n  films of sca l e  
are formed on t h e  surface, due t o  t h e  
oxygen content of t h e  metal. If t h e  

Fig.l.78 Cracks on Inner Surface sca l e  i s  not completely removed, it W i l l  
of Steel Spar. 	 be crushed during t h e  rolling process 

and forced i n t o  the  metal, forming so-
ca l led  rol led- in  sca le .  On t h e  exposed 

outer  surface of t h e  tube, t he  rol led- in  sca l e  i s  r e a d i l y  eliminated by machill
ing.  On t h e  inner  surface of t h e  tube whose machining is more complex and pos
sible only by belt-grinding or hydraulic polishing, t h e  rol led- in  sca l e  cannot 
be completely removed. Therefore, small but acute-angled p i t s  of a s i z e  not ex
ceeding 0.1- 0.05 m and d i f f i c u l t  t o  de tec t  during inspection, may be l e f t  
even a f t e r  grinding. The f a t igue  s t r eng th  of t h e  surface drops i n  this case t o  

OWm 1 n 
= 10 - 12 kg/mm2. 

Rolled-in sca l e  can be eliminated by turning and grinding t h e  surface of 
t h e  workpiece after hot-roll ing u n t i l  a l l  s ca l e  i s  removed and by sandblasting 
after annealing before each operation of cold-roll ing . 

For a complete e l iminat ion of cooling cracks, laps ,  rol led- in  scale ,  and 
o ther  surface defects ,  longi tudina l  grinding of t h e  outer  and inner  surfaces  of 
t h e  tube, after f inal  cold-roll ing and before shaping, i s  highly e f fec t ive .  

e c mtube-S t rakh ten iqg  After quenching and 
tempering, t h e  spar  tubes are bent s l i g h t l y .  Therefore, before assembling t h e  
blade, t h e  tubes may need s t ra ightening.  T h i s  sets LIP r e s idua l  stresses i n  t h e  
tube material. Usually, limiters are used during t h e  s t ra ightening operation, 
t o  keep t h e  r e s idua l  tensile stresses i n  t h e  tube  from exceeding 10 - x) kg/mm2. 
These stresses increase t h e  average component of t h e  cycle and lead t o  a decrease 
of x) - 25% i n  t h e  endurance l i m i t .  Still  g rea t e r  reductions i n  s t rength  may 1195 
occur i f  t h e  s t ra ightening i s  improperly done. To do away with t h e  necess i ty  of 
s t ra ightening,  t h e  quenched tubes should be tempered i n  s p e c i a l  devices t h a t  
eliminate t h e  strains produced on quenching. 

In estimating t h e  fa t igue  s t r eng th  of s p a s ,  s p e c i a l  a t t en t ion  must be pa id  
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t o  t h e  p o s s i b i l i t y  of f r e t t i n g  corrosion. F re t t i ng  corrosion is an  almost cer
t a i n  a t tendant  phenomenon of cyc l ic  blade stresses and leads t o  a subs t an t i a l  
reduction i n  fatique strength.  T h i s  usual ly  occurs at po in t s  where there  i s  
mating between p a r t s  and t h e  spar, i f  relative microslip is present  between t h e  

osculat ing surfaces .  Points  of clamp i n s t a l l a t i o n  
f o r  attachment of t h e  blade frame are t h e  usua l  
s e a t s  of f r e t t i n g  corrosion i n  steel  spars. 

Figure 1.79 gives  a micrograph of a ruptured 
spar.  The root  of t h e  f a t i g u e  crack coincides wi th  
t h e  seat of f r e t t i n g  corrosion. 

A marked increase  i n  t h e  dynamic s t r eng th  of 
s tee l  spars  can be obtained by mechanical work-
hardening of t h e i r  surface,  known a l s o  as cold-
working. 

A t  present,  cold-working of spars has become 
a n  almost indispensable operat ion i n  the  fabrica
t i o n  of blades. Three methods of mechanical 
strengthening have become common i n  he l icopter  en
gineering: t h e  dynamic method of M.I.Kuzfmin, t h e  
v ibra tory  impact method of S.V.Ochagov, and t h e  
shot-peening method. The choice of t h e  method gen-

Fig. 1.79 Incipient  e r a l l y  depends on t h e  cha rac t e r i s t i c s  of t h e  s t ruc-
Fatigue Fai lure  from tural  component t o  be strengthened and on t h e  pro-
Fre t t i ng  Corrosion. duction f a c i l i t i e s .  When using t h e  dynamic method 

f o r  strengthening t h e  outer  surface of a spar, i t s  
inner  surface i s  work-hardened by shot-peening. I n  

developing complicated devices f o r  t h e  vibratory impact method, main emphasis i s  
usual ly  on simultaneous treatment of both inner  and outer  surfaces  of t h e  spar  
by this m e t  hod. 

An increase i n  f a t igue  s t r eng th  i s  obtained by older  methods of cold-work
ing.  The best  method, giving t h e  most s t ab le  r e s u l t s  i n  treating t h e  outer  sur
f ace  of s t e e l  spars, i s  M.I.Kuz"infs dynamic method. 

The increase i n  f a t i g u e  s t r eng th  due t o  cold-working i s  a t t r ibu ted  mainly 
t o  two causes: The outer  surface of a given p a r t  which i s  most s ens i t i ve  t o  in
c ip i en t  f a t igue  failure i s  rendered smoother (Fig .1.80) and r e s idua l  compressive 
stresses are set i n  t h e  surface l aye r s  which, i n  conformity with Hayfs dia
gram (see Fig.1.63, leads t o  a n  increase i n  f a t igue  s t r eng th  of t h e  surface 
l aye r  of t h e  p a r t .  

Figure 1.81 shows t h e  d i s t r i b u t i o n  of i n t e r n a l  stresses i n  the  material of 
a steel spar, obtained by dynamic cold-working and gr i t -blast ing.  Gr i t -b las t ing  
sets up almost t h e  same res idua l  stresses as t h e  shot-peening method of cold-
working. 

The increment i n  f a t igue  s t r eng th  due t o  cold-working is  espec ia l ly  l a rge  /196
i n  the  presence of f r e t t i n g  corrosion. Apparently, compressive stresses inpede 
t h e  spread of corrosion i n t o  t h e  material. Figure 1.82 shows t h e  r e s u l t s  of 
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t e s t i n g  s tee l  spars  wi th  cold-worked and noncold-worked surfaces operating under 
conditions of onset of fretting corrosion. 

M 4UOO: 1 

4 

Fig.l.80 Surface Profilogram of 
Spar Pressed from Aluminum Alloys 
after Machining ( a )  and after 

Cold-Working (b) . 
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Fig.l.81 Distr ibut ion of Internal 
Stresses  from Cold-Working with 
Respect t o  Wall Thickness of Tubular 

Steel Spar. 
Cold-working by the  method of 
M.I.Kuz"in; 

----Trip le  gr i t -blast ing . 
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Fig.1.82 Distr ibut ion of Reduced Endurance L i ~ t sof 
Tubular Steel  Spars under the  Fffect  of Fret t ing 

Corrosion. 
a - Surface polished and sandblasted; b - Surface polished and 
sandblasted three times with g r i t ;  c - Surface cold-worked by 

M. I.Kuz "in's m e t  hod. 
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The f a t igue  s t r eng th  of steel spars  can be increased by cold-working by a 
f a c t o r  of 1.5 - 2 and, i n  t h e  presence of f r e t t i n g  corrosion, by a f a c t o r  of 
2.5 - 3 .  

Cold-working w i l l  raise t h e  f a t igue  U t  of a s t ee l  spar t o  values of t h e  
i n 
order  oWm = 28 - 30 kg/m2 a t  om = 20 - 25 kg/mn”. Thus, cold-working has 

proved a most e f f ec t ive  means of increasing t h e  r e l i a b i l i t y  and serv ice  l i f e  of 
blades.  

17. S t rength  of a Blade wi th  Duralumin %ar /197 
The most important problem i n  designing blades of this type i s  t o  secure a 

Generally, attachment of t h esu f f i c i en t ly  high f a t igue  s t r eng th  of 

Fig.1.83 Microsection of Spar W a l l  
through Blowhole Formed i n  Pressing. 

the  	spar.
frame t o  t h e  spar is  accomplished by 
glue and thus  creates no s u b s t a n t i a l  
stress raisers i n  t h e  spar .  S t r e s s  
concentrations i n  spars are due mainly 
t o  small defec ts  t o l e ra t ed  i n  i t s  
fabr ica t ion .  

The surface f i n i s h  of a spar  
p lays  t h e  main r o l e  i n  reducing its 
fa t igue  s t rength.  A milled and sand
blasted spar made of AVT-1 a l l o y  with
out machining of t h e  inne r  surface may 
have a n  endurance limit of t h e  order 
of oWmin3.8 - 4.2 kg/m” a t  a n= 

average component of t he  cycle om = 
= 6 kg/m”. 

The f a t igue  s t r eng th  of a given 
spar  may be reduced due t o  defec ts  
produced i n  i t s  pressing and machin
ing  . 

Frequently, t h e  i n s i d e  channel of t he  spar  i s  not machined after pressing.  
Therefore, pressing defec ts  may remain on t h e  inner  surface: adherent m e t a l  
s lugs,  longi tudinal  scratches,  blowholes (Fig.1.83), and, f i n a l l y ,  coarse-
c r y s t a l l i n e  rings. These de fec t s  may reduce t h e  f a t igue  s t r eng th  t o  values of 

O W m  i n = 2.5 - 3.0 kg/mm2 (om= 6 kg/mm2). T h i s  suggests t o  follow t h e  pressing 

by machining of t h e  surface of blade spars with r e l a t i v e l y  high s t r e s ses .  

A subs t an t i a l  reduct ion i n  f a t igue  s t r eng th  i s  produced a l s o  by nonmetallic 
and gas inclusions.  To el iminate  such inclusions,  a s p e c i a l  melting p rac t i ce  
should be used ( s e t t l i n g  of t h e  m e t a l ,  teeming from c e r t a i n  leve ls ,  f i l t e r i n g  
through mesh f i l ters,  etc.) .  The best  metal i s  obtained by melting i n  e l e c t r i c  
induct ion furnaces, wi th  holding of t h e  molten metal i n  e l e c t r i c a l l y  heated 
mixers . 

To el iminate  t h e  p o s s i b i l i t y  of overlooking nonmetallic and gas inclusions,  
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each spar should be subjected t o  carefu l  ul t rasonic  inspection. 

No less important i s  t h e  elimination of possible  corrosion p i t t i n g  of 
pressed spars during fabr ica t ion  (as w e l l  as under service conditions). Practi
c a l .  experience has shown t h a t  surface and in t e rc rys t a l l i ne  corrosion of a depth 
t o  0.1 - 0.15 m w i l l  g r ea t ly  lower t h e  endurance limit. Therefore, metals of 
high corrosion resis tance should be used f o r  blade spars, and spec ia l  measures 
must be taken i n  fabr ica t ion  t o  pro tec t  t h e  spars from corrosion b electro

s teps  ( f o r  example, anodizingy.p la t ing  after intermediate treatment 

P %  
99 

90 
80 

10
EO 
40 
20 
10 

4 5 6 	 7 8 
R )  

m 


9nw,kglmmz 
bl  

I5 .L84 Distr ibut ion of Reduced Endurance Emits 
?to a Base of lo7 Cycles) of Pressed spars Made 
of AVT-1 Alloy with Polished (Circles)  and Cold-
Worked (Crosses) Surfaces ( a )  and Distr ibut ion 

of Compressive Stresses i n  t h e  Thickness of t h e  Spar 
Wall from Cold-Working by S.V.Ochagov*s Vibratory 

Iinpact Method (b)  . 
A marked increase i n  fa t igue  s t rength of spars made of aluminum a l loys  can 

be achieved by cold-working of t h e  spars. Figure 1.84 gives t h e  results of 
fa t igue  tests of cold-worked spars  compared with spars without cold-working. The 
d i s t r ibu t ion  of i n t e r n a l  stresses set up by cold-working is  a lso  shown. The en
durance l i m i t  of cold-worked spars can be ra i sed  t o  values of owmin= 5.5 t o  

6 .O kg/nnn2 (om = 6.0 kg/m2) 0 

It should be noted that t h e  s t rength  of cold-worked duralumin spars  i s  re
duced grea t ly  i f  t h e  spar frame, during the  gluing process, i s  heated t o  a tem
perature  of about 2OO0C a& higher. T h i s  makes it mandatory t o  cont ro l  t h e  tem
perature  i n  the  gluing operation. 

18. Effect of Service Conditions on Fatigue stren&h-of-.%grs 

The above method f o r  determining t h e  f a t igue  s t rength  and service l i f e  can 
be used only if t h e  s t ructure ,  during ac tua l  service,  does not suffer mechanical 
o r  corrosion damage. O themse ,  t h e  approach t o  determining t h e  service l i f e  
must be modified and reduced t o  a study of t h e  e f f ec t  of such damage. F’rcnnthis 
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viewpoint, t he  s t ruc tu res  of a l l  blades should be divided i n t o  two types: blades 
wi th  protected and blades wi th  exposed spars .  

I n  a blade design wi th  tubular  steel, t h e  spar i s  usual ly  completely pro
tec ted  by t h e  frame and cannot be mechanically damaged i n  service.  The g rea t e s t  
r i s k  i n  such a design i s  corrosion; therefore ,  t he  service l i f e  of such blades 
i s  determined by t h e  qua l i t y  of t h e  an t icor ros ion  coatings of t h e  spar. 

I n  blade designs i n  which t h e  spar forms t h e  contour of t h e  leading edge of 
t h e  p r o f i l e ,  s p e c i a l  a t t e n t i o n  must 'be pa id  t o  i t s  p ro tec t ion  from mechanical 
damage. If such p ro tec t ion  is  inadequate, t h e  serv ice  l i f e  i s  shortened and /199
becomes dependent on t h e  degree of damage of t h e  spar. Usually, a permissible 
degree of damage i s  s t ipu la t ed  here and checked during p re f l igh t  blade inspec
t i o n .  

To estimate t h e  e f f e c t  of damage of a spar i n  service,  dynamic tests are 
run on specimens cu t  out of blades operated f o r  a c e r t a i n  number of hours under 
various serv ice  conditions, followed by es tab l i sh ing  a r a t ed  service l i f e  based 
on t h e  conditions of endurance of specimens undamaged i n  serv ice .  When t h e  
f a t i g u e  s t rength  decreases excessively, measures are taken t o  improve t h e  pro
t e c t i o n  of t h e  spar. 



CHAPTER I1 

HELICOPTER VIBRATIONS 

Sect ion 1. Forces Causing Helicopter Vibrations 

1. &ci t a t ion  Frequencies 

Since, i n  forward f l i g h t  of a hel icopter ,  t h e  r o t o r  blades which are sub
j e c t  t o  t h e  e f fec t  of time-variant aerodynamic fo rces  vibrate both i n  the  plane
of r o t o r  t h r u s t  and i n  t h e  plane of ro ta t ion ,  t h e  r eac t ion  forces  ac t ing  on t h e  

blade i n  t h e  hub hinges are a l s o  var iab le  i n  
time. Correspondingly, var iab le  forces  equal  
i n  magnitude t o  these  r eac t ion  forces  a c t  on 
t h e  ro to r  hub. 

The variable forces  ac t ing  on t h e  r o t o r  
hub and produced by t h e  vibrat ing blades can 
be given i n  t h e  form of th ree  forces  X(t) ,
Y(t), Z ( t )  and three moments r e l a t i v e  t o  the  
coordinate axes M , ( t ) ,  My(t) ,  M,(t) (Fig.2.1). 
If t h e  he l icopter  has an  an t i to rque  ro tor ,  t h e  
blades of this r o t o r  W i l l  cause time-variant 
forces  of t h e  same o r i g i n  t o  a c t  on t h e  heli
copter;  t hese  can a l s o  conveniently be given 

Fig.2.1 Forces and Moments i n  t h e  form of three variable forces  and three 
from t h e  Rotor, Acting on a moments . 

Helicopter . 
The var iab le  forces  from t h e  v ibra t ing  

r o t o r  blades, ac t ing  on t h e  helicopter,  are 
t h e  main source of fuselage vibrat ion.  

Fuselage v ibra t ions  may a l s o  be caused d i r e c t l y  by aerodynamic forces  act
ing  on t h e  fuselage due t o  t h e  f luc tua t ing  airflow repulsed by t h e  ro to r s .  Thus, 
t he  ve loc i ty  of t h e  flow pushed back by t h e  r o t o r  i n  t h e  fuselage region is 
creases  whenever any of t h e  r o t o r  blades passes  above t h e  fuselage.  However, 
numerous ca lcu la t ions  and measurements of pressure f luc tua t ions  a t  t h e  fuselage 
demonstrate t h a t  these  var iable  aerodynamic forces  are appreciably weaker than  
t h e  variable forces  produced by t h e  v ibra t ing  blades and ac t ing  on t h e  r o t o r  hub. 
For e x a q l e ,  for t h e  Mi-& hel icopter  t h e  variable force  ac t ing  on t h e  fuselage 
due t o  f luc tua t ions  of t he  flow repulsed by t h e  r o t o r  i n  the  most unfavorable 
f l i g h t  regime (dece lera t ion  before landing) i s  of t h e  order of *lo - 15 kgf, 
whereas t h e  variable forces  ac t ing  on t h e  r o t o r  hub i n  d i f f e ren t  f l i g h t  regimes 
are of t h e  order of 4 2 0 0  - 600) kgf. Therefore, i n  analyzing hel icopter  vi- /201
bra t ions  we are pr imari ly  in t e re s t ed  i n  variable forces  imposed on t h e  r o t o r  hub. 

These forces ,  general ly  speaking, can be defined as dynamic reac t ions  a t  
forced blade v ibra t ions  i n  f l i g h t ,  f o r  which the  ca l cu la t ion  methods a r e  pre
sented i n  Chapter I. Here, it must be emphasized that t h e  variable forces  i n  
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such a ca lcu la t ion  are determined wi th  considerable inaccuracy. The reason f o r  
this l i e s  i n  t h e  f a c t  t ha t ,  i n  ca lcu la t ing  blade vibrat ions,  only t h e  lower har
monics of t h e  loads are s a t i s f a c t o r i l y  determined and t h e  ca lcu la t ion  e r r o r s  in
crease with an  increase  i n  t h e  order of t h e  harmor6cs. Furthermore, as w i l l  be 
shown below, i n  t h e  ca l cu la t ion  of v ibra t ions  it is  t h e  high harmonics of exci
t a t i o n  t h a t  are of dec is ive  importance. T h i s  i s  due t o  t h e  f a c t  that a l l  methods 
of v ibra t ion  ana lys i s  presented i n  this Chapter are of a mainly qua l i ta t ive  
nature. 

An exact ca lcu la t ion  of  v ibra t ions  by means of methods presented i n  this 
Chapter i s  possible  only i n  	c e r t a i n  s p e c i a l  cases. The most important of these  

i s  t h e  designing of a new he l icopter  fuselage o r  
even of a hel icopter  of a d i f f e ren t  configuration 
( f o r  example tandem o r  side-by-side i n  place of 
single-rotor) equipped with previously used ro tors ,  
f o r  which t h e  var iab le  forces  w e r e  determined ex
perimentally ( f o r  example, by measuring stresses i n  
t h e  r o t o r  sha f t  o r  i n  t h e  reduct ion gear mount). 

It should be noted t h a t  t h e  qua l i ta t ive  methods 
of estimating v ibra t ions  permits a number of usefu l  
conclusions i n  designing he l icopters  and i n  improv
ing  them during f l i g h t  tests. For example, it i s  
poss ib le  t o  judge t h e  e f f e c t  on vibrat ions of t h e  
shape of t h e  blade resonance diagram and t h e  fuse-

Fig.2.2 Rotor Rotating lage resonance diagram and thus  def ine  t h e  d i r ec t ion  
i n  a n  Oncoming Airflow. 	 toward which the  design parameters should be changed 

so as t o  reduce vibrat ions,  and sometimes even t o  
estimate the  degree of reduct ion i n  vibrahion. 

To draw c e r t a i n  general  conclusions as t o  t h e  nature of time-variance of 
t h e  forces  X(t) ,  T( t ) ,  and Z( t )  and of t h e  moments M,(t), M,(t), and M,(t), l e t  
us t u r n  t o  Fig.2.2 which shows a 5-bhde r o t o r  uniformly ro t a t ing  with an  angu
lar veloc i ty  w i n  a r e l a t i v e  airflow of constant ve loc i ty  V. A t  a ce r t a in  
t i m e  t, l e t  t h e  ro to r  blades occupy t h e  pos i t i on  shown i n  the sketch and l e t  at 
this t i m e  t h e  force  X have a c e r t a i n  value X(t) .  After a time i n t e r v a l  ecpal t o  
1/5 of the  time of one complete revolut ion of t h e  ro tor ,  t h e  r o t o r  w i l l  t u r n  by
1/5 of this complete revolut ion.  T h i s  causes blade N o . 1  t o  occupy the  pos i t i on  
of blade No.2, blade No.2 that of blade N0.3,  and so  on. It i s  obvious t h a t ,  i n  
t h e  new pos i t i on  and i f  a l l  r o t o r  blades are absolutely iden t i ca l ,  t h e  e n t i r e  
p a t t e r n  of f l o w  and hence a l l  forces  ac t ing  on t h e  blade W i l l  be exact ly  t h e  
same as a t  t h e  in i t ia l  time t. I n  pa r t i cu la r ,  t h e  value of t h e  force X W i l l  be 
t h e  same. It is evident t h a t  t h e  s i t u a t i o n  i s  repeated wi th  t h e  next t u r n  of 
t h e  r o t o r  by l / 5  of a complete revol.ution. Consequently, t h e  funct ion X(t) i s  a 
per iodic  funct ion of t i m e  of a per iod equal t o  1/5 t h e  time of one complete r o t o r  
revolution. Figure 2.3 shows one of t h e  poss ib le  s lopes of t h e  curve of t h e  de
pendence X = X ( t ) .  

Thus, t h e  force  X w i l l  vary i n  time with an  angular frequency 50, whereas 
t h e  var iab le  forces  ac t ing  on t h e  r o t o r  blade w i l l  change wi th  a frequency w 
(once p e r  r o t o r  revolut ion) .  
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Eke any per iodic  function, t h e  funct ion X ( t )  can be expanded i n  a Fourier 
series. T h i s  W i l l  cause t h e  lower harmonic i n  t h e  expansion t o  be t h e  har- /202
monic 5w, so t h a t  t h e  expansion w i l l  have t h e  form 

X(t)=X0+Xa,  cos5~~t+Xb,sin5wt+Xa,cos10wt+Xb,sin loot+ 
+Xa,cos 15wt$Xb,sin 15wt+.  .., 

i.e., t h e  fundamental frequency p = 5w, while t h e  mult iple  frequencies are 2p = 
= low, 3p = l5w, 4p = a w ,  e t c .  

, exac t ly  t h e  same conclusions can be drawn wi th  respect t o  t h e  
f u n c t ? ~ ~ o ~ ~ ~ ~ ,  M,(t), and M,(t).Z( t ) ,  M,(t), 

I n  general, f o r  a r o t o r  with a number of blades equal t o  z, a l l  forces  and 
moments ac t ing  or? t h e  he l icopter  pe r iod ica l ly  change i n  t i m e ,  wi th  t h e  frequency 
of t h e  so-called fundamental harmonic of t h e  r o t o r  p = zw. The expansion of 
these  forces  and moments i n  a Fourier series has t h e  form 

X (t)=Xa+Xal COS p t f x b ,  sin pt+Xa, cos 2pt + 
f Xb. sin a p t 4  X,, cos 3pt  f Xb, sin 3pt  -/- ...; 

Mx(t )=M~,4M:,c o s p t + M ~ l s i n p t + M ~ I c o s 2 p t +  

4- Mi, sin 2pt f M;, cos 3pt  +Mi, sin 3pt +..:, I 
where p =zw. (1.2) 

?!, by t h e  r o t o r  and ac t ing  d i r e c t l y  on t h e  fuse
, X - X ( t )r\nnp,n lage . 

o w  u v u  v L o If, i n  addition, t h e  hel icopter  i s  
equipped wi th  a n  an t i to rque  ro to r  having z,,, 



of  ind iv idua l  blade quality. 

We note t h a t  a l l  above arguments are f u l l y  appl icable  t o  inves t iga t ions  of 
variable forces  ac t ing  on t h e  swashplate of t h e  automatic p i t c h  con t ro l  and pro
duced by t h e  r o t o r  blades.  Despite t h e  f a c t  t h a t  t h e  moment of t he  forces  act
ing  on t h e  blade relative t o  t h e  axial hinge (hinge moment) va r i e s  i n  time with 
a fundamental frequency w, t h e  r e su l t an t  forces  and moments ac t ing  on t h e  swash-
p l a t e  vary i n  time with a fundamental frequency zw. Therefore, t he  var iab le  
forces  ac t ing  i n  the  co l l ec t ive  and cyc l ic  p i t c h  con t ro l  loops vary with a /203
fundamental f r e q e n c y  p = zw and a l so  contain t h e  harmonics a,3p, 4p, etc. 
I n  addition, lower exc i t a t ion  harmonics can appear only a t  deviations i n  indivi
dua l  blade proper t ies .  

2. 	 DeDendence 0.f t h e  F r e q u e n c g t r u m - of Excitiqg Forces 
o n t h e  Harmgnic Content of Blade Vibrations-

Above, on t h e  basis of very general  considerations,  we have demonstrated 
t h a t  var iab le  forces  and moments X, Y, Z, M,, My, and M, produced by the  vibra

t i n g  blades and ac t ing  on the  ro to r  hub 
vary i n  time wi th  the-frequency of the  
fundamental harmonic zw of t he  r o t o r  and 
a l so  contain i t s  mult iple  harmonics 2zw, 
38~1 ,etc . ,  whereas t h e  ro to r  blades and 
hence t h e  forces  generated by each blade 
and ac t ing  on t h e  hub perform vibra t ions  
with the  fundamental frequency w and 
contain mult iple  harmonics 21-14 3w, 4w,  
e t c .  which comprises a l s o  the harmonics 
zw, 2zw, e t c .  T h i s  suggests t h a t  cer
t a i n  harmonic components of the  vari
ab le  forces  s e t  up by each blade and ~ I W  

pressed on the  hub are neutralized a t  
the  hub while o thers  a r e  s m e d .  We 

Fig.2.4 Polygon of Forces Generated will prove t h a t  this i s  ac tua l ly  so. 
by t h e  Blade and Impressed on t h e  Let  us r e f e r  t o  Fig.2.4. which gives  a 

b t o r  Hub. schematic sketch of a hub wi th  hinged 
blades. 

The force  impressed on t h e  hub from the  k-th blade can be resolved i n t o  
three components: Nk d i rec ted  along t h e  blade radius,  Pk p a r a l l e l  t o  t he  ax2s of 
t h e  r o t o r  shaf t ,  and Qk perpendicular t o  both. 

Each of these  components i s  a per iodic  func t ion  of time with a fundamental 
frequency w .  It i s  obvious t h a t ,  i n  a s teady-f l ight  regime, t h e  functions N k ( t ) ,  
P k ( t ) ,  and Q ( t )  are i d e n t i c a l  f o r  a l l  blades but s h i f t e d  i n  phase f o r  each 
blade relative t o  t h e  adjacent one by some quant i ty  corresponding t o  t h e  time of 
r o t o r  t u r n  through an  angle 2n/z. T h i s  j u s t i f i e s  wr i t ing  t h e  expansion of these  
funct ions i n  Fourier series i n  t h e  form 



where 

or, more concisely, 

Let us now formulate t h e  following problem: Knowing t h e  values of t h e  co
e f f i c i e n t s  of expansion i n  Fourier s e r i e s  of t h e  funct ions Pk( t ) ,  &,(t) ,  and 
Nk(t) ,  or ,  i n  o ther  words, knowing t h e  harmonic Components of t h e  forces  P,, Q,, 
N,, we f i nd  t h e  variable forces  X, Y, Z and t h e  moments M,, My, M, (more exact ly  
%hei r  harmonic components) from which we can p l o t  t h e  dependence of t h e  vibra
tion-inducing forces  on various harmonic components of t h e  forces  produced by 
an  ind iv idua l  blade and ac t ing  on t h e  hub. 

Summing t h e  forces  generated by each blade and ac t ing  on t h e  hub, we ob ta in  
t h e  following formulas : 

2 


where 
Jl ,  = azimuthal angle of t h e  k-th blade: 
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h = 	distance between d s  of r o t a t i o n  and matched f lapping and drag 
hinges 

If t h e  hub has unmatched hinges, t hen  we must take h = t v e h  i n  eq.(1.9) and 
h = t h . h  i n  eq.(l.lO). 

Let  us e x d n e  i n  d e t a i l  eq.(1.7) f o r  determining t h e  var iab le  force  Y. 
Subs t i tu t ing  i n t o  it ,eq.( 1.3) for t h e  force  P,, it becomes necessary t o  calcu
la te  t h e  sums i n  t h e  f o r m  

where n a r e  in t ege r s  ( n  = 1, 2, 3,  ...). 

We will show t h a t  t he  tr igonometric sums of such a form have the  following 
noteworthy property: For any n not a mult iple  of t h e  number of blades z,  both /205 
sums a r e  equal t o  zero for any t; when n i s  a multiple of z, ?.e., i f  n = s z  
(s = 1, 2, 3, ...), then  

(1.12) 

f o r  any value of t, but  

Furthermore, 

6 5 
COS 6(Ut+cpa) = COS 7 (Ut+ y k )  = 

k-I  k-1  

I 




but  

We can prove t h e  v a l i d i t y  of eqs.(1.12) by d i f f e r e n t  methods. For this, 
l e t  us use the  convenient method proposed by R.A.Mikheyev based on t h e  applica
t i o n  of t h e  well-known Euler formula expressing t h e  re la t ionship  between trigono
metr ic  functions and exponential  funct ions wi th  an  imaginary argument. We Will 
prove t h e  v a l i d i t y  of only t h e  first equation i n  t h e  system (1.12). We have: 

Theref ore, 

cosn?, =-2 E [efn'k+e-fn'k I =  
k- 1 k - 1  

2 i n  2% 
- i n  

2%- k  -k 

2 
k -1  k - I  

Let us separa te ly  check t h e  sum 

f n  5 k (e fn  $ ) + ( e f n  G ) z + ( e i n  %)3+ + ( e i n  5)"
e " - ... 

k -1 

i n 2 2  
T h i s  i s  a geometric progression wi th  t h e  denominator e . /zo6 
Using t h e  well-known formula f o r  t h e  sum of a geometric progression, we 

obtain 

12% -!L 
e ' (1 - e i z x n )  

1 2 . 5  
k- 1 I - e  ' 

Since n i s  an in teger ,  t h e  numerator of this expression i s  always equal t o  
zero, so  t h a t  ei2nn = 1( n  = 1, 2, 3 ,  ...) . 

The denominator of this expression can vanish only i f  (+) i s  an in teger ,  

i.e., if n i s  a mult iple  of t h e  number of blades z .  Thus, this sum i s  equal t o  
zero f o r  any n wi th  t h e  exception of those n t h a t  are mult iples  of t h e  number z. 

I n  t h e  lat ter case, t h e  value of t he  sum becomes indeterminate (+). his in
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deterrninacy can be evaluated by t h e  well-known LfHospital  ru l e .  kt n vary con
tinuously,  approaching some value s z  (s  i s  any in teger ;  s = 1, 2, 3, ...). D i f 
f e r e n t i a t i n g  t h e  numerator and denominator with respect  t o  n and passing t o  t h e  
l i m i t  n -t sz, we have 

W e  can a l s o  show exac t ly  t h a t  

0, i f  n is  not  a m u l t i p l e  of  '7.; 

A s  a r e s u l t ,  we a r r i v e  a t  t h e  conclusion t h a t  i f  n i s  not a mult iple  of z, 
then  

2 

cos n+&=0. 
k-1 


z cos n+&=- +e--lnaf) =z cos n w t  =z cos (szwt).
2 

R - 1  

I n  E k e  manner, we can prove t h e  v a l i d i t y  of t h e  second equation of t he  
system (1.12). 

The indicated property of tr igonometric sums i s  conveniently wr i t t en  i n  the  
form 

cos nqk = 
0, i f  n is  not  a m u l t i p l e  of z; 

R - l  zcosnwt, i f  n=sz; s=I, 2, 3. ..; 
2 0, i f  n is n o t  a m u l t i p l e  of z;

sin = 
h-1 zsinnof, i f  n=sz; s=l, 2, 3 . . .  I 

Let us now r e t u r n  t o  t h e  expression f o r  t he  force  Y from eq.(l.7), i n t o  /207
which we s u b s t i t u t e  t h e  value of t h e  force  P, from eq.(l.4) : 
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On t h e  basis of t h e  establ ished property of tr igonometric sums [eq.(l . l3)1
it can be s t a t e d  t h a t ,  upon summation of d i f f e ren t  harmonics i n  this expression, 
a l l  harmonics t h a t  are not a mult iple  of t h e  number of blades z w i l l  disappear.  
The harmonics t h a t  are a mult iple  of z are summed i n  conformity with eqs.(l . l3),  
so  t h a t  we f i n a l l y  obta in  

Thus, a l l  harmonic components of t h e  fo rce  Pk (t)- t h a t  are not a mult iple  
of t h e  number of blades are neutral ized a t  t h e  r o t o r  hub and do not cause vibra
t i o n s  of t h e  he l icopter  fuselage.  A s  a result, t h e  variable force  Y changes i n  

time wi th  t h e  fundamental harmonic p = zw of 
t h e  rotor ,  and a l s o  contains mult iple  harmonics 

a* mm 	 a,3p, e t c .  T h i s  completely confirms t h e  
basic  conclusion of t h e  preceding Subsection, 
and y ie lds  add i t iona l  information exact ly  de
f in ing  t h e  harmonic components of t h e  fo rce  Pk 
t h a t  are dangerous from t h e  aspect of vibra
t ions .  

Let us examine an  example f o r  i l l u s t r a t i o n  
0 purposes. W e  assume t h a t ,  f o r  some ro tor ,  t he re  

i s  resonance of t h e  second overtone of blade 
Fig.2.5 Amplitude of Vibra- v ibra t ion  i n  t h e  f lapping plane with t h e  f i f t h  
t i o n s  i n  Cockpit of Single- harmonic of t h e  r o t o r  ( 5 w ) .  I n  this case t h e  
Rotor Helicopter as a Func- harmonic component corresponding t o  t h e  f i f t h  
t i o n  of Flying Speed. harmonic (Pas and Pb5)w i l l  be la rge  i n  t h e  ex

pansion of t h e  f o r c e  Pk f o r  such a ro tor .  

If t h e  r o t o r  has f ive blades, t h e  above type of resonance w i l l  lead t o  ap
prec iab le  v ibra t ions  of t h e  hel icopter .  

If t h e  r o t o r  has four  blades, this resonance w i l l  i n  no way manifest i tself  
i n  vibrat ions of t h e  helicopter,  s ince  t h e  harmonic components of t h e  force  Pk 
corresponding t o  this resonance W i l l  be neutral ized at t h e  hub. A s  w i l l  be 
shown later,  t h e  variable moments M, and M, at t h e  hub can be appreciable;  how
ever, f o r  a l l  p r a c t i c a l  purposes t h e  hel icopter  v ibra t ions  are determined mainly 
by the  var iab le  forces  X, Y, Z. Occasionally, it i s  erroneously assumed t h a t  
t h e  v ibra t ions  of a given he l icopter  are smaller, t h e  l a rge r  t h e  number of r o t o r  
blades.  However, it i s  evident i n  this example t h a t  i n  r e a l i t y  t h e  matter i s  
not so  simple and t h a t  i n  this case a reduct ion i n  t h e  number of blades ac tua l ly
will lead t o  a reduct ion i n  vibrat ion.  

Let us  examine another example: Figure 2.5 shows t h e  r e s u l t s  of experi
mental v ibra t ion  measurements i n  t h e  cockpit of a s ingle-rotor  hel icopter  which 
was  t e s t ed  with two ro tors :  three- and four-blade types.  The r o t o r s  had com
p l e t e l y  i d e n t i c a l  blades and d i f f e red  only i n  the  hubs. The curves depict  t h e  
dependence of t h e  q l i t u d e  ay  of v e r t i c a l  v ibra t ions  i n  t h e  cockpit  on t h e  f ly
i n g  speed V f o r  both ro tors .  

A s  shown by ca lcu la t ions  of these  ro tors ,  t he  r o t o r  blade had a resonance /208 
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of t h e  second overtone of v ibra t ions  i n  t h e  f lapping plane wi th  t h e  fou r th  har
monic of t h e  r o t o r  at t h e  operating rpm. As a r e s u l t ,  t h e  Vibrations of t h e  
he l icopter  wi th  a four-blade ro tor ,  over t h e  g rea t e r  po r t ion  of t h e  speed range, 
w e r e  appreciably higher (at V = 4.0 - 50 km/hr, by a f a c t o r  of more than  3 )  than 
t h e  v ibra t ions  of a he l icopter  wi th  t h e  three-blade ro to r .  However, at a high 
f ly ing  speed t h e  v ibra t ions  of t h e  he l icopter  with a four-blade ro to r  w e r e  
smaller than  those of t h e  he l icopter  wi th  a three-blade ro tor .  This i s  explained 
by t h e  f a c t  t ha t ,  at low flying speed, a l a rge  harmonic component of aerodynamic 
forces  exi-sts, corresponding t o  t h e  fou r th  harmonic and caused by t h e  la rge  non
uni forn i ty  of t h e  induced ve loc i ty  field of t h e  r o t o r  at a l o w  f ly ing  speed. 
With a n  increase  i n  f l y i n g  speed the re  occurs an  equal iza t ion  of t h e  ve loc i ty  
field of t h e  flow passing through t h e  r o t o r  (see Chapt.1, Sect.8); correspond
ingly,  t h e  exc i t a t ion  of blade v ibra t ions  wi th  respect t o  the  fou r th  harmonic 
decreases rapidly,  whereas t h e  t h i r d  harmonic does not decrease as rap id ly  wi th  
an  increase  i n  speed o r  may not decrease a t  a l l .  The r e l a t i v e l y  l a rge  magnitude 
of t h e  fou r th  harmonic i n  the  induced ve loc i ty  f i e l d  a t  low f ly ing  speed ap
parent ly  i s  a phenomenon common t o  a l l  ro tors .  

Let us now r e t u r n  t o  a determination of other  forces  and moments ac t ing  on 
t h e  hel icopter .  Ecpation (1.9) f o r  t h e  moment My is completely analogous t o  
eqe(1=7).  

Repeating t h e  reasoning used i n  der iving eq.(l.&) f o r  t h e  force  Y,  we ob
t a i n  t h e  following expression: 

The var iab le  moment My is dangerous not only from t h e  aspect of he l icopter  
vibrat ions ( i t  will be shown i n  Sect .3, Subsect .1t h a t  this moment causes only 
la teral  fuselage v ibra t ions) .  T h i s  moment i s  one of t h e  sources of t o r s i o n a l  
v ibra t ions  i n  the  transmission system of a hel icopter .  

A s  we see  from eq.(1.15), t h e  variable po r t ion  of this moment i s  determined 
exclusively by t h e  harmonic components of t h e  force  q t )  which a r e  mult iples  t o  
t h e  number of blades. 

L e t  us now t u r n  t o  t h e  first 	ecpat ion of t h e  system (1.8). Subs t i tu t ing  
and %(t)C e q ~ ~ ( 1 . 5 )i n t o  it t h e  expressions f o r  Qk(t) and (1.6)1, we ob ta in  
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To ca lcu la te  t h e  remaining addends l e t  us examine t h e  expression 

XQn= [Q,,; cos nqk+ Qe, sin n +k] sin Oh, 
k-1 

which represents  t h e  component of t h e  force  X caused by the  n-th harmonic of 
t h e  force  Q. 

2 z 

Here, we encounter sums of t h e  form C cosn?ksin+k and C sinn+ksirl+k . These 
k - I  k - 1  

sums are a l s o  e a s i l y  calculated by means of eq.(1.13). Actually, 

cos n+&sin qk=-
2 

k - 1  k-1 k - 1 

z z 

On t h e  basis of eqs.(l . l3) we can assert t h a t  these  sums w i l l  be nonzero 
only i f  one of t h e  numbers ( n  + 1)or  ( n  - 1)i s  a mult iple  of t h e  number of 
blades.  Let ( n  + 1) = s z  ( s  = 1, 2, 3 ,  ...) and thus  n = s z  - 1. Then, 

zCOS n$&sin +i= -sin (szwf);
2 

k- 1 

z 

zsin n$k sin l;)k = 
2 

cos (szwt). 
k -1 

Furthermore, i f  ( n  - 1) = sz ;  n = s z  + 1, then  

cos n$&sin $& =--P sin (szwt);
2

k - 1  

As a r e s u l t ,  we ob ta in  t h e  following expression for t h e  component of t h e  
fo rce  X which i s  obtained from a l l  harmonic components of t he  force  Q: 
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(1.16) 

For t h e  po r t ion  of t h e  force  X caused by harmonic components of t h e  force  
N ( t ) ,  we obta in  i n  like manner t h e  expression of t h e  form 

The fo rce  X can be determined by . the  formula 

X = X Q $ X N .  

If t'he expression f o r  t h e  force  X(t) i s  wr i t t en  i n  t h e  form of eq . ( l . l ) ,  /210
t h e  follow-ing formulas f o r  i t s  harmonic components are obtained: 

The components corresponding t o  harmonics t h a t  are mult iples  of t h e  funda
mental harmonic Xa2,  X b 2 ,  e tc .  are obtained from these  same formulas, i f  we re
p lace  t h e  index z by t h e  ind ices  22, 32, e t c .  

Thus, t h e  variable p a r t  of t h e  force  X(t) i s  determined by t h e  harmonic 
components of the  forces  Q ( t )  and N(t)  which a r e  combinatory with respect  t o  the  
fundamental harmonic of t h e  r o t o r  ( z  - 1; z + 1) o r  t o  i t s  mult iple  harmonics 
(22 - 1; 22 + l), e tc .  

For exanple, f o r  a r o t o r  wi th  three blades ( z  = 3), t h e  fundamental har
monic of t h e  fo rce  X (frequency 3 w t )  w i l l  be determined by t h e  second and four th  
harmonics of t h e  forces  at) and N(t) ,  t h e  second harmonic of t h e  fo rce  (fre
quency 6 w t )  w i l l  be determined by t h e  f i f t h  and seventh harmonics of forces  at)
and N(t) ,  and so on. 

Completely analogous formulas we obtained f o r  harmonic components of t h e  
force  z ( t )  
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Jus t  as i n  eqs.(l .M), t o  obta in  t h e  mult iple  harmonics za2, Zb2, z ~ ,z,, 
t h e  index z i n  these  formulas must be subs t i tu ted  respec t ive ly  by t h e  ind ices  22, 
32, e tc .  

I n  l i k e  manner, t h e  expressions f o r  t h e  harmonic components of t h e  moments 
M, and M, a r e  obtained from eqs . ( l .U) :  

(1.20) 


r h  
u - 2M", - - [ -P  ( Z + l )  -p ,  +1)1; 

(1.21) 
r h  

Mi,=- 2 [ -P~ ( z + l ) - P " Z - l ) l .  

Let us a l s o  mention t h e  fo l l a J ing  f a c t  which occasionally might f a c i l i t a t e  
a qua l i t a t ive  v ibra t ion  ana lys i s .  If t h e  var iab le  force  i n  t h e  ro to r  plane ( X  
o r  Z )  o r  t h e  moment (Mx, M,) are determined by some harmonic component of t he  
force  generated by t h e  blade, then we obtain a vector of constant length uni
formly ro t a t ing  i n  t h e  plane of t h e  rotor with an angular ve loc i ty  zw ( o r  szw). 
The d i r ec t ion  of r o t a t i o n  is  opposite t o  t h a t  of t h e  ro to r  i f  this vector is  ob
tained from t he  harmonic component z + 1 (or  sz + l), and equid i rec t iona l  with 
t h e  r o t a t i o n  of t he  r o t o r  i f  this vector i s  obtained from t h e  harmonic coPnponent 
z - 1 (or  sz - 1). 

For instance,  l e t  t h e  r o t o r  have f i v e  blades ( z  = 5) and l e t  us look a t  /211
t h e  vector of t h e  moment a t  t h e  hub, w i t h  components M, and M, obtained from the  
harmonic component ( z  - 1): 

P=P,,cos 4wt$Pb,sin4wt. 

Then C e q ~ ~ ( l . 2 0 )and (1.2l)Iy 

M,=-	 r h  
[Pb,cos 5od -Pu4sin 5wt];

2 

Mz=-zh 
2 

A s  indicated by these  formulas, 

represents  a vector of constant 

[ -Pb,sin 5 w t  -P,, cos 5 w t ] .  

t h e  vector 

X=M,+M, 

length 
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uniformly ro t a t ing  i n  t h e  plane of t h e  r o t o r  wi th  an  angular ve loc i ty  5m i n  a 
d i r ec t ion  coinciding with t h e  d i r ec t ion  of r o t o r  ro ta t ion .  

Thus, t h e  above analysis shows that a r o t o r  i s  a s o r t  of f i l t e r  which, out 
of a l l  harmonic components of t h e  forces  on v ibra t ing  blades, t ransmits  t o  t h e  
fuselage only c e r t a i n  ones corresponding t o  t h e  fundamental harmonic of t h e  
r o t o r  zw, t o  i ts  composite harmonics ( z  - 1) m and ( z  + l)w, harmonics t h a t  are 
mult iples  of t h e  fundamental harmonic Zzw, ~ Z W ,  etc., and t o  composite harmonics 
(22 - 1)m, (22 + 1)w,  (32 - l ) w ,  (3z + l ) w ,  e tc .  

A s  a rule, t h e  lower harmonics ow, ( z  + l)w, and ( z  - l ) w  represent  t h e  
g rea t e s t  danger both from t h e  aspect of t he  v ib ra t ion  level and from t h e  aspect 
of dynamic s t rength  of t h e  fuselage members.  

Of t h e  harmonics which are a consequence of blade v ibra t ions  i n  t h e  flap
ping plane ( force  P,, see Fig.2.4), t h e  harmonic z w  (a& mult iples  of it) lead 
t o  t h e  appearance of a v e r t i c a l  variable force  on t h e  ro tor ,  whereas the  har
monics ( z  - 1)and ( z  + 1) (and a l s o  22 - 1, 22 + 1, etc . )  lead t o  t h e  appear
ance of var iab le  moments a t  t h e  hub r e l a t i v e  t o  t h e  axes O x  and 02. 

O f  t h e  harmonics_ which-are a consequeqce of blade v ibra t ions  i n  the plane 
of r o t a t i o n  (forces  Q and N,, see Fig.2.4.), t h e  harmonic z w  (and mult iples  of 
it) lead t o  t h e  appearance of a variable twis t ing  moment on t h e  r o t o r  shaf t ,  
whereas t h e  harmonics ( z  - 1 ) w  and ( z  + l)w, and a l s o  (22 - 1, 22 + 1, etc . ) ,  
lead t o  t h e  appearance of variable forces  ( longi tudina l  and l a t e r a l )  i n  t h e  plane 
of ro t a t ion  of t h e  ro to r .  

We note i n  conclusion that, upon summation of t h e  forces  generated by t h e  
blades and ac t ing  on t h e  swashplate of t h e  p i t c h  control ,  we Obtain exact ly  the  
same formulas f o r  ca lcu la t ing  t h e  harmonic components of t h e  v e r t i c a l  force  Y and 
t h e  moments M, a& M, applied t o  t h e  swashplate. I n  this case, eqs.(l.&), 
(1.20), and (1.21) can be used d i r ec t ly ,  understanding by t h e  force  

t h e  force  ac t ing  i n  t h e  trimmer of t h e  k-th blade (hinge moment divided by t h e  
corresponding arm), and understanding by t h e  quant i ty  h t h e  radius  of t h e  swash-
p l a t e  of t h e  p i t c h  control.  

Thus, knowing t h e  harmonic content of t h e  hinge moment, it i s  not d i f f i c u l t  
t o  ca l cu la t e  t h e  variable forces  ac t ing  i n  the  co l l ec t ive  and cyc l i c  p i t c h  cor+ 
t r o l  loops. 

Sect ion 2. -%a1 Vibrations of t h e  Fuselane as a n  E l a s t i c  Beam La2 
If t h e  variable forces  imparted t o  t h e  fuselage by t h e  r o t o r s  are known, 

then  ca lcu la t ion  of Tibrat ions at d i f f e r e n t  po in t s  of t h e  fuselage can be car
r i e d  out by conventional methods of ca lcu la t ing  t h e  forced v ibra t ions  of a n  elas
t i c  beam of variable cross  sect ion.  O f  course, t h e  fuselage of a real  hel icopter  
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can be regarded as a t h i n  flexurally e l a s t i c  beam. 

In  reality, t h e  t ransverse  dimensions of a fuse lage  cannot be considered 
small i n  comparison wi th  t h e  longi tudina l  dimensions. Furthermore, t h e  fuselage 
of a he l icopter  of s ingle-rotor  configurat ion may have 11discontinuitiesl* i n  t h e  
region of t h e  t a i l  boom, pronounced reduction i n  r i g i d i t y  over t h e  length, and 
other  p e c u l i a r i t i e s .  These s p e c i a l  features and t h e i r  considerat ion i n  vibra
t i o n  ana lys i s  are discussed i n  Sect ion 3 .  Here, we Will descr ibe methods of 
v ib ra t ion  analysis of an e l a s t i c  beam, s ince  these  form t h e  basis f o r  f u r t h e r  
discussion. In this Section, we w i l l  a l s o  inves t iga t e  v ibra t ions  of a system 
consis t ing of two e l a s t i c  beams forming a llcrossl*. A fuselage wi th  a wing i s  
reduced t o  such a system. 

1. Calculation of  Forced Vibrations of an E l a s t i c  Beam 
by t h e  Method of b a n s i o n  i n  Natural Modes 

Let a time-variant load q, d i s t r ibu ted  over t h e  beam length  and varying i n  
accordance wi th  t h e  harmonic l a w  

4 (x,t)= q (x)cos p t  (2.1) 

be applied t o  a f l e x u r a l l y  e l a s t i c  i d e a l  beam (fig.2.6) without damping, which 
is  i n  a free state under t h e  e f f e c t  of a balanced system of t h e - i n v a r i a n t  forces  

( the  fo rce  of r o t o r  t h r u s t  balances t h e  force  of 
gravi ty) .

yiI The equation of lateral flexural vibra
t i o n s  of such a beam has t h e  form 

(E/y")"+ my =q ( x ,  t). 

- - LI=-----" 4 This equation i n  p a r t i a l  der iva t ives  was 
derived i n  Subsection 10, Sect ion 1, Chapter I 

fig.2.6 Diagram of a Free f o r  an e l a s t i c  beam i n  a cen t r i fuga l  force f ield.  
E l a s t i c  Beam under Applica- I n  t h e i r  absence (N 5 0), t h e  expression takes  
t i o n  of a Distr ibuted Load. t h e  form of eq.(2.2). 

The problem i s  t o  f i n d  t h e  motion of t h e  
beam, i.e., t o  f ind  t h e  func t ion  y = y(x, t )  which satisfies eq.(2.2) and t h e  
boundary conditions which, i n  t h e  case of a beam with free ends, have t h e  form 

The functions y(x, t)  sa t i s fy ing  t h e  homogeneous equation (without t he  
right-hand s ide )  

(Efy")"+my=i~ (2*4) 
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and t h e  boundary conditions (2.3) correspond t o  t h e  na tura l  v ibra t ions  of t he  
beam. The so lu t ion  of eq.(2.4) i s  sought i n  t h e  form 

y (x, t )=.&) cos pt. (2.5) 

T h i s  expression, after subs t i t u t ion  i n t o  eq.(2.4), leads t o  an ordinary /213
d i f f e r e n t i a l  equation wi th  t h e  parameter p f o r  determining t h e  funct ion y(x): 

(EITP- pzmy=o, (2.6) 

The last equation has so lu t ions  d i f f e ren t  from zero only a t  c e r t a i n  values 
of t h e  parameter p: p = po; p = pl;  p = p2;  p = p3, e tc .  To each value of p = 
= Pk (k = 0, 1, 2, 3, ...) t he re  corresponds a c e r t a i n  func t ion  yk (x),which 

satisfies eq.(2.6) a t  p Pk , so  t h a t  

F i r s t  jundanenta l  node ,p=o 4 

- .enter  of g r a v i t y  

F i r s t  e l a s t i c  node 

Second e l a s t i c  node P ’ P t  

t 

Fig. 2.7 Charac te r i s t ic  Natural 
Vibrat ion Modes of a Fuselage 

as a Free Beam. 
(p:, pz, e t c .  are t h e  v ib ra t ion  
frequencies of t h e  first, 
second, e t c .  e l a s t i c  overtones; 
i n  general  we can assume: po = 
= 0 ;  p1 = 0, pz = p?;’; p3 = p3+

2’ 
e t c  .) . 

= 

The O r d e r s  O f  Pk (k = 0, 1, 2, 3, . . e )  

are ca l led  t h e  natural frequencies of t h e  
beam, w h i l e  t he  funct ions T , ( x )  a r e  desig
nated as t h e  corresponding natural v ib ra t ion  
modes. 

The motion of t h e  beam according t o  t h e  
l a w  

y (A, 4 = a Z  (4cos PRt, (2.8) 

where ak i s  a constant, i s  ca l led  the  natu
r a l  v ibra t ion  of t h e  beam with respect t o  
t h e  k-th overtone. 

The enera l  so lu t ion  of t h e  homogeneous
equation 72.4) has t h e  form 

where a, and (pk are arbitrary constants.  

Thus, t h e  natural vibrat ions of a beam 
represent  motion produced as a result of 
t h e  superposi t ion of vibrat ions of d i f f e r e n t  
overtones. 

The methods of f inding t h e  natural fre
quencies Pk and t h e  corresponding modes yk(x)

f o r  a beam wi th  a given l a w  of va r i a t ion  i n  r i g i d i t y  EI(x) and a l i n e a r  mass 
m(x)  are presented i n  Sect ion 2 of Chapter I. 

229 



1 


Figure 2.7 shows t h e  cha rac t e r i s t i c  modes of natural vibrat ions of a free 
beam. The two modes correspond t o  v ibra t ions  of a beam as a s o l i d  body and-have 
natural frequencies equal t o  zero. The first of t hese  modes corresponds t o  for
ward motions of t h e  beam, and t h e  second t o  angular displacement of t h e  beam 
relative t o  i t s  center  of gravi ty .  

A l l  formulas derived i n  this Sect ion are equal ly  suitable f o r  ca lcu la t ing  
t h e  v ibra t ions  of an  e l a s t i c  beam wi th  any clamping conditions a t  i t s  ends. 
However, when these  formulas are used f o r  v ibra t ions  of a free beam and par t icu
l a r l y  of a fuselage,  it must be remembered that t h e  number of t he  frequencies pk 
and of t h e  modes yk(x)of natural v ibra t ions  must include t h e  two lower modes 
which correspond t o  fundamental frequencies.  Thus, i n  a l l  formulas it i s  neces
sary t o  set po = 0 and p1 = 0 and t o  t ake  in to 'account  that t h e  corresponding a 
normed modes have t h e  form 

where x, is  t h e  coordinate of t h e  center  of g rav i ty  of t h e  beam. 

If t h e  above modes are not taken i n t o  account i n  ca lcu la t ions  of fuselage 
vibrat ions,  t he  v ib ra t ion  ana lys i s  W i l l  not include v ibra t ions  of t h e  fuselage 
as a s o l i d  body, which W i l l  lead t o  appreciable e r r o r s  i n  the  v ibra t ion  magid
tude. 

kt us study here t h e  problem of forced v ibra t ions  of a beam subjected t o  
a Ifpurely11 harmonic load [see eq.(2.1)]. Ln this case, eq.(2.2) takes  t h e  form 

(E/y")"$-my= q (x)cos pt .  (2.10) 

Let us first seek t h e  p a r t i c u l a r  so lu t ion  of this equation corresponding t o  
s teady forced v ibra t ions  of t h e  beam wi th  a frequency p i n  t h e  form 

-
y =y (x)cos pt. (2.11) 

Subs t i tu t ing  this expression i n t o  eq.( 2.10), we a r r i v e  at  an ordinary d i f 
f e r e n t i a l  equation f o r  determining t h e  funct ion ?(x) which, of course, i s  known 
as t h e  mode of forced vibrat ions:  

( Eiy")" -pZmC/=q (x). (2.12) 

Let us then seek t h e  so lu t ion  of this equation i n  t h e  form of an expansion 
i n  natural modes: 

If, i n  this sum, we take  a lirnited number of terms, then, i n  determining 
t h e  values of t h e  coe f f i c i en t s  ck,  we can obta in  only t h e  approximate so lu t ions  
of eq.(2.12). However, it i s  poss ib le  t o  prove t h a t  i n  t h e  method of determix
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i n g  t h e  coe f f i c i en t s  ck given below, t h e  approximate so lu t ion  with a r a t h e r  
l a rge  number of terms i n  the  series (2.13) can d i f f e r  from t h e  exact so lu t ion  
as much as desired.  

To f i n d  t h e  coef f ic ien ts  ck, we s u b s t i t u t e  e ~ ~ ( 2 . 1 3 )i n t o  eq.(2.12) and, 
after multiplying both s ides  of eq.(2.12) by Yn(x), we i n t e g r a t e  them from 0 
t o  1 T h i s  w i l l  y i e ld  t h e  equation 

The i n t e g r a l s  i n  t h e  first term on t h e  left-hand s ide  of this equation can 
be s i n p l i f i e d  by using in t eg ra t ion  by pa r t s :  

but 

s ince  t h e  funct ions yk (x) satisfies t h e  boundary conditions (2.3). 

Furthermore, 

By v i r t u e  of t h e  conditions (2.3), we have 

so  that, as a r e s u l t ,  we ob ta in  

Since a l l  funct ions & ( x )  (k = 1, 2, 3, ...) s a t i s f y  eq.(2.7), we can write 

Multiplying t h e  f irst  equat ion by 7, and t h e  second by Fk,we then  sub
t r a c t  one from t h e  other  and in t eg ra t e  t h e  obtained expression from 0 t o  1. 
T h i s  y i e lds  



However, t h e  left-hand s ide  of this equation i s  equal  t o  zero by v i r t u e  of 
t h e  condi t ion (2.15). Therefore, i f  only pk # p,, then 

T h i s  i s  the  so-called condi t ion of or thogonal i ty  of t h e  na tu ra l  v ib ra t ion  
modes (see a l so  Chapt .I, Sect .2, Subsect .3). 

Furthermore, multiplying both s ides  of eq.( 2.7) by y,, and in t eg ra t ing  from 
0 t o  1, we obta in  

Hence, we can conclude that if n # k, then  

If n = k, we ob ta in  an  expression f o r  t h e  frequency p, of t he  n-th overtone 
of vibrat ions i n  terms of i ts  mode F,(x): 

T h i s  i s  the  well-known Rayleigh formula. 

On t h e  basis of conditions ( 2 . z )  and (2.17) we can assert that, i n  
eq.(2.&), a l l  terms f o r  which k # n vanish. Taking this i n t o  account and mak
i ng  use of eq.(2.l5), we rewrite eq.(2.&) i n  t h e  form /216 

I I I 
c, EZii2dx-c,p2 m z d x =  s q&dx. 

0 0 0 

1 
Dividing both s ides  of t h e  last equation by G,2dx, solving it r e l a t i v e  

0 
t o  c,, and using Fkyleighrs formula [eq.(2.18)1, we f i n d  
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1 0 ” cn= .-.1 
J (2.19) 
0 

We then  introduce t h e  notations:  

I -
An =J qgndx; (2.20)

0 

(2.21) 

The quant i ty  A ,  represents  t h e  work of t h e  exc i t ing  load q(x) a t  t h e  mode 
of t h e  n- th  overtone of vibrat ions,  w h i l e  t he  quant i ty  k ,  denotes the  l a rges t  
(during t h e  per iod)  value of t h e  k ine t i c  energy of t h e  given overtone of vibra
t i o n s  re fer red  t o  t h e  quant i ty  p”, Thus, 

Taking i n t o  account e q ~ ~ ( 2 . 1 3 )and (2 . l l ) ,  we ob ta in  the  following so lu t ion  
of equation (2.10): 

From this expression, we can draw c e r t a i n  important conclusions. 

First, it i s  obvious that i f  t h e  frequency of va r i a t ion  of t he  exc i t ing
load p approaches one of t h e  frequencies Pk of natural vibrat ions,  then the  vi
b ra t ion  amplitude a t  any poin t  of t h e  beam increases  without bounds. T h i s  i s  
t h e  phenomenon of resonance of an  exc i t ing  load with the  k-th overtone of natu
ra l  blade vibrat ions.  Since we do not consider here t h e  e f f e c t  of damping forces  
( t h i s  W i l l  be done later on), t h e  v ib ra t ion  amplitude i n  resonance i s  unlimited. 

Furthermore, i f  t h e  quant i ty  p is  c lose  t o  t h e  frequency p n  of t h e  n- th  
overtone of vibrat ions,  t h e  term wi th  the  number n i n  t h e  sum (2.23) becomes ap
prec iab ly  l a rge r  than  t h e  o ther  terms. Therefore, we can assume approximately 
t h a t ,  i n  t h e  v i c i n i t y  of resonance (p = p , ) ,  we have 

1 A ,  
y (x, t)= ___ -y, (x) cos p t  =cn;, (x)cos pt ,

P ; - P ~  Kn 

meaning tha t ,  i n  t h e  vicinity of resonance wi th  some overtone of natural vibra
t i o n s  t h e  mode of forced v ibra t ions  differs l i t t l e  from t h e  mode of v ibra t ions  
of t h e  given overtone. 

233 


I 



Finally,  when t h e  value of p changes from an  amount .somewhat smaller than /217 
p a  t o  an  amount somewhat l a rge r  than pa,  t he  quantity i n  t h e  brackets  of formula 
(2.23) changes sign. Therefore, i f  we construct a graph f o r  t h e  dependence of 

t h e  amplitude yo of  some point- of t h e  beam 
on t h e  exc i t a t ion  frequency p [ f o r  a cork 

Yo 	 s t a n t  q(x)l, this graph w i l l  have t h e  shape 
shownin Fig.2.8. The curve of t h e  graph 
has infinite d i scon t inu i t i e s  a t  t h e  poin ts  
P = P19 P = P29 P = P39 e t c *  

2. 	 Ihmamic R in id i ty  of a Beam. 
Resomnce and Antiresonance 

I n  t h e  preceding Subsection, we dis
cussed t h e  case of forced vibrat ions of a 
beam subjected t o  an exci t ing force dis
t r ibu ted  over i t s  length, which var ies  i n  
time by t h e  harmonic l a w  (2.1); t h e  derived 
formulas remain i n  force f o r  any l a w  of 

Fig.2.8 Dependence of Vibration va r i a t ion  i n  load over t h e  beam length 
Amplitude of any Fuselage Point i .e. ,  f o r  any form of t h e  funct ion q(xj. 

on the  Exci ta t ion Frequency. 	 Therefore, it i s  not d i f f i c u l t  t o  derive, 
from these expressions, formulas f o r  deter
mining t h e  forced vibrat ions of a beam 

caused by a concentrated exci t ing force 

F=Fo COS p t ,  (2.24.) 

applied a t  a c e r t a i n  point  x = xo (Fig.2.9). 

In f a c t ,  l e t  t h e  load q(x) be applied t o  a beam over only a small segment 
of length Ax i n  t he  v i c in i ty  of t he  point  x = xo. I n  this case, eqs.(2.22), 
(2.20), and (2.21) remain val id ,  but i n  eq.( 2.20) t h e  corresponding i n t e g r a l  
must not be taken over t he  e n t i r e  length of t h e  beam 1 but only over a segment 
Ax, i.e., 

A t  a small value of Ax, this i n t e g r a l  can be approximately replaced by t h e  
quantity 

where 

F,  = qdx. (2.26) 
Ax 

0 



I 

Equation (2.25) becomes exact a t  an  inf ini te ly  small Ax, i.e., i n  the  case of a 
concentrated exc i t ing  fo rce  

Thus, we a r r i v e  at t h e  following conclusions: If t h e  vibrat ions of a /218
beam are caused by a concentrated force  [eq.(2.24)] applied a t  t h e  poin t  x = q, 
then t h e  motion of t h e  beam i s  described as before by eq.(2.23) i n  which t h e  
quant i ty  A, i s  determined by t h e  formula 

(2.27) 

i.e., t h e  quant i ty  A, represents  t he  work done by t h e  exc i t ing  load Itat t h e  mode 
of t h e  k-th overtone of vibrations!!. 

't 4 f'fo cos pt 

0 


Fig.2.9 For Analyzing Forced Fig.2.10 Diagram of t h e  Action 
Vibrations of a Free Beam due of a Longitudinal Force Produced 

t o  a Concentrated Force. by t h e  Rotor and Exerted on an  
E las t i c  Fuselage. 

We note that this method of def ining t h e  forced v ibra t ions  holds a l s o  i f  
t h e  v ibra t ions  are caused by a concentrated bending moment varying by a har
monic l a w  

appl ied a t  t h e  poin t  x = x0. I n  this case, t h e  quant i ty  A, should be determined 
by t h e  formula 

A R =MOZ N o )  I (2.29) 

where Fl(xo)  i s  t h e  angle of r o t a t i o n  of t h e  e l a s t i c  l i n e  a t  t h e  poin t  x = xo 
corresponding t o  t h e  mode of t h e  k-th overtone. 

Lf t h e  beam vibra t ions  are caused by a longi tudina l  force  

x=xo COS p t ,  (2.30) 

appl ied t o  some arm h (Fig.2.10), a l l  of t h e  derived formulas remain val id  
since,  i n  this case, t h e  force  X, can be t r ans fe r r ed  from t h e  poin t  A t o  t h e  
corresponding poin t  B of t h e  beam, during which process t h e  couple with a moment 
equal t o  M, = &h has been added. 
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The longi tudina l  variable fo rce  applied a t  t h e  poin t  B i s  able t o  cause 
only longi tudina l  (axial) v ibra t ions  of t h e  beam, whereas lateral v ibra t ions  of 
t h e  beam due t o  t h e  harmonic moment M, are determined i n  t h e  manner ind ica ted  
above 

I n  examining la teral  forced v ibra t ions  of a beam produced by a concentrated 
force  F = F, cos p t ,  it i s  convenient t o  introduce t h e  concept of dynamic r ig id
i t y  of t h e  beam a t  t h e  poin t  of appl ica t ion  of t h e  fo rce  x = x,. 

Let t h e  dynamic r i g i d i t y  D(p) of t h e  beam at t h e  poin t  x = x, be repre
sented as t h e  r a t i o  of-t h e  highest value (amplitude) of t h e  exc i t ing  fo rce  F, 
t o  t he  amplitude yo = y(xo) of t h e  forced v ibra t ions  of t h e  beam at  t h e  poin t  of 
appl ica t ion  of force,  such t h a t  

D ( p )=-	FO . 
YO 

We have i n  mind t h a t ,  on a va r i a t ion  i n  force  i n  accordance wi th  t h e  har
monic l a w  F = F, cos p t ,  t h e  poin t  of appl ica t ion  of this force  W i l l  execute 
steady forced v ibra t ions  according t o  t h e  law y = To cos p t .  

Thus,' t h e  dynamic r i g i d i t y  of a beam i s  a func t ion  of t h e  v ibra t ion  fre
quency p and i s  considered pos i t i ve  i f  t h e  fo rce  and displacement vary i n  time 
Itin phase" and negative i f  t h e  force  and displacement vary i n  llantiphasell. 

The v ib ra t ion  amplitude of t h e  poin t  of appl ica t ion  of t h e  force  x = x, /219
can be determined from eq.(2.23): 

If we p l o t  t h e  graph of t h e  va r i a t ion  of To with  respect  t o  t h e  frequency p 
at a constant value of F,, a curve analogous t o  that shown i n  Fig.2.8 will be 
obtained. Therefore, i f  we construct  t h e  graph of t h e  dependence of t h e  dynamic 
r i g i d i t y  D(p) at t h e  given po in t  of t h e  beam as a func t ion  of t h e  v ib ra t ion  fre
quency, this graph w i l l  have t h e  form shown i n  Fig.2.11. 

The d y n a c  r i g i d i t y  D(p) vanishes a t  t h e  resonances p = p l ,  p = pz, etc. 
and becomes inf in i te  a t  a l l  values of t h e  frequency p (p = p12, p = pS3, p = -- p3&, e tc . )  at which t h e  v ibra t ion  amplitude of t h e  poin t  of appl ica t ion  of 
force  vanishes. These values of t h e  frequency p are known as antiresonance fre
quencies and are equal t o  t h e  frequencies of t h e  corresponding overtones of 
natural v ibra t ions  of t he  beam wi th  ahinged support a t  t h e  poin t  of appl ica t ion  
of force  F. 

Actually, l e t  us imagine that at t h e  poin t  of appl ica t ion  of force  F t h e  
beam has a hinged support ( t h e  beam i s  not crosscut  at this po in t )  so  t h a t  this 
po in t  of t h e  beam remains s t a t iona ry  during vibra t ion .  Such a beam has i t s  own 
na tu ra l  v ib ra t ion  frequencies and modes. I n  t h e  presence of natural beam Vibra
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t i o n s  of a c e r t a i n  overtone, a dynamic re
ac t ion  Will arise a t  the. support x = xo 
which varies i n  t i m e  according t o  a har
monic l a w  wi th  t h e  frequency of this over
tone.  The amplitude (highest  value) of 
this r eac t ion  fo rce  w i l l  depend on t h e  
amplitude (of  some point ,  f o r  example, t h e  
end) of natural v ibra t ions  of t h e  beam, 
which may have any magnitude (depending 
upon t h e  i n i t i a l  conditions).  Therefore, 
we can always s e l e c t  a beam vibra t ion  am
p l i tude  such that t h e  reac t ion  force  ampli
tude has a prescr ibed value Foe If we now 
imagine t h e  support as removed but s t i l l  
continue t o  apply, t o  t he  beam a t  this 
point ,  t he  force  F varying by a harmonic 
l a w  with t h e  same frequency, then  the  f r e e  
beam Will continue t o  v ibra te  with r e m e c t  

Fig.2.11 Graph of Dynamic t o  t h e  same mode wi th  t h e  same amplit ide.  
B g i d i t y  . 	 However, these  v ibra t ions  can be regarded 

as forced v ibra t ions  of a free beam under 
t h e  e f f ec t  of t h e  exci t ing force  F. With 

such forced vibrat ions,  t h e  po in t  of appl ica t ion  of t h e  exci t ing force  i s  sta
t iona ry  so t h a t  t h e  dynamic r i g i d i t y  of t h e  beam. corresponding t o  this regime 
i s  inf ini te .  T h i s  i s  known as antiresonance. 

In  t h e  graph of t h e  dynamic r i g i d i t y  ( f ig .2 .U),  t h e  poin ts  of resonance 
D(p) = 0 and antiresonance D(p) = 03 a l t e rna te .  It can be demonstrated t h a t  t h i s  
i s  always so f o r  an e l a s t i c  beam. 

Thus, a t  a c e r t a i n  exc i t a t ion  frequency, t h e  poin t  of appl ica t ion  of t he  
exc i t ing  force  becomes a r res ted ,  and t h e  node of t h e  forced v ibra t ion  will be 
formed a t  this poin t .  T h i s  phenomenon i s  ca l led  antiresonance. The frequency 
of each antiresonance i s  always located between two adjacent natural v ibra t ion  
frequencies of a free beam. 

The phenomenon of antiresonance i n  "pure for"! can occur only i n  i d e a l  /220
o s c i l l a t o r y  systems without damping. I n  t h e  presence of damping, t h e  v ib ra t ion  
amplitude of t h e  po in t  of appl ica t ion  of t he  fo rce  i n  antiresonance does not 
vanish. T h i s  amplitude w i l l  be lower, t h e  smaller t h e  damping [see, f o r  ex
ample, t he  paper by Den-Gartog (Ref .19) on a dynamic v ibra t ion  damper) . 
3 .  	b x > l i c a t i o nof the- Method of Q"ic RiccidiQ to-the Vibration 

Analysis of Side-by-Side Helicopters-

The concept of dynamic r i g i d i t y  is  r a t h e r  convenient i n  ca lcu la t ing  osci l 
l a t o r y  systems that can be divided i n t o  two o r  more components, making it easy 
t o  def ine  t h e i r  v ibra t ions  ind iv idua l ly .  

ht us examine a v ibra tory  system consis t ing of two crossed e l a s t i c  beams 1 
and 2, shown i n  Fig.2.12. A fuselage With a n  elastic Wing, cha rac t e r i s t i c  f o r  
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hel icopters  of side-by-side configuration, represents  such a system. 

It i s  necessary t o  ca l cu la t e  t he  forced v ibra t ions  of this system caused by 
a variable force  F, varying according t o  a harmonic l a w  and applied at t h e  

coupling po in t  A of t h e  beams 1and 2 ( t h e  
method of ca l cu la t ion  Will be indica ted  be
low f o r  t h e  case i n  which t h e  exc i t ing  
forces  are appl ied a t  any po in t ) .  Using t h e  
method presented i n  Subsections 1and 2, it 
i s  poss ib le  t o  ca lcu la te ,  f o r  each of t h e  
beams, t h e  forced v ibra t ions  produced by 
c e r t a i n  forces  F, and F, applied t o  each of 
these  beam$ at t h e  po in t  A. I n  s o  doing, 
we can f i n d  t h e  dynamic r i g i d i t y  of each of 
t h e  beams a t  t h e  p o i n t  A. Let  these  dynamic 

Fig.2.12 Diagram of Vibratory r i g i d i t i e s  be D,(p) and D,(p) . 
System of Two Crossed Beams. 

It is easy t o  show that t h e  dynamic 
r i g i d i t y  D(p) of t h e  e n t i r e  system W i l l  be 

equal t o  the  sum of t h e  dynamic r i g i d i t i e s  of both beams: 

D (PI=Dl (PI + 0 2  (PI* (2.33) 

Actually, t h e  force  F = F, cos p t  ac t ing  on t h e  system as a whole will be 
equal t o  t h e  sum of t h e  forces  F, = F,, cos p t  and F, = F,, cos p t  ac t ing  on 
each of t h e  beams. However, 

where 5, i s  t h e  v ib ra t ion  amplitude of t h e  poin t  A, i d e n t i c a l  f o r  both beams. 

Consequent l y, 

Thus, t h e  dynamic r i g i d i t y  of t h e  system i s  easily found by means of 
eq.(2.33) i f  t h e  dynamic r i g i d i t i e s  of t h e  beams 1and 2 are known. The graph 
of t he  dynamic r i g i d i t y  D(p) can be obtained by simple addi t ion  of t h e  ordinates  
of t h e  graphs .D,(p) and &(p) .  The values of t h e  frequency p a t  which D(p) = 0 
will give t h e  values of t h e  natural frequencies of t h e  system of two beams. T h i s  
y i e lds  a convenient method f o r  determining t h e  natural frequencies of t he  sys
t e m .  Since these  frequencies a r e  the  roots  of t h e  equation 

they  can be found from the  condi t ion L a  



The last equation i s  easy t o  solve graphical ly  by superposit ion of t h e  
graphs of D,(p) and -D,(p), as i s  shown i n  Fig.2.13. Theabscissasp,,  p2, e tc .  
of t h e  po in t s  of i n t e r sec t ion  of t h e  graphs D,(p) and -D2(p) give the  values of 

t h e  natural frequencies of t he  system. 
WPl 

With this method of calculat ion,  
the  natural v ib ra t ion  modes of t h e  sys
t e m  are simultaneously determined. The 
natural v ib ra t ion  mode of t h e  system, 
corresponding t o  some frequency Pk 
(k = 1, 2, ...),Will cons is t  of t h e  

6 forced v ib ra t ion  modes of each of t h e  
beams a t  this frequency, due t o  t h e  
forces  F,, and FO2. Since, a t  na tu ra l  
frequencies, 

Fo=Foi +Fo,=O, 

it follows t h a t  

Fig. 2.13 For Determining t h e  Fol= -F02, 


Natural Frequencies of t h e  System 

by t h e  Method of Dynamic Rigidi- i .e. ,  t h e  force  F,, applied t o  t h e  


t ies .  	 beam 1 i s  equal i n  magnitude and op
p o s i t e  i n  s ign  t o  the  force  FO2 applied 

The na tu ra l  v ibra t ion  modes of this system can be normed by se l ec t ing  an 
appropriate  sca le .  For example, it i s  poss ib le  t o  s e l e c t  a sca le  such t h a t  t h e  
v ibra t ion  mode of t h e  beam 1 has an  amplitude equal t o  uni ty  a t  i t s  t i p  (x = 1 ) .  
In this case, t h e  corresponding sca l e  of t h e  v ibra t ion  mode of t h e  beam 2 should 
be selected from t h e  condition of a v ibra t ion  amplitude i d e n t i c a l  with the  
beam 1 at  t h e  coupling point .  

Having t h e  normed natural v ib ra t ion  modes of t h e  system avai lable ,  i t s  
forced v ibra t ions  can be calculated from harmonic forces  applied a t  any point ,  
by t h e  method of expansion i n  normal modes i n  t h e  same manner as i n  t h e  case of 
a n  i s o l a t e d  beam. Here, t h e  v ibra t ions  of both beams are sought i n  t h e  form 

where yk(x) i s  t h e  v ib ra t ion  mode of a given beam corresponding t o  t h e  normed 
mode of t h e  k-th overtone of v ibra t ions  of t h e  system (simultaneous v ibra t ions  
of both beams). 

The coe f f i c i en t s  ck are determined i n  t h e  conventional manner from eq.( 2.22): 

where pk i s  t h e  frecpency of simultaneous v ibra t ions  of t h e  k-th overtone of t h e  
system. 
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The coe f f i c i en t s  A, and K, are determined by means of t h e  following formu
las: 

Ak=FOik(~o). ( R = l ,  2, 3,...) (2.37) 

T h i s  coef f ic ien t  represents  t h e  work done by t h e  exc i t ing  load a t  t h e  mode 
of t h e  k-th overtone of na tu ra l  v ibra t ions  of t h e  system. The quantity &(x,) 
represents  t he  amplitude of t h e  normed v ibra t ion  mode of t h e  k-th overtone of 
t h e  system a t  t h e  po in t  of appl ica t ion  of force,  . regard less  t o  which beam t h e  
exc i t a t ion  i s  applied [here, yk((x,) i s  taken wi th  a Ilplusll s ign  i f  t h e  d i r e c t i o n  
of the  force  and t h e  de f l ec t ion  coincide, and wi th  a l"inus11 s ign  i f  t h e  di- /222
r ec t ion  of t h e  force and de f l ec t ion  do not coincide]: 

K k = s  my2kdx 
for 1st beam 

I 

-

Fig .2 .a  For Analysis of Vibrations 
of Side-by-Side Helicopter. 

f m&x. 
for 2nd beam (2.38) 

If v ibra t ions  of t h e  system 
are exci ted by severa l  harmonic 
forces  applied t o  d i f f e ren t  po in t s  
ins tead  of by a s ing le  force,  then 
the  forced vibrat ions a r e  found by 
adding t h e  v ibra t ions  caused by each 
of t h e  forces  separately.  

Here, we should b r i e f l y  men
t i o n  one of t h e  p e c u l i a r i t i e s  of ex
c i t a t i o n  by r o t o r s  of hel icopters  
of mul t i ro tor  configuration. De
pending on t h e  kirieGatic connection 
of t h e  r o t o r s  (over t h e  transmis
s i o n  system), it may happen t h a t  
var iab le  exc i t ing  forces  produced by 
d i f f e r e n t  rotors vary i n  t i m e  i n  
phase o r  i n  antiphase.  For example, 
i f  t h e  r o t o r s  of a side-by-side 
he l icopter  are so coupled t h a t  t h e  
blades of both ro to r s  simultaneous-

occupy analogous pos i t ions  ( f o r  
example, extreme forward pos i t i on  
as shown i n  t h e  diagram A of 
Fig.2.&), t h e  forces  exer ted on 
both r o t o r s  simultaneously a t t a i n  
maxi"axim and minimum values - they  
w i l l  vary i n  phase. If t h e  r o t o r s  

are coupled as shown i n  t h e  diagram B, then- t h e  exc i t i ng  loads from both ro to r s  
vary i n  antiphase. I n  case A, t h e  exc i t ing  loads from both ro to r s  w i l l  cause 
only symmetric modes of simultaneous v ibra t ions  of t he  fuselage-wing system 
whereas, i n  case B, only skew-symmetric modes occur (Fig.2.15). Since, i n  t h e  
case of skew-symmetric vibrat ions,  t he re  are no v e r t i c a l  v ibra t ions  of t h e  fuse
l age  poin ts  f o r  he l icopters  of side-by-side configuration, i t  is  des i rab le  t o  
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Fig.2.15 Natural Vibrat ion Modes 
of a Wing-Fuselage System i n  a 

Side-by-Side Helicopter. 

4..Method. .of.Auxiliary Mass 

connect t h e  r o t o r s  as shown i n  t h e  dia
gram 13 (F ig .2 . a ) .  Analogous considera
t i o n  can be made wi th  respect  t o  tandem 
hel icopters .  

O f  course, i n  solving t h e  problem of 
t h e  most suitable mutual arrangement of /223 
r o t o r s  it i s  a l s o  necessary t o  consider 
t h e  spec i f i c  values of natural frequen
c i e s  of various overtones of t h e  fuselage-
and t o  examine, along with fuselage Vi
bra t ions  i n  t h e  plane of symmetry, later
a1 vibrat ions;  this wil l .  be discussed 
f u r t h e r  i n  Section 3. 

To determine t h e  dynamic s t i f f n e s s  by the  method proposed i n  Subsection 2, 
r e s u l t s  from a natural v ibra t ion  ana lys i s  of t h e  fuselage are required.  I n  this 
case, t he  amplitude of forced v ib ra t ion  of t h e  poin t  of appl ica t ion  of force,  
needed f o r  determining t h e  dynamic s t i f fnes s ,  i s  deterrrined by means of eq.( 2.32) 
as an  expansion i n  natural modes. However, whenever it i s  poss ib le  t o  program 
t h e  ca lcu la t ion  of natural frequencies on a d i g i t a l  computer so  t h a t  this calcu
l a t i o n  W i l l  take l i t t l e  t i m e ,  we can recommend t h e  so-called method of aux i l i a ry  
m a s s  f o r  determining t h e  dynamic s t i f f n e s s  of t h e  fuselage a t  a given poin t .  In  
this method, t h e  natural fuselage frequency i s  calculated under attachment of 
an  aux i l i a ry  mass Dm t o  t h e  poin t  a t  which t h e  dynamic s t i f f n e s s i s  t o  be deter
mined. The ca lcu la t ion  i s  performed f o r  d i f f e ren t  values of Am, and i t s  r e s u l t s  
are used f o r  p lo t t i ng  t h e  graph Am(p) of t h e  dependence of Dm on t h e  natural 
frequencies of d i f f e ren t  overtones. 

C G  ko 

Fig.2.LS Typical Dependence of Awdl ia ry  Mass of a n  E l a s t i c  
Fuselage (or DynamicStiffness) a t  t h e  Point of Rotor Attach

m e n t  on t h e  &c i t a t ion  Frequency. 



Figure 2.15 gives  a n  example of such a graph f o r  a s ingle-rotor  hel icopter .  
I n  this diagram, t h e  weight of t h e  extra mass AG = gAm i s  l a i d  of f  on t h e  ord i 
nate .  

It i s  easy t o  show that this graph, t o  some degree, can completely replace 
t h e  graph D(p) i n  Fig.2.11. In f a c t ,  f o r  natural Vibrations of a beam with a n  
auxiliary mass Am a t  a frequency p, t h e  beam Will be loaded by t h e  correspond
ing  add i t iona l  force  of i n e r t i a  whose amplitude i s  

F ,  =Amp2y0, (2.39) 

where yo i s  t h e  v ib ra t ion  amplitude at t h e  poin t  of attachment of t h e  auxiliary 
mass. 

The force  of i n e r t i a  Fo a t  t h e  i n s t a n t  of maxi" def l ec t ion  from t h e  
equiklbrium pos i t i on  i s  d i rec ted  toward t h e  same s i d e  as t h e  de f l ec t ion  yo. A 

/224. 
spring attached t o  a beam with a s t i f f n e s s  I c1 = IA m p 2 ] ,  producing a force  pro
por t iona l  t o  t h e  de f l ec t ion  yo and d i rec ted  opposite t o  this def lect ion,  cor
responds t o  negative values of Am. 

O f  course, exac t ly  t h e  same vibrat ions of t h e  beam can be obtained without 
an  aux i l i a ry  mass, but these  are forced v ibra t ions  produced by t h e  ac t ion  of a 
harmonic force  of t h e  same amplitude Fo and varying with t h e  same frequency p.  

The dynamic s t i f f n e s s  of t h e  beam i s  determined by means of t h e  formula 

FOD ( p )=-. 
YO 

Comparing this expression wi th  eq.(2.39), we f i n d  

On t h e  basis of this formula, it i s  easy t o  construct  t h e  graph of t h e  de
pendence D(p), s ince we have t h e  dependence Am(p) a t  our disposal .  However, 
this need not be done and t h e  graph Am(p) o r  AG(p) can be used d i r ec t ly .  For 
example, t o  determine t h e  natural fuselage frequencies of a side-by-side con
f igura t ion ,  we can loca te  t h e  poin t  of i n t e r s e c t i o n  of t h e  graphs AG,(p) and 
-AG,(p) ins tead  of t h e  po in t s  of i n t e r s e c t i o n  on t h e  graph D,(p) and -D,(p) (see 
~ ig .2 .13) .  

5. Effect  of D a m p i n g  Forces. Vibrat io-q a t  Resonance 

The theory presented above and t h e  r e su l t an t  methods of ca lcu la t ion  are 
based on t h e  assumption t h a t  t h e  beam i s  p e r f e c t l y  e l a s t i c  and that damping 
forces  are absent. AS f o r  any other  OsciUatory system, a v ib ra t ion  ana lys i s  of 
a beam far from resonance need not take t h e  damping forces  i n t o  account; this 
does not lead t o  la rge  e r ro r s .  

However, a v ib ra t ion  analysis of a beam c lose  t o  resonance or ac tua l ly  i n  
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resonance requires allowance f o r  t h e  damping forces,  s ince  t h e  v ibra t ion  ampli
tude at resonance is d e t e e n e d  exclusively by t h e  presence of damping and 
since,  i f  absence of damping i s  assumed, t h e  amplitude at resonance becomes un
bounded. 

Damping forces  during v ibra t ions  of an e l a s t i c  beam are generated mainly as 
a consequence of f r i c t i o n  between s t r u c t u r a l  elements of t h e  beam during i ts  de
formations and a l s o  as a consequence of so-called i n t e r n a l  f r i c t i o n  i n  the  beam 
material which, f o r  a composite beam, i s  enera l ly  negl igible  i n  comparison with 
t h e  f r i c t i o n  between s t r u c t u r a l  elements 

The equation of flexural v ibra t ions  of a beam i n  t h e  presence of damping 
can be derived by assuming that t h e  bending moment M i n  t h e  beam sec t ion  i s  pro-

a 2Yp o r t i o n a l  t o  i t s  curvature -( i n  accordance with Hookets law) and t o  t h e  
a x2 

time rate of change of curvature, so t h a t  we can write 

where 7\ i s  some coef f ic ien t  character iz ing t h e  danping proper t ies  of t h e  beam 
a t  a given cross  section, which is assumed t o  be a given funct ion of t h e  x-coor
d ina te. 

Using t h e  known re la t ionship  : /225 

where @-(x, t )  i s  t h e  i n t e n s i t y  of t h e  l a t e r a l  load applied t o  t h e  beam, and 
tak ing  i n t o  account t h a t  this load, during vibrat ion,  i s  composed of t h e  ex
ternal exc i t ing  load q(x, t )  and t h e  load due t o  i n e r t i a  forces ,  so t h a t  

9" (x,t)=q (x,t )-m z  02.Y 
a t 2  ' 

t hen  eq.( 2.41) w i l l  y i e l d  t h e  fo l - lkng  p a d i a l  d i f f e r e n t i a l  equation describing 
la teral  v ibra t ions  of a beam with damping: 

This equation d i f f e r s  from eq.(2.2) only by t h e  presence of a term wi th  a 
f a c t o r  7;  i f  7 = 0, it w i l l  coincide wi th  eq.( 2.2). 

If q(x, t )  = 0, we ob ta in  an  ecpat ion descr ibing t h e  natural Yibration of 
a beam i n  t h e  presence of damping: 
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The exact so lu t ion  of this equation is  r a t h e r  complex. However, a t  rela
t i v e l y  weak damping, a simple approximate so lu t ion  can be used. Such an  approx
h a t e  so lu t ion  of this equation, corresponding t o  n a t u r a l  vibrat ions of a beam 
with respect  t o  t h e  k-th overtone, can be found by asswning 

y =Y, (XI ehkt  , (2.44) 
where yk(x) i s  t h e  natural v ib ra t ion  mode of t h e  k-th overtone of t h e  beam i n  
t h e  absence of damping. 

S u b s t i t u t i  this so lu t ion  i n t o  eq.(2.43), canceling t h e  f a c t o r  & k t ,  mul
t i p ly ing  by yk(x7, i n t eg ra t ing  t h e  equation wi th in  t h e  i n t e r v a l  0 t o  1, and 
taking e q ~ ~ ( 2 . 1 7 )and (2.18) i n t o  account, we ob ta in  t h e  following equation f o r  
determining h k :  

i 2 , + 2 n k h k +  pi=o,  (2.45) 

where 

The roo t s  of this equation W i l l  be 

where 
Pk* =l / p ;  -n;. 

Accordingly, we can write eq.(2.44) i n  t h e  form 

i.e., t h e  quant i ty  n, represents  t he  d q i n g  coe f f i c i en t  of v ibra t ions  of t h e  
k-th overtone w h i l e  p r  represents  t h e  na tu ra l  frequency of t h e  k-th overtone i n  
t h e  presence of damping. 

We can show t h a t  such an approximate so lu t ion  of eq.(2.43) w i l l  d i f f e r  /226
less from the  exact so lu t ion  t h e  smaller - i n  comparison with uni ty  - t h e  dimen
s ion le s s  coef f ic ien t  of damping of t h e  k-th overtone determinable by t h e  formula 

-
n k = - .nk 

P k  

T h i s  coef f ic ien t  i s  one of t h e  most important c h a r a c t e r i s t i c s  of v ibra t ions  
of t h e  given overtone and can be determined experimentally, e i t h e r  by ana lys i s  
of t h e  oscillogram of damped v ibra t ions  of t h e  given overtone or by applying t h e  



r e s u l t s  of measuring t h e  forced v ib ra t ion  amplitude of t h e  beam under t h e  e f f e c t  
of a v ib ra to r  ( t o  be discussed below). 

For a conventional fuselage ( r ive t ed  fuselage with duralumin sk in)  t h e  
damping coe f f i c i en t s  ?ik of d i f f e r e n t  overtones are located wi th in  limits of 0.02 
t o  0.05. These are r a the r  small values of t h e  damping coe f f i c i en t ,  i n  whose 
presence t h e  v ibra t ion  frequency of t h e  k-th overtone can be considered equal 
t o  the  frequency calculated without considerat ion of damping, s ince  pz = 

= Pk ,Jm.his correc t ion  i s  ins ign i f i can t  f o r  t h e  ind ica ted  values of i i k .  

I n  ca lcu la t ing  forced v ibra t ions  of a beam with damping, described by 
eq.(2.42), it is preferab le  - in .v iew of t h e  weak damping - t o  use an  approx
imate method based on t h e  f a c t  that damping i s  completely disregarded far from 
resonance whereas, c lose  t o  resonance, an approximake so lu t ion  is  obtained on 
t h e  assumption that t h e  na tu ra l  v ib ra t ion  mode near resonance of t h e  k-th over
tone, j u s t  as i n  t h e  case of absence of damping, i s  c lose  t o  t h e  natural vibra
t i o n  mode of t h e  given overtone. 

I n  t h e  presence of damping, t h e  equation of forced v ibra t ions  of a beam 
under t h e  e f f e c t  of a harmonic load 

i s  conveniently w r i t t e n  i n  t h e  cofqlex form 

Since t h e  real p a r t  of t h e  right-hand s i d e  of this equation coincides with 
eq.(2.51), t h e  a c t u a l  motion of t h e  beam i s  described, i n  v i e w  of t he  l i n e a r i t y  
of t h e  solut ion,  by t h e  real  p a r t  of t h e  complex so lu t ion  of eq.(2.52). Close 
t o  resonance with t h e  k-th overtone of na tu ra l  vibrat ions,  t h e  so lu t ion  of this 
equation i n  conformity wi th  t h e  above considerations i s  best sought i n  t h e  f o r m  

y (x ,t )=ck& ( x )eipt, (2.53) 

where yk(x), as usual, i s  t h e  mode of t h e  k-th overtone of v ibra t ions  i n  t h e  ab
sence of damping. 

bt us s u b s t i t u t e  t K s  expression i n t o  eq.( 2.52). We t hen  multiply both 
s ides  of eq.( 2.52) by T k  (x) and i n t e g r a t e  from o t o  t . Transforming t h e  ob
ta ined  i n t e g r a l s  and taking eqs.(2.17) and (2.18) as well as eq.(2.46) i n t o  ac
count, we obta in  t h e  following equation f o r  determining t h e  coe f f i c i en t  ck: 

where A, and Kk are as usual  determined from eqs.(2.X)) and (2.21). Hence, 



The modulus of t h e  complex quant i ty  ck determines t h e  v ib ra t ion  amplitude:/227 

w h i l e  t h e  argument c k  

determines t h e  phase of t h e  forced v ibra t ions  wi th  respect  t o  t h e  e x c i t i  load 
[eq.(2.51)1. ~nt h e  presence of resonance, t h e  value of ck [see eq.(2.581 be
comes purely imaginary: 

This means that, at resonance, t h e  phase angle between the  exc i t ing  load 
and t h e  v ibra t ions  of t h e  beam is  equal t o  n/2. I n  t h i s  case, as is  read i ly  
ve r i f i ed  by d i r e c t  su-bs t i tu t ion  i n t o  t h e  equation, t h e  vibrat ions Will t ake  p lace  
i n  accordance wi th  t h e  l a w  

y (x ,t )=;&yk (x)sin p t ,  (2.57) 
where 

Thus, t h e  v ib ra t ion  amplitude a t  resonance i s  completely determined by t h e  
value iik of t h e  dimensionless coef f ic ien t  of damping of t h e  k-th overtone. T h i s  
can be used f o r  an experimental determination of &. If v ibra t ions  of t h e  beam 
are exci.ted by means of a vibrator ,  i.e., by a given concentrated force  F = F, 
cos p t  applied a t  a c e r t a i n  poin t  x = xo, and i f  t h e  v ib ra t ion  amplitude yo at 
resonance (p = Pk) i s  measured at t h e  poin t  of appl ica t ion  of force,  i t  becomes 
easy t o  f i n d  t h e  quant i ty  ?ik. Here A, w i l l  be determined by eq.(2.27) and t h e  
quant i ty  yo, by t h e  formula 

YO =’kyk  (xO) * 

Therefore, taking account of eq.(2.58), we f i n d  

o r  

(2.59) 
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where t h e  quant i ty  mk, which we can c a l l  t h e  mass of t h e  k-th overtone reduced 
t o  t h e  poin t  x = xo, i s  determined by t h e  formula 

1 
mk= my: dx. (2.60)

0 


Here, 

(2.61) 

The value of t h e  reduced mass mk is  determined with s u f f i c i e n t  accuracy by 
calculat ion,  but  it can a l s o  be determined experimentally by measuring t h e  natu
ral  v ibra t ion  mode of t h e  beam at  resonance wi th  t h e  k-th overtone. 

When des i r ing  t o  make a pre-estimate of t h e  -Etude a t  resonance f o r  a /2;?8
fuselage s t i l l  on t h e  drawing board and not ye t  given over t o  manufacture, it 
i s  poss ib le  t o  use eq.(2.58), using f o r  E, t h e  values known from some other  fuse
k g e  of similar design, s ince  t h e  values of i i k  f o r  similar designs d i f f e r  l i t t l e .  

Sect ion 3. 	Vibration Analysis wi th  Consideration of Fuselage 
Charac te r i s t ics  

1. -Fuselage Charactgr-s t ics  . lateral and Vert.i.cal Vibrations-

In t h e  preceding Section, methods were proposed f o r  ca lcu la t ing  t h e  v i 
bra t ions  of a fuselage as an e l a s t i c  beam ( O r  as a system of two crossed beams 

f o r  a side-by-side configuration) 
f o r  which t h e  dimensions of t h e  
cross  sec t ions  w e r e  small i n  com
par i son  wi th  t h e  length.  I n  many 
cases, such a method of ca l cu la t ion  
gives completely sa t i s f ac to ry  re
s u l t s .  However, i n  some cases 
when t h e  fuselage of t h e  he l icopter  
has c h a r a c t e r i s t i c s  t h a t  d i f f e r  
g rea t ly  from those of t h e  model of 
a n  e l a s t i c  beam, more complicated 

Fig. 2.17 For Reducing t h e  Vibrat ion ca lcu la t ion  s y s t e m  are involved. 
Problem of an  E las t i c  Fuselage t o  t h e  The fuselage designs of various 
Vibrat ion Problem of an  E l a s t i c  Beam. 	 types of hel icopters  (s ingle-rotor ,  

side-by-side configurations,  tandem 
configuration) vary widely. There

fore,  it would be d i f f i c u l t  t o  give any general ly  appl icable  method of calcula
t i o n  which would permit a s u f f i c i e n t l y  accurate  ana lys i s  of fuselage vibrat ions 
generated by c e r t a i n  forces .  

Each new fuselage design may necess i t a t e  s u b s t a n t i a l  changes i n  the  method 
of ca l cu la t ion  of v ibra t ions .  T h i s  problem might become r a t h e r  complicated. 
However, i n  a l l  cases t h e  method of ca l cu la t ion  should be based on general  p r i 
c i p l e s  of t h e  theory of v ibra t ions  of e l a s t i c  systems. The design engineer who 
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has t h e  func t ion  of making v ib ra t ion  analyses of new configurations f o r  heli
copter prototypes should be so versed i n  these  genera l  methods as t o  be ab le  t o  
modify each computational system t o  f i t  each new problem. Therefore, t h e  ma
t e r ia l  i n  this Chapter is presented i n  a manner t o  demonstrate t h e  essence of 
t h e  most important methods used i n  v ib ra t ion  ana lys i s .  For example, t h e  method 
of expansion i n  natural modes, t h e  method of dynanic r i g i d i t y ,  t h e  concept of 
resonance and antiresonance are not only appl icable  t o  an  e l a s t i c  beam o r  t o  a 
system of two crossed beams but  a l s o  t o  any o ther  more complicated vibratory sys
t e m .  These methods were presented i n  t h e i r  app l i ca t ion  t o  a beam since,  on t h e  
one hand, it is  easiest t o  demonstrate them f o r  this example and, on t h e  other  
hand, t h e  method of ca lcu la t ing  v ibra t ions  of a beam i s  o f t e n  appl icable  t o  
fuselage v ib ra t ion  analyses without modification. 

To i l l u s t r a t e  c e r t a i n  cha rac t e r i s t i c s  of a real fuselage,  l e t  us t u r n  t o  
Fig.2.17 which schematically shows t h e  fuselage of a s ingle-rotor  hel icopter .  
T h i s  fuselage i s  character ized by t h e  f a c t  that i t s  flexuralaxis i s  a broken 
l i ne ,  t h a t  t h e  centers  of g rav i ty  of t h e  fuselage compartments do not l i e  on t h e  
flexural axis, and that each fuselage compartment i s  a body a l l  of whose measure
ments are of t h e  same order so  that, i n  ca lcu la t ing  vibrat ions,  not only t h e  /229 

mass of t h e  compartment but a l s o  i t s  
moments of i n e r t i a  r e l a t i v e  t o  a l l  
three axes must be taken i n t o  consid
era t ion .  Calculations show that, i n  
determining t h e  lower harmonic of 
flexural v ibra t ions  of such a fuselage 
both i n  t h e  plane xOy ( v e r t i c a l  vibra
t i o n s )  and i n  t h e  plane xOz ( l a t e r a l  
v ibra t ions) ,  we can obta in  completely 
s a t i s f a c t o r y  results i f  we conceive 
t h e  fuselage as a t h i n  e l a s t i c  beam 
wi th  a r e c t i l i n e a r  axis. 

Fig.2.18 Design Model f o r  Vibration 
Analysis of an  E l a s t i c  Fuselage. If, i n  t h e  v ib ra t ion  analysis ,  we 

l i m i t  ourselves t o  a study of vibra
t i o n s  of t h e  fuselage as a s o l i d  body 

and take  i n t o  account only t h e  lower e l a s t i c  mode ( t h e  first three modes i n  
Fig.2.7), t h e  ca l cu la t ion  of v ibra t ions  of a fuselage as a t h i n  beam with a rec
t i l i n e a r  axis gives s a t i s f a c t o r y  results. However, i f  t h e  second e l a s t i c  mode 
has a frequency c lose  t o  t h e  frecpency of t h e  fundamental harmonic of t h e  
r o t o r  zw (and this is  o f t en  the case),  this type of ca l cu la t ion  may lead  t o  cer
t a i n  e r rors .  I n  v ib ra t ion  analyses of t h e  cockpit  ( a t  t h e  fuselage nose) t h e  
e r r o r  may be ins ign i f i can t  w h i l e  t h e  v ib ra t ion  amplitudes i n  t h e  region of t h e  
tail boom may d i f f e r  g r e a t l y  f r o m t h e  real values. To increase  t h e  accuracy of 
t h e  ca lcu la t ions  t h e  v ibra t ions  must be determined wi th  considerat ion of a l a rge  
number of e l a s t i c  overtones (second and t h i r d ) .  However, a s u f f i c i e n t l y  accu
r a t e  determination of t h e  second e l a s t i c  mode now involves a complication of t h e  
ca lcu la t ion  model 

An appreciable refinement of t h e  calculated results can be obtained by using 
t h e  design model shown i n  Fig.2.18. The fuselage here i s  replaced by an  e l a s t i c  
beam wi th  a r e c t i l i n e a r  axis, t o  which ind iv idua l  loads 1, 2, 3, e tc .  are at
tached. The center  of g rav i ty  of each load i s  a t  a c e r t a i n  d is tance  4 from 
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t h e  beam axis. For each load, we ass ign  i ts  mass m, and moments of i n e r t i a  I, 
and I, with respect  t o  axes p a r a l l e l  t o  t h e  axes Ox and Oz and passing through 
t h e  center  of g rav i ty  of t h e  load. For each segment of t h e  e l a s t i c  beam between 
t h e  loads k and k + 1, we prescr ibe  t h e  flexural r i g i d i t i e s  EI,” and EIE i n  both 
planes xOz and xOy and t h e  t o r s i o n a l  r i g i d i t y  GI, .  

Fig.2.19 Natural Vibration Modes of an E la s t i c  Fuselage 
of a Single-Rotor Helicopter i n  t h e  Plane of Symmetry. 

For this design model, t h e  lateral v ibra t ions  ( i n  t h e  plane X O Z )  represent 
simultaneous f l e x u r a l  and t o r s i o n a l  (binary)  v ibra t ions .  The frequencies and 
modes of t h e  na tu ra l  binary v ibra t ions  of such a system can be calculated by t h e  
method proposed i n  Sect ion 6 of Chapter I (see Fig.l.19) as applied t o  a r o t o r  
blade.  I n  this case, it must be assumed that t h e  cen t r i fuga l  force  N = 0, t h a t  
t h e  r i g i d i t y  of the  con t ro l  l i n e s  c,,, = 0, as w e l l  as that EXy’’(0) = 0 and 

(EI”)’ T h i s  corresponds t o  t h e  f a c t  that t h e  l e f t  end of t h e  be& i s  not 

clamped. The quarrtity x , . ~i n  t h e  blade ca l cu la t ion  must be subs t i tu ted  by t h e  
values of s taggers  hk.  

I n  ca lcu la t ing  t h e  forced lateral v ibra t ions  of this system, t h e  method of 
expansion i n  natural modes (binary)  can be used. I n  this case, a l l  formulas of 
Sect ion 2 of this Chapter are appl icable  i n  which t h e  quant i ty  A, means t h e  work 
done by t h e  exc i t ing  load a t  t h e  normed mode of a given harmonic and t h e  quan
t i t y  K, represents  t h e  k i n e t i c  energy of a given harmonic re fer red  t o  t h e  square 
of i ts  frequency pg. Figure 2.19 shows t h e  c h a r a c t e r i s t i c  modes of natural ,  /230
lateral binary vibrat ions of a s ingle-rotor  hel icopter .  

The ca l cu la t ion  method and model given i n  Fig.2.18 can be used f o r  an  analy
sis of v e r t i c a l  binary v ibra t ions  of t h e  wing of a side-by-side he l icopter  wi th  
wing-tip engine pods (Fig.2.x)). If t h e  centers  of g rav i ty  of t h e  pods have a 
l a rge  o f f s e t  h, the  v ib ra t ion  analysis of such a wing cannot take only i s o l a t e d  
flexural v ibra t ions  i n  a v e r t i c a l  plane i n t o  considerat ion but m u s t  allow a l s o  
f o r  simultaneous binary vibrat ions.  A ca lcu la t ion  of synchronous v ibra t ions  of 
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t h e  fuselage-wing system i n  this case requires t h e  method of dynamic s t i f f n e s s .  

The design model best simulating an  a c t u a l  he l icopter  fuselage obviously i s  
that shown i n  Fig.2.21. Here, t h e  flexural ax is  of t h e  beam i s  given as a cer
t a i n  discontinuous l i ne .  The angle of i n c l i n a t i o n  of t h e  k-th segment of this 
of fse t  l i n e  i s  denoted as t h e  angle cdkm Such a design model s a t i s f a c t o r i l y  re
f l e c t s  t h e  p rope r t i e s  of any fuselage having a p lane  of symnetry xOy. For a 
fuselage wi th  such a plane of symnetry, a separa te  ca l cu la t ion  can be made of 
t h e  v e r t i c a l  flexural v ibra t ions  ( o r  v ibra t ions  i n  t h e  plane of symmetry) and 
t h e  lateral binary v ibra t ions .  

F’ig.2.20 Diagram of Engine Pod Fig.2.21 Design Model f o r  Calculating 
wi th  Large Offset. Vibrations of an E l a s t i c  Fuselage 

wi th  a Discontinuous Flexural  Axis. 

I n  ca lcu la t ing  t h e  ve r txca l  vibrat ions f o r  each load, three degrees of /231
freedom must be taken i n t o  consideration: 

displacement of t h e  center  of g rav i ty  of t h e  load along t h e  axis Ox; 
displacement of t h e  center  of g rav i ty  of t h e  load along t h e  axis Oy; 
r o t a t i o n  of t h e  load r e l a t i v e  t o  t h e  axis Oz. 

In  ca lcu la t ing  t h e  la teral  binary v ibra t ions  f o r  each load, three degrees 
of freedom must again be taken i n t o  account: 

displacement of t h e  center  of grav i ty  of t h e  load along t h e  axis Oz;  
r o t a t i o n  about t h e  ax is  Ox; 
r o t a t i o n  about t h e  axis Oy. 

Calculation of v e r t i c a l  v ibra t ions  of such a system i s  discussed i n  t h e  
Subsection below. We W i l l  a b 0  i u u s t r a t e  app l i ca t ion  of t h e  so-called methods 
of res idues f o r  v ibra t ion  analysis ,  which o f t e n  i s  r a t h e r  convenient t o  use. 

The ca lcu la t ion  of l a te ra l  v ibra t ions  of such a system i s  not discussed 
here since,  for ca lcu la t ing  lateral binary vibrat ions,  r a the r  s a t i s f a c t o r y  re
sults can be obtained by using t h e  design model shown i n  Fig.2.18. It should be 
noted t h a t ,  f o r  t h e  system shown i n  Fig.2.21, t h e  ca l cu la t ion  of l a t e r a l  binary 
v ibra t ions  could a l so  be car r ied  out by t h e  method of res idues.  
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-2. Calculation of Fuselage Vibrations i n  t h e  Plane-pf Symnetm 
by theeMethod of Residues 

Let  a two-dimensional e l a s t i c  system, depicted i n  Fig.2.21, execute steady 
forced v ibra t ions  i n  i t s  own plane xoy under t h e  e f f ec t  of a harmonic exci t ing 
load consis t ing of forces  and moments 

appl ied t o  each load (Fig.2.22). 

During s teady vibrat ion,  a l l  po in t s  of t he  system will execute harmonic 
v ibra t ions  with an  exc i t a t ion  frequency p so that, i f  we denote by x, y, and 9 
respec t ive ly  t h e  displacements of t h e  center  of g rav i ty  c of t h e  load along t h e  
axes Ox and Oy and t h e  angle of r o t a t i o n  of t h e  load r e l a t i v e  t o  i t s  center  of 
gravi ty ,  then  we can express t h e  k-th load by 

Let us then  e s t a b l i s h  t h e  r e l a t i o n s  connecting t h e  forces  applied t o  t h e  
loads with t h e  deformation of t h e  beam segments. We W i l l  consider t h e  forces  
and deformations only f o r  t h e  pos i t i on  of the  system corresponding t o  the  m a x i 
mum deviat ion from the  pos i t i on  of equilibrium ($.e., we w i l l  study only ampli
tudes of forces  and deformations). W e  then  construct  t h e  equations of equilib
r ium f o r  t h e  k-th load (Fig.2.53). To t h e  load, t h e  following are applied: 

ex terna l  forces  p i x ,  Pky ,ME (applied a t  po in t  A ) ;  


i n e r t i a  forces  of t h e  load m,$'gk; m k p 2 y k ;  Ikp29k (applied a t  poin t  c ) ; 

forces  ac t ing  on t h e  load from t h e  sewed of t h e  beam t o  t h e  lef t  of 

it: Yk--l, 

forces  ac t ing  on t h e  load from t h e  beam segment t o  t h e  r i g h t  of it: 1232 

'k, y k 9  Mk 

The equations of equilibrium of t h e  load are wr i t t en  i n  t h e  form 

The pos i t i ve  d i rec t ions  of forces  and displacements are indicated i n  
Figs.2.22, 2.23, and 2.24. The quant i ty  I, represents  t h e  d is tance  from t h e  
po in t  of appl ica t ion  of t h e  external exc i t ing  forces  Pix t o  t h e  point  of attach
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ment of t h e  load t o  t h e  e l a s t i c  beam. 

From t h e  condi t ion of equilibrium of a sec t ion  of t h e  beam'(Fig.2.Zh) we 
have 

M ; = M k  fY k l k  cos a k - x k l k  Sin a k .  ( 3 . 6 )  

To study t h e  deformations, l e t  us t u r n  t o  Fig.2.2& which shows t h e  k-th 
sec t ion  of an e las t ic  beam AkBk i n  a p o s i t i o n  of equilibrium and t h e  same sec
t i o n  i n  a displaced p o s i t i o n  ALBL Let  t h e  quan t i t i e s  x k )  y ,X k + l  and yk+ be 
t h e  displacement of t h e  point  A, and Bk (ends of t h e  section),  and l e t  9, and 
8 k + l  be t h e  angles of r o t a t i o n  of a tangent t o  t h e  e l a s t i c  axis on t h e  l e f t  and 
r i g h t  ends. Furthermore, l e t  6, be t h e  de f l ec t ion  of t h e  beam at the  k-th sec
t ion ,  i.e., t h e  displacement of t h e  r i g h t  end of t h e  beam (poin t  B k )  i n  a di
r e c t i o n  perpendicular AkBk r e l a t i v e  t o  t h e  tangent t o  t h e  e l a s t i c  axis at t h e  
left  end (point  A k ) .  Then we can write 

where 1, and cyk are, respect ively,  t h e  length  and angle of i n c l i n a t i o n  of t h e  
k-th sec t ion  of t h e  beam (F'ig.2.24). 

0 xkLK' 
Fig.2.22 Polygon of Forces Acting on a Sect ion 

of t h e  E la s t i c  Fuselage Model. 
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Fig.2.23 Polygon of Forces Fig.2.24 Polygon of Forces Applied
Applied t o  k-th Element of t o  a Sect ion of an E la s t i c  Fuselage 
an E las t i c  Fuselage Model. Model. 

Applying t h e  usual  methods of s t r eng th  of mater ia ls ,  we f i n d  t h e  following 
equations cor re la t ing  t h e  fo rces  and deformations: 

The disphcements  of t h e  beam po in t s  x, and y k  are r e l a t ed  with t h e  center
of-gravity displacements of t h e  loads by t h e  evident formulas 

The recurrence formulas (3.3), (3.4), (3.5), and (3.7), together  with 
eg.(3.8), (3.9), (S.lO), and (3 .U)  and if t h e  forces  and displacements of t h e  
k-th load are known, make it poss ib le  t o  determine t h e  fo rces  and displacements
of t h e  (k+l)- th  load. Using these  formulas, we can solve t h e  problem by t h e  
r1chai.n method", as follows: After assigning t h e  amplitudes %yo and 9, a t  t h e  
l e f t  end of t h e  beam, it becomes poss ib le  t o  determine, successively passing 
from sec t ion  t o  sect ion,  t h e  *Etudes a d  forces  at t h e  extreme r i g h t  end of 
t h e  beam, expressing them i n  terms of t h e  quanrtities xo, yo, 9,. If t h e  beam 
has n loads, we can thus  determine the  quan t i t i e s  X,, Y,, and M, a t  t h e  r i g h t  
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end o r  t h e  f l res idual l~.  However, s ince  t h e  r i g h t  end of t h e  beam i s  free, t h e  
~lresiduall lshould be equal t o  zero, %.e., a t  t h e  r i g h t  end of t h e  beam t h e  con
d i t i o n s  

X n =  Y n =  M,=O 


should be s a t i s f i e d .  

These conditions represent  a system of three equations f o r  determining t h e  
unknowns xo,yo, zY0, i n  terms of which we had already expressed t h e  v ib ra t ion  
anrplitudes and t h e  forces  on a l l  loads of t h e  beam. 

T h i s  method of c a l c u h t i n g  t h e  forced v ibra t ions  of a system (Fig.2.21) i s  
completely analogous t o  t h e  well-known method of ItresiduesII (Tolle method), 
used f o r  ca lcu la t ing  t o r s i o n a l  vibrat ions of multidisk systems (Ref.20). A 
similar method i s  used f o r  ca lcu la t ing  flexural v ibra t ions  of e l a s t i c  beams. I n  
t h e  American and English l i terature such a method i s  known as Myklestadts method 
(Ref.33, 34). T h i s  method permits: 1) f ind ing  t h e  curve of dynamic s t i f f n e s s  
(F’ig.2.l.l) of a system at any poin t  and i n  any d i r e c t i o n  by ca lcu la t ing  vibra
t i o n s  a t  d i f f e ren t  values of p; 2) f inding t h e  na tu ra l  v ib ra t ion  frequencies and 
modes of a system from a n  ana lys i s  of the  forced v ibra t ions  of t h e  system close 
t o  resonance, when t h e  forced v ibra t ion  amplitudes increase  without bounds. 

T h i s  method i s  espec ia l ly  convenient when using e lec t ronic  c o q u t e r s ,  with
out which it i s  p resen t ly  impossible t o  conduct dynamic ca lcu la t ion  i n  t h e  
necessary volume. 

For a p r a c t i c a l  appl ica t ion  of this method it i s  convenient t o  express t h e  
forces  and displacements at t h e  k-th sec t ion  i n  terms of the  values of xo,yo, 
and t o  give 6, i n  t h e  form 

where Ai, BC, e tc .  are coef f ic ien ts .  

When ca lcu la t ing  by t h e  llchainff method, t h e  values of these  coe f f i c i en t s  
of t h e  k-th sec t ion  must be used f o r  determining t h e i r  values f o r  t he  (k+l ) - th  
sect ion.  Using recurrence formulas f o r  forces  and displacements, i t  i s  easy t o  
construct recurrence formulas f o r  t h e  corresponding coef f ic ien ts .  The follow
ing  formulas are obtained i n  this manner: 

9 . 9 9  9.For t h e  coe f f i c i en t s  A,, Bk, ck, and D,, we have 
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6 6 6For t h e  quant i t ies  B,, Ck, and D,, analogous formulas a r e  obtained by replacing 
t h e  quant i t ies  A by B, C, and D, respect ively.  T h i s  pe r t a ins  a l so  t o  t h e  fo l 
lowing formulas [eqs.(3.14.) and (3.1511. 

For the  c o e f f i c i e n t s  A i ,  B i ,  CgandDg: 

A:,.= A i  - 1: sin ak AAf - I :  sin ahcos ak 
A:$2EIk ' 6EIk 

1isin2 ak
Af--l,sin akAB,.+6EIR 

For the c o e f f i c i e n t s  Ai ,  B$, C{ andD$: 

l 2  cos ah 13,cos2 a k  
A{+,=,A{ +RA f  + 6EIk  A i 2EIk 

I: cos nk s i n  a k-
6EIh 

A: +I ,  cos a,A:. 

For the C o e f f i c i e n t s  Af,  B f ,  . cf a d  0:: 

A f =A$-l +mkp2A: -mkp2f1,AD,f Pl,;

I 

and Of: 

The formulas f o r  C," and DC are obtained from t h e  last equation on replac
ing  t h e  quan t i t i e s  B by t h e  quant i t ies  C and D, respect ively.  
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The derived formulas permit determining t h e  values of t h e  coe f f i c i en t s  at 
t h e  next s ec t ion  from t h e i r  known values i n  t h e  previous sec t ion .  Thus, moving 

from sec t ion  t o  sec t ion  o r  from s t a t i o n  
t o  s t a t i o n  from l e f t  t o  r igh t ,  t h e  

Ymm values of t h e  coe f f i c i en t s  a t  t h e  r i g h t  
0.UL end of t h e  beam a r e  determined. On t h e  

r i g h t  (free) end (k  = n), t h e  condi
t i o n s  

-402 
X,, -/-=A: +B~xO C:LJ, +Df80=0; 

u,,=A,Y+ B , Y X ~ + - C ~ ~ ~ + D , Y ~ ~ = O ;  
-005 

M, At+Bfxo +CFyo+D f 8 ,  =O 
(3*22) 

-0.10 should be s a t i s f i e d .  
-012 - ‘ 

Solving this system, we f ind  t h e  
-a.w I I 

values of k,yo, and 9, of i n t e r e s t  
here : 

F’ig.2.25 Forced Vibration Mode of 

a n  E las t i c  Fuselage of a Single- A

Rotor Helicopter Obtained by t h e  xo=* ;


Met hod of Residues 
Ah . (3.23)A ’ 

where 
A = determinant of t h e  system (3.22);

Axo, Ayo, Ag = determinants obtained f r o m t h e  determinant A by replacing 
t h e  corresponding column by t h e  free terms of the  equations. 

Knowing t h e  quant i t ies  xo, yo, and 9, permits finding, by means of 
eqs.(3.l2), t h e  displacements and forces  ac t ing  i n  each cross  sec t ion  of t h e  
beam. 

f igu re  2.25 shows t h e  mode of forced v ibra t ions  of a single-rotor heli- /236
copter, determined by t h e  ind ica ted  method. The v ib ra t ion  mode i n  this case 
should represented by three graphs: xk(x), y k ( x ) ,  and 8k(x). 

Table 2.1 gives  t h e  ini t ia l  da t a  f o r  t h e  performed calculat ion.  

The forced Vibrations were calculated f r o m t h e  follawing forces  applied t o  
t h e  ro to r  hub (load No.3) : 

P&.=0.05G; P&,= 0.03G; Mi=O, 

where G is  t h e  he l icopter  weight. 
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Table 2.1 

I ! - I I  9 / 1 0  


12.4 1.13.7 1 15.1 I 16.7 1 18.4 

. 

-0.02: 


Ik (“1 0.00155 0.00G6 0.0068 0.207 0,0015 0.00042 O.ooO28 O.OOU17 O.oW13 1.0 
.- .. ~ 

0 

ak 0 


One of t h e  v i r tues  of this method of ca lcu la t ion  i s  t h a t ,  f o r  ca lcu la t ing  
forced v ibra t ions  it is  not necessary t o  perform a preliminary ca lcu la t ion  of 
t h e  natural v ib ra t ion  frequencies and modes of t h e  system. Furthermore, i n  such 
a ca l cu la t ion  f o r  d i f f e r e n t  values of frequencies p, it i s  poss ib le  t o  construct 
a graph of t he  dynamicstiffness of t h e  system D(p) at any poin t  and a l s o  t o  &?J

f ind  a l l  natural v ib ra t ion  frequen

-600 
-400 
-2RG 

0 

in 

200 

403 
600 

Fig.2.26 Curve of Dynamic Fuselage 
S t i f fnes s ,  Obtained by t h e  Method of 

Residues. 

c i e s  and modes. Figure 2.26 pre
sen t s  t h e  r e s u l t s  of t h e  ca l cu la t ion  
of t h e  graph of dyrm&c s t i f f n e s s  
f o r  t h e  same system, given i n  
Table 2.1 f o r  forced Pgy. The 
values of Pk f o r  which D(p) = 0 give
t h e  na tu ra l  v ibra t ion  frequencies of 
t h e  system, w h i l e  t h e  mode of forced 
v ibra t ions  a t  a value of p c lose  t o  
any of t h e  natural v ib ra t ion  f re 
quencies Pk (k = 1, 2, 3 ,  ...) 
gives, with any desired degree of 
accuracy, t h e  natural v ibra t ion  mode 
of this overtone. The modes of t h e  
first three harmonics f o r  t h e  ex
amined system obtained i n  this man
ner are shown i n  Fig.2.27. 

We note i n  conclusion t h a t  t h e  method of Vesiduesll presented here requires 
performing t h e  ca l cu la t ion  wi th  a very ’high accuracy ( a t  least four  o r  f i v e  sig
n i f i can t  d i g i t s ) .  T h i s  makes the  above method unsui table  i n  p r a c t i c e  f o r  a /;?38
keyboard ca lcu la tor .  However, as already indicated,  v ib ra t ion  ca lcu la t ions  i n  
t h e  required volume can general ly  be performed only on high-speed computers f o r  
which t h e  ind ica ted  accuracy i s  comnon. 
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x ;  v p ,=o  p 2 = o  
xi  y ps -pJ” 192Ocqc/min 

10 

5 

0 


-5 

x ;  y 
5 

0 

Fig 2.27 Natural Vibration Modes of t h e  Three Lower 
Overtones of a Single-Rotor Helicopter Fuselage, 

Obtained by t h e  Method of Residues. 

3. Consideration of t he  Effect of Shear iw Deformation 

A l l  above-described methods of v ib ra t ion  ana lys i s  f o r  a fuselage were based 
on the  use p f  conventional re la t ionships  of t he  s t r eng th  of materials f o r  bend
ing  of a t h i n  beam. These r e l a t ions  take i n t o  account only t e n s i l e  and compres
s ive  deformation of t he  f i b e r s  of t he  beam mate r i a l  and disregard shear  deforma
t ion .  Furthermore, a consideration of these  strains introduces c e r t a i n  correc
t i o n s  i n t o  the  ca l cu la t ion  r e su l t s ,  which are r a t h e r  i n s ign i f i can t  f o r  t he  first 
harmonic of vibrat ions (decrease i n  frequency by 5 - 6 % ) ,  somewhat grea te r  f o r  
t h e  second harmonic (decrease i n  frequency by 10 - l5%), stin grea ter  f o r  the 
t h i r d  harmonic ( 2 0  - SO%), and so  on. Therefore, i f  a v ibra t ion  analysis  re
quires considerat ion of high harmonics, the  v ib ra t ion  should be calculated with 
consideration of shear  strains caused by t angen t i a l  s t r e s s e s  i n  the  fuselage 
skin.  T h i s  can be performed i n  the  following manner: If t h e  ca lcu la t ion  i s  
carr ied out f o r  a model of t h e  type shown i n  fig.2.21, then  a l l  formulas of t h e  
llresiduell method can be used, with t h e  exception of eq.(3.8) which, i n  this case, 
must be wr i t t en  i n  t h e  form 

(3.24) 

where 6; is  the  add i t iona l  de f l ec t ion  of t h e  k-th s t a t i o n  due t o  the  shear 
force  $; 
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T h i s  add i t iona l  de f l ec t ion  6; can be determined by means of t h e  following 
formula [see, f o r  example (Ref.;?l)]: 

Here, F, i s  the  cross-sect ional  area of t h e  fuselage a t  t h e  k-th s t a t ion ,  w h i l e  
H i s  some dimensionless coef f ic ien t  determined by t h e  formula 

moment of i n e r t i a  of t he  cross  sec t ion  r e l a t i v e  t o  the  neu t r a l  
axis; 
s t a t i c  moment r e l a t i v e  t o  the  neu t r a l  axis of a p a r t  of t he  cross  
sec t ion  located above a s t r a i g h t  l i n e  p a r a l l e l  t o  t h e  neu t r a l  
ax is  and a t  a dis tance z from it;  

6 ( z )  = thickness of the  fuselage s k i n  a t  a dis tance z from the neu t r a l  
axis.  

The i n t e g r a l  i n  eq.(3.27) i s  taken over t h e  e n t i r e  cross  sec t ion  F of t h e  
fuselage . 

I n  conformity with the  cor rec t ion  i n  eq.(3.8), correct ions must be in t ro- /239 
duced i n t o  t h e  recurrence formulas f o r  the  coef f ic ien ts  A:, Ai, A,,9 e tc .  

Section 4. -~Combined Vib_rations of the-System-mlage-Rotor 

-1. VibratAons of t.hg &stem Fuselage-Rotor 

The methods of ca lcu la t ing  v ibra t ions  of e l a s t i c  blades presented i n  Chap
t e r  I assume t h a t  t he  blade i s  hinged t o  t h e  hub which, i n  turn,  i s  attached t o  
a s t a t iona ry  support. Actually, the hub i s  attached t o  an  e l a s t i c  fuselage and 
forces  a re  created during blade v ib ra t ion  t h a t  cause t h e  hub t o  move so t h a t ,  i n  
r e a l i t y ,  t h e  de f l ec t ion  a t  t h e  hinge of t h e  hub during blade v ibra t ions  i s  not 
equal t o  zero but t o  t h e  corresponding de f l ec t ion  of t h e  fuselage.  

Results of f l i g h t  t e s t s  have shown i n  many cases that ca lcu la t ions  of t h e  
na tu ra l  v ibra t ion  frequencies of blades performed without considerat ion of t h e  
e l a s t i c i t y  of t he  fuselage may r e s u l t  i n  s u b s t a n t i a l  e r ro r s .  In this connection, 
M . L . M i l l  has formulated and s t a t ed  t h e  problem of ca lcu la t ing  combined vibra
t i o n s  of t h e  system fuselage-rotor as a s ing le  osc i l l a to ry  system. The basic  
r e s u l t s  of inves t iga t ions  car r ied  out i n  this d i r ec t ion  are given below. 
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The frequencies and modes of natural combined v ibra t ions  of t he  system 
fuselage-rotor can be found by using t h e  method of dynamic s t i f fness ,  whose es
sence i s  presented i n  Subsections 2, 3, and 4 of Sect ion 2. 

However, performance of such ca lcu la t ions  involves a l a rge  volume of coqu
t a t i o n a l  work. T h i s  p e r t a i n s  spec i f i ca l ly  t o  determinations of t he  la teral  natu
r a l  v ibra t ion  frequencies of t h e  system fuselage-rotor, when t h e  dynamic stiff
nessof  t h e  ro to r  i n  t h e  plane of r o t a t i o n  i s  t o  be determined. Furthermore, 
ca lcu la t ions  show t h a t  t h e  r e l a t i o n  between fuselage and blade v ibra t ions  gener
a l l y  i s  weak and t h a t  t h e  na tu ra l  v ib ra t ion  frequencies of t h e  system fuselage-
ro to r  can always be divided i n t o  two groups such that the  frequencies of t h e  
first group are quite c lose  t o  the  natural frequencies of t h e  i so la ted  fuselage,  
i n  whose ca lcu la t ion  t h e  blade mass i s  considered as concentrated a t  t h e  r o t o r  
center,  whereas t h e  frequencies of t h e  second group a r e  s u f f i c i e n t l y  c lose t o  
t h e  natural blade frequencies calculated on t h e  assumption t h a t  t h e  blades a r e  
attached t o  a pe r fec t ly  r i g i d  and i n f i n i t e l y  heavy fuselage.  

When t h e  hub attachment t o  the  fuselage i s  i n s u f f i c i e n t l y  r i g i d  ( e l a s t i c  
r o t o r  shaf t ,  e l a s t i c  reduction-gear frame, gear  case),  it may happen that some 
of t he  frequencies of v ibra t ions  of t h e  second group noticeably change i n  cow 
par i son  with blade frequencies calculated by t h e  usual  method. 

Therefore, t h e  natural v ibra t ion  frequencies of t h e  first group can usual ly  
be determined by means of methods presented i n  this Chapter as fuselage frequen
c ies ,  disregarding e l a s t i c i t y  of t h e  blades. An.exception a r e  spec ia l  cases 
where, f o r  example, the  r o t o r s  are attached t o  l i g h t  and e l a s t i c  Wings on a hel i 
copter  of side-by-side configuration. In  such cases, t h e  frequencies of com
bined osc i l l a t ions  of t h e  system fuselage-rotor must be calculated with t h e  
above-described method of dynamic s t i f f n e s s .  

A s  regards t h e  natural blade v ib ra t ion  frequencies,  it i s  apparently always 
necessary t o  estimate t h e  poss ib le  va r i a t ion  of some of these  frequencies due t o  
l o c a l  e l a s t i c i t y  of t h e  r o t o r  attachment t o  t h e  fuselage.  

Thus, t o  allow f o r  t h e  co r re l a t ion  of fuselage and blade vibrat ions,  it ,&&I
su f f i ces  i n  p rac t i ce  t o  estimate only t h e  change i n  na tu ra l  blade frequencies 
caused by l o c a l  e l a s t i c i t y  of t h e  r o t o r  attachment. 

In t h e  next Subsection, we W i l l  present  a method f o r  such a ca lcu la t ion  t o  
determine t h e  natural blade vibrat ions i n  the  plane of ro ta t ion ,  with considera
t i o n  of t h e  f l e x u r a l  e l a s t i c i t y  of t h e  r o t o r  sha f t .  T h i s  case i s  t h e  most im
por tan t  i n  prac t ice .  

To t h e  e l a s t i c i t y  of t h e  r o t o r  shaft one can always add t h e  e l a s t i c i t y  of 
other  elements of t h e  r o t o r  attachment (gear  frame, gear  case, e tc . ) .  Here we 
w i l l  give c e r t a i n  important fundamental considerations,  from which it W i l l  be
come obvious t h a t  only some of the  na tura l -b lade  v ibra t ion  frequencies are able 
t o  change as a r e s u l t  of e l a s t i c i t y  of t h e  r o t o r  attachment. 

I n  Section 1of thris Chapter it was shown t h a t  not a l l  harmonic components 
of forces  generated by v ibra t ing  blades llpasslt t o . t h e  fuselage,  s ince  many are 
neutral ized a t  the  r o t o r  hub casing. 
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For instance,  during blade vibrat ions of a five-blade r o t o r  i n  t h e  f lapping 
plane, t he  f irst  four  harmonic components of forces  t ransfer red  t o  t h e  hub from 
the  blades (w, 2w, 3w, 4 w )  are neutral ized a t  t he  hub and only the  f i f t h  har
monic component i s  t ransmit ted t o  the  fuselage.  

Hence it i s  obvious t h a t ,  i n  ca lcu la t ing  forced blade vibrat ions due t o  
forces  corresponding t o  t h e  harmonics w, 2w, 3 0 ,  and 4 w ,  we m u s t  examine t h e  
natural blade v ib ra t ion  modes and frequencies (with the  method of expansion i n  
na tu ra l  modes), calculated f o r  ordinary boundary conditions when the  blade is  
assumed t o  be hinged t o  a s t a t iona ry  hub. 

When deal ing with forced v ibra t ions  of t h e  f i f t h  harmonic, t h e  presence of 
combined vibrat ions of blade and fuselage must be taken i n t o  consideration. 

The phys ica l  meaning of this phenomenon i s  t h a t  t h e  na tu ra l  v ibra t ion  modes 
of a r o t o r  wi th  e l a s t i c  blades can be divided i n t o  two groups: 

1) r o t o r  v ib ra t ion  modes at  which t h e  forces  from indiv idua l  blades a r e  
neutral ized a t  t h e  hub casing; 

2) 	r o t o r  v ib ra t ion  modes a t  which t h e  forces  from indiv idua l  blades a r e  
summed a t  t h e  hub casing and a r e  t ransmit ted t o  t h e  fuselage.  

Figure 2.28, as a t y p i c a l  exawle, shows two such v ibra t ion  modes f o r  a 
r o t o r  with four  blades s ince  t h e  p i c t u r e  i s  c l ea re s t  f o r  such a ro tor .  Both Vi
b ra t ion  modes A and B correspond t o  t h e  v ib ra t ion  frequency p1 of a single-mode 
overtone of an  i so l a t ed  blade i n  t h e  flapping plane and d i f f e r  only by the  phase 

d i s t r i b u t i o n  of t h e  vibrat ions with 
respect  t o  ind iv idua l  blades. The 
v ibra t ion  mode A corresponds t o  a 
s i t u a t i o n  where p a i r s  of opposite 
blades vibrate i n  opposite phase. 
I n  t h i s  case, t he  forces  p l ,  pa,  p3 
and p4 ac t ing  on t h e  r o t o r  hub mu
t u a l l y  cancel out a t  each in s t an t  
of t i m e  and are not transmitted t o  
t h e  fuselage.  The v ibra t ion  mode B 
corresponds t o  t h e  s i t u a t i o n  where 
a l l  four  blades vibrate i n  phase. 
I n  this case t h e  forces pl ,  p2, p3
and p4 are summed a t  t h e  hub and 
generate a fo rce  ac t ing  on t h e  fuse
lage and varying i n  time with a 
frequency p 

If t h e  r o t o r  hub i s  at tached 
Fig.2.28 Vibration Modes of a Rotor t o  a p e r f e c t l y  r i g i d  support, then 

wi th  E l a s t i c  Blades. 	 t h e  frequencies of both v ibra t ion  
modes A and B of t h e  ro to r  are ide+ 
t i c a l  and equal t o  the  frequency p1 

or t o  t h e  natural v ibra t ions  of t h e  first harmonic of an  i s o l a t e d  blade with a 
hinged but t .  If t h e  hub i s  attached t o  some e l a s t i c  base wi th  a v e r t i c a l  r ig id
i t y  c, t h e  frequency of t h e  v ibra t ion  mode A Will not change and remains equal  
t o  pl, whereas t h e  frequency of t h e  modes B w i l l  decrease and that t h e  more t h e  
lower t h e  r i g i d i t y  c . 
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It can be demonstrated t h a t  t h e  modes of t h e  two indicated types exist f o r  
. a ro to r  wi th  any number of blades 2. These v ib ra t ion  modes can be characterized 

by a formula. For example, a l l  v ib ra t ion  modes of t h e  z-bladed ro to r  corre
sponding t o  t h e  k-th overtone of vibrat ions of a n  i so l a t ed  blade are character
ized  by t h e  following l a w  of blade vibration: 

y n  (at )  =gk(X) cos s $n cos P k t ,  (4.1) 

where 
yn(x,  t )  = devia t ion  of a poin t  wi th  t h e  coordinate x, belonging t o  t h e  

n-t h blade ; 
cos s $ ~= 	cha rac t e r i s t i c  of t h e  l a w  of v ib ra t ion  phase d i s t r i b u t i o n  

f o r  i nd iv idua l  blades, ?.e., o f  t h e  v ib ra t ion  mode of t he  
r o t o r  as a whole; 

s = 	any in t ege r  that can be ca l l ed  t h e  order  of a given r o t o r  
v ib ra t ion  mode ( s  = 1, 2, 3, ..., 8). 

The quant i t ies  $ n  are determined by t h e  formula 

9 n  =-
2n n. 
z 

On t h e  basis of e ~ ~ ( 1 . 1 3 )i n  Section 1, it i s  easy t o  show t h a t  t h e  vibra
t i o n  modes of t h e  orders  s = 1, 2, 3, ..., z - 1 correspond t o  a s i t u a t i o n  i n  
which the  forces  generated by ind iv idua l  blades are equalized a t  the  hub and 
t h a t  only t h e  m d e  of t h e  order s = z corresponds t o  a s i t u a t i o n  where t h e  forces  
from indiv idua l  blades are summed and t ransmit ted t o  t h e  fuselage.  

The modes A and B presented i n  Fig.2.28 are modes of t h e  second and fou r th  
order f o r  a four-blade ro to r .  It i s  obvious from t h e  aforesaid t h a t  t h e  natu
r a l  v ibra t ion  frequencies of a rotor ,  corresponding t o  v ibra t ion  modes of a l l  
orders with the  exception of s = z, do not depend upon t h e  e l a s t i c i t y  of t h e  
hub attachment and t h a t  only t h e  frequencies corresponding t o  t h e  r o t o r  vibra
t i o n  mode of t h e  order s = z depend on this e l a s t i c i t y .  

We can fu r the r  show t h a t  a l l  harmonics of forces  t h a t  exc i t e  blade vibra
t ions  i n  t h e  f lapping plane, wi th  the  exception of t h e  Iltransient" harmonics zw, 
2zw, 3zw, e t c .  w i l l  exc i t e  only those r o t o r  v ib ra t ion  modes a t  which t h e  forces  
produced by the  blades are neutral ized a t  t h e  hub and that only the  harmonic 
components of t h e  exciting forces  corresponding t o  the  lltransientll harmonics 
w i l l  exc i t e  r o t o r  v ib ra t ion  modes a t  which t h e  blade-generated forces  are summed 
and t ransmit ted t o  t h e  hub. 

Hence, we can draw a usefu l  p r a c t i c a l  conclusion: If we construct an ordi
nary resonance diagram of t h e  blade (see Fig.l.6 of Chapt.1) i n  t h e  flapping 
plane, calculated without considerat ion of e l a s t i c i t y  of t h e  r o t o r  attachment t o  
t h e  fuselage,  then  t h e  resonances with a l l  of t h e  harmonics, except f o r  reso
nances wi th  t h e  harmonics zw, 220, etc . ,  correspond t o  r e a l i t y .  The resonances 
with the  harmonics zw, 2zw, etc. ,  must be inves t iga ted  addi t ional ly ,  taking in
t o  account t h e  e l a s t i c i t y  of t h e  r o t o r  hub attachment and re f in ing  t h e  values 
of t h e  corresponding n a t u r a l  frequencies. 
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However, it should be mentioned that, i n  s tud ie s  of blade Vibrations i n  
t h e  f lapping plane, it is general ly  poss ib le  t o  disregard t h e  e l a s t i c i t y  of hub 
attachment f o r  such harmonics s ince  t h e  r i g i d i t y  of t h e  hub attachment i n  a 
v e r t i c a l  d i r ec t ion  i s  usual ly  la rge  and has l i t t l e  inf luence on t h e  natural b h d e  
v ib ra t ion  frequencies (except f o r  t h e  case of r o t o r  attachment of a side-by-side 
he l icopter  t o  l i g h t  and flexible wings). 

I n  studying t h e  resonance diagram of a blade i n  t h e  plane of r o t a t i o n  t h e  
e f f e c t  of e l a s t i c i t y  of t h e  r o t o r  hub attachment t o  t h e  fuselage must be taken 
i n t o  consideration. All above considerations hold a l s o  f o r  blade vibrat ions i n  
t h e  plane of ro ta t ion ,  wi th  t h e  only d i f fe rence  that i n  this case t h e  ‘Itran
sientl l  harmonics are t h e  harmonics ( z  - l)w, ( z  + l)w, (2z - 1)w,  (22 + l)w, 
e t c .  Furthermore, at resonance wi th  t h e  harmonics zw, 2zw, e t c .  i n  t h e  plane of 
rotat ion,  allowance must be made f o r  t h e  combination of r o t o r  vibrat ions with 
t o r s i o n a l  vibrat ions of t h e  transmission system ( t h e  per ta in ing  calculat ions can 
a l s o  be car r ied  out on t h e  basis of t h e  method of dynamicstiffness).  

2. -Calculation of. t h e  Natural Rotor Blade Vibrations i n  t h e  Plane
of &tatiog, with Consid-eration of E l a s t i c i t y  of t h e  Rotor 

t.0 t h e  Fuselage 

Let us examine the  problem of natural blade v ibra t ions  of a r o t o r  mounted 
t o  a f l exura l ly  e l a s t i c  sha f t  (Fig.2.29). Let t he  r i g i d i t y  of t h e  sha f t  with 
respec t  t o  the  force P appl ied t o  t h e  sha f t  at t h e  hub center  and lying i n  t h e  
plane of r o t a t i o n  of t h e  r o t o r  be equal  t o  c0 .  Consequently, t he  force  P and 
t h e  r e su l t an t  displacement 6 of t h e  shaft end are cor re la ted  by 

P =co6. (4.2) 

I n  this case, it i s  immaterial whether t h e  displacement 6 i s  produced by bend
ing  of t h e  shaf t  i t s e l f  or i s  due t o  t h e  e l a s t i c i t y  of i t s  attachment t o  t h e  
fuselage.  

Let us discuss  only t h e  case when t h e  given r i g i d i t y  i s  i d e n t i c a l  i n  a l l  
d i r ec t ions  i n  t h e  plane xOz, i.e., when t h e  e l a s t i c  support t o  which t h e  r o t o r  
is  attached i s  i so t rop ic .  I n  r e a l i t y  this i s  not so, but  t h e  r i g i d i t i e s  of at
t a c h e n t  i n  t h e  d i r ec t ions  of t h e  Ox and Oz axes general ly  d i f f e r  l i t t l e  s o  t h a t  
t h e  support can be assumed as i so t ropic ,  understanding by t h e  quantity co t h e  
ar i thmetic  mean of t h e  r i g i d i t i e s  c, and c,: 

Ca lcuh t ion  of natural v ibra t ions  of a r o t o r  on a n  e h s t i c  base can be per
formed by t he  method of dynamic s t i f f n e s s .  

First, we introduce t h e  concept of d y ” L c  s t i f f n e s s  of a blade i n  t h e  plane 
of ro t a t ion .  Le t  a f l e x u r a l l y  e l a s t i c  blade i n  t h e  c e n t r a l  cen t r i fuga l  force  
f i e l d  be attached a t  t h e  root  by a hinge such that t h e  hinge i s  able t o  move & 
freely i n  a d i r ec t ion  perpendicular t o  t h e  ax is  of t h e  undeformed blade (see 
Fig. 2.30) . 
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1 

&I li=Qc o s p t  

Fig . 2 . 3  Diagram of Rotor on f i g  .2.3O Diagram f o r  Calculation 
E las t i c  Shaft .  of Forced Blade Vibrations t o  De

t e d n e  Dynamic Rotor S t i f fness .  

Furthermore, le t  t h e  blade execute s teady forced v ibra t ions  under t h e  ef
f e c t  of a lateral exc i t ing  harmonic force  

F =Fo COS p t ,  

appl ied t o  t h e  hinge A. I n  this case, t h e  po in t  A of t h e  appl ica t ion  of fo rce  
W i l l  a l s o  execute v ibra t ions  according t o  t h e  l a w  

u =u g  cos p t .  

We W i l l  c a l l  t h e  quant i ty  

t h e  dynamic s t i f f n e s s  of t h e  blade. 

The dynamic blade s t i f f n e s s  can be determined e i t h e r  by t h e  method given i n  
Subsection 2 of Sect ion 2 o r  by t h e  method of aux i l i a ry  mass (Sect.2, Subsect .4).
I n  so doing we must take  i n t o  account t h a t  t h e  blade moves i n  a cen t r i fuga l  
force  f i e l d  so that it i s  no longer a question of solving an  equation of t h e  
type of eq.(2.2), as had been done i n  ca lcu la t ing  t h e  fuselage,  but of solving 
t h e  equation of blade v ib ra t ion  in t h e  plane of r o t a t i o n  (see Chapt.1, Sect.1, 
Subsect .11), which has t h e  form 

(E/u")"-((Nu')'+mu--2U=q(rl t). (4.5) 

Here, N i s  t h e  cen t r i fuga l  force  i n  t h e  blade s e c t i o n  at a radius  r. 

When using t h e  method of aux i l i a ry  m a s s ,  t h e  natural blade v ib ra t ion  fre
quencies and modes m u s t  be calculated i n  t h e  plane of r o t a t i o n  i n  t h e  presence 
of an attachment according t o  t h e  scheme depicted i n  fig.2.30, With a d i f f e ren t  
value f o r  t h e  aux i l i a ry  mass Am, a t  t h e  po in t  A, using t h e  method presented i n  
Chapter I, Sect ion 2, Subsection 5. 



From t h e  r e s u l t s  of such a ca l cu la t ion  we can construct t h e  graph of Am, = 
= f ( p ) .  An example of such a graph is  shown i n  Fig.2.32. The po in t s  of in
f in i te  d i scon t inu i t i e s  of t h e  func t ion  f ( p )  g ive  t h e  natural frequencies of the  

blade wi th  a f ixed  hinge at  t h e  
poin t  A, i.e., t he  na tu ra l  f re 
quencies of a blade f o r  t h e  
case of an  i n f i n i t e l y  la rge  
r i g i d i t y  of t he  r o t o r  shaf t .  
The po in t s  a t  which Om, = 0 
y i e l d  the  na tu ra l  frequencies of 
a blade attached f r e e l y  accord
ing  t o  t h e  scheme depicted i n  
Fig. 2.30. 

The magnitude of ' t he  dy- @
namic blade s t i f f n e s s  correspond
ing  t o  this value of p can be 
determined from the  formula 

Fig.2.31 For Calculation of Dynamic S t i f f - The add i t iona l  term w20mb(p) 
ness of a Rotor with E la s t i c  Blades. i n  this formula i s  due t o  t h e  

cen t r i fuga l  force  component of 
mass Am, directed along t h e  

normal t o  t h e  blade. 

We will show f u r t h e r  t h a t  t h e  dynamic s t i f fnes s  of t he  r o t o r  as a whole can 
be found i f  t h e  dynamics t i f fnessof  t h e  blade i s  known. Let us t u r n  t o  F'i.g.2.31 
which gives the  planform of a ro to r  hub with v e r t i c a l  hinges and t h e  k-th elas
t i c  blade. Le t  xOy be a coordinate system ro ta t ing  together  with the  r o t o r  with 
a n  angular ve loc i ty  w. Furthermore, l e t  t h e  center  of t h e  hub execute pre
scr ibed harmonic v ibra t ions  i n  the  plane of r o t a t i o n  i n  obedience t o  t h e  l a w  

x=x, cos p i ;  
y=,yo sin pt .  I 

Such v ibra t ions  of t h e  hub cause vibrat ions of t h e  e l a s t i c  blades i n  t h e  
plane of ro ta t ion ,  reducing t h e  problem t o  f inding t h e  forces  exerted by t h e  Vi
bra t ing  blades on t h e  hub during i t s  motion. 

Let us choose an  aux i l i a ry  rectangular  coordinate system ro ta t ing  together  
wi th  t h e  r o t o r  nOr, f o r  which t h e  O r - a x i s  i s  p a r a l l e l  t o  a s t r a i g h t  l i n e  passing 
through t h e  center  of t h e  hub and through t h e  drag hinge A of t he  k-th blade.  
The Or-axis makes a c e r t a i n  angle I ) ~  with t h e  Ox-axis. We denote by uo and v, 
t h e  coordinates of t h e  hub center  i n  t h e  system fir. Then, obviously, 

uo=--x sin ( J ~+y cos qk; 
ZJO = X  COS qk+y sin $,k. 
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During v ibra t ions  of t h e  hub i n  accordance wi th  t h e  l a w  (4.6), t h e  coordi
nates  uo and vo w i l l  vary i n  time i n  obedience t o  t h e  l a w  

uo=(-xosin qk)cos p t  -+(gocos I j l J  sin pi; 

vo=(x, cos $&)cos pf +(gosin qk)sin p t .  (4.7) 


Furthermore, l e t  u denote t h e  de f l ec t ion  of t h e  po in t  of t h e  elastic .&& 
blade a x i s  at a rad ius  r from a s t r a i g h t  l i n e  passing through t h e  drag hinge A 
of t h e  blade and running p a r a l l e l  t o  t h e  O r - a x i s .  During vibrat ions of t h e  
blade, t h e  quant i ty  u i s  a func t ion  of t h e  radius  r and the  t h e  t such t h a t  u = 
= u(r ,  t ) .  

Let  be t h e  vector  of t h e  t o t a l  acce le ra t ion  of a poin t  of radius  r of t h e  
e l a s t i c  blade azis. Then, 

- 
+wt, -!- "cor ' 

where -
wml = 	vector  of relative acce lera t ion  of a po in t  due t o  motion i n  a 

moving coordinate system d r ;-
wtr = 	vector  of t r a n s l a t i o n a l  acce lera t ion  due t o  motion of a po in t  to

gether  wi th  t h e  coordinate system nOr;-
w C o r  = vector  - of Coriol is  accelerat ion.  

We then  introduce t h e  un i t  vectors  ? and 3,d i rec t ed  along t h e  axes r arid 
n, respect ively.  Then, we can wr i t e  

If we denote by w, and w, t h e  pro jec t ions  of t h e  vector  of t o t a l  accelera
t i o n  onto the  axes On and Or, t h e  following expressions are obtained: 

w,=(io-w"o) +(u-oiu)+20vo; 
*.w,= (wo -w2vo) -02r -2wuo-20u. I (4.81 

The equation of equilibrium i n  the  cen t r i fuga l  force  f ield has t h e  form 

(EJIC'')II-(Nu')'=q ,  (4.9) 

where q i s  t h e  i n t e n s i t y  of t h e  l a t e r a l  load applied t o  a beam. 

During blade vibrat ions,  t h e  la teral  load due t o  i n e r t i a  forces  can be 
w r i t t e n  i n  t h e  form 

q ( r ,  t )=-mw,=-m [(io w2u0)+(U -A) +.2wV01,.
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where m is  the  l i n e a r  mass of t h e  blade Em = m(r ) ] .  

Subs t i tu t ing  this expression i n t o  eq.(4.9), we ob ta in  t h e  following p a r t i a l  
differential equation f o r  determining t h e  funct ion u ( r ,  t): 

where 

If’ t h e  motion of t h e  center  of t h e  hub i s  given by eqs.(4.7), then  t h e  load 
$(r, t )  W i l l  be a known funct ion  of t i m e .  

The unknown funct ion u(r,  t )  should s a t i s f y  eq.(4.10) as w e l l  as t h e  
boundary conditions 

u (0 ,t)=u”(O, t )=O;  
u”(L?,t )=(EIU”)’ l r -R =0. I 

Differen t ia t ing  eqs .(4.7) and subs t i t u t ing  them i n t o  eq . (k . l l )  will y ie ld  

q* (r,  t)=mAk COS p i - t  mB, sin p i ,  (4.13) 

where t h e  constants A, and are determined by t h e  formulas 

The so lu t ion  o f  eq.(b.lO), corresponding t o  s teady forced v ibra t ions  due /246
t o  a load [see eq.(k.l3)], i s  sougM i n  t h e  form 

u (r,t )=U (r)[ cos p t  +B, sin pt]. (4.15) 

Subs t i tu t ing  this expression i n t o  eq.(4..10) wi th  t h e  right-hand s ide  f o r  q4’
from eq.(4.13), we f ind  that t h e  func t ion  <(r) should s a t i s f y  t h e  ordinary dif
f e r e n t i a l  equation 

as w e l l  as t h e  boundary conditions 
-
u (0)=U” (0)=0; 

2 (l?)=(�Tu/’)’l;-R=o. I 
W e  note f u r t h e r  that, i n  ca lcu la t ing  blade v ibra t ions  exci ted by v ib ra t ion  

of t h e  hinge A according t o  t h e  scheme depicted i n  Fig.2.30, it is necessary t o  
solve an  equation of t h e  form 
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(E/u")"-(Nu')'-mu -w2u =0,  

where u i s  t h e  t o t a l  displacement of a poin t  of t h e  e l a s t i c  b h d e  swds of radi
us r. I n  this case, t h e  funct ion u(r ,  t) should satisfy t h e  conditions 

u (0,f)=2x0 cos pf; 
u" (0 ,f )=O.  I 

u" (R ,t )=0; 
( E / U " ) ' J r - R  =o. I 

Seeking t h e  so lu t ion  of this equation i n  the  form 

u= [uo tu(r)]cos p f ,  

we a r r i v e  a t  t h e  conclusion that t h e  funct ion u(r) should s a t i s f y  t h e  equation 

-(~2)'(�12)'' -(p2+ 0 2 )  mu =(p2+0 2 )  mu,, 

which d i f f e r s  from eq.(4.l6) on ly  by t h e  constant %(pa + w2).  The boundary 
conditions f o r  t h e  funct ion E(.) i n  this case f u l l y  coincides wi th  eq~~(4.1'7).  

Thus, during blade v ibra t ions  according t o  t h e  scheme shown i n  Fig.2.30, 
t h e  function u(r)  i s  t h e  same as i n  t h e  problem of i n t e r e s t  here [see eqs.(b.Ih) 
and (4.17)1 i f  we s e l e c t  t h e  amplitude uo such that t h e  condition 

i s  s a t i s f i e d .  

Physically, this means that t h e  mode of forced blade v ibra t ions  i n  the  
problem of i n t e r e s t  here coincides with the  mode of blade vibrat ions excited ac
cording t o  t h e  scheme i n  Fig.2.30. On t h e  basis of this r e s u l t ,  an important 
form& i s  derived. For this, we note that during Vibrations of a blade attached 
according t o  t h e  scheme shown i n  Fig.2.30 and exci ted by t h e  force  F = F, cos p t ,  
t h e  sum of t h e  pro jec t ions  of a l l  la teral  i n e r t i a  forces  applied t o  t h e  blade /2k7
should be balanced by t h e  force  F. Hence, we f i n d  

Fo=Amb( p )(p*+w2) uo=-(p2+d )  j! m (uo 3-2)d r  = 
v.h 

- ( p 2 + ~ 2 ) u ~ m ~ - ( p 2 + ~ 2 )  m z d r ,  
'v.h 

where mb i s  t h e  blade mass up t o  t h e  drag hinge 
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R, 

On sa t i s fy ing  condi t ion (4.B), we obta in  t h e  formula 

meaning t h a t  t he  i n t e g r a l  wi th  respect  t o  t h e  blade of t h e  funct ion mE [where 
U is  t h e  so lu t ion  of eq.(4.16)1 i s  expressed i n  terms of dynamic blade s t i f f n e s s  
or ,  which comes t o  t h e  same, i n  terms of t h e  aux i l i a ry  mass Am,(p). 

It i s  now easy t o  Obtain expressions f o r  t h e  forces  exerted on t h e  hub by 
the  v ibra t ing  blades. We denote by Qk and Nk, respect ively,  t h e  pro jec t ions  on
t o  the  On- and Or-axes of a force  exerted by t h e  k-th blade k on t h e  drag hinge 
of t h e  hub. Then, 

Q k - - 	 1nzw,dr=- 3 m(u-ozu)dr
v.h v.h 

- (It0  -02uo+20)vO)mb; 
R

N,=- J mw, dr =-m6(vo-02wo -2u0w)f 
'v.h 

R 
$w2 mrdr+2w mudr. 

v.h v.h 

where No = w2 7 mr d r  i s  t h e  cen t r i fuga l  fo rce  exerted by t h e  blade on t h e  drag 
' v . hhinge 

Denoting by X and Y t h e  forces  exerted on t h e  hub by t h e  v ibra t ing  blades, 
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we der ive t h e  formulas: 

Subst i tut ing here eqs.(4.21) and (4.22) alad taking i n t o  account t h e  proper
t i e s  of t h e  tr igonometric sums described i n  Subsection 2, Section 1of this 
Chapter [eqs.(l . l3)] ,  we arrive at t h e  fo l l a s ing  expressions: 

On t h e  other  hand, we can construct  t he  equations of motion of t h e  hub of 
a r o t o r  on an  e l a s t i c  shaft, which have t h e  form 

where 
q,, = mass of the  hub casing; 

co = sha f t  r i g i d i t y .  

If t h e  motion of t h e  hub takes  p lace  i n  obedience t o  the  l a w  (4. .6),  t h e  
last equations will yield 

If we equate these  expressions t o  eqs.(4.23) and (4.24), we ob ta in  a system 
of two l inea r  homogeneous equations f o r  determining t h e  amplitudes xo and yo: 

Ax~+BIJ~=O; 

Bxo+AyO=O, I (4925) 


where 

270 



Equating t o  zero t h e  determinant of this system, we obta in  t h e  character
i s t i c  equation f o r  determining t h e  na tu ra l  frequencies p: 

whence 
A=&B. 

I n  t h e  case A = -B [as i s  apparent from eq.(4.25)1, xo = yo. T h i s  cor
responds t o  r o t a t i o n  of t h e  hub center  i n  t h e  d i r e c t i o n  of r o t a t i o n  of t h e  r o t o r  
[see eq. (4-6)1. 

Fig.2.32 Determination of Vibration Frequencies of 
a Rotor on an E las t i c  Shaft ,  by t h e  Dynamic

S t i f f  ness M e t  hod. 

I n  t h e  case A = B we have xi, = -yo, which corresponds t o  r o t a t i o n  of t h e  
r o t o r  center  opposite t o  t h e  r o t a t i o n  of t h e  ro to r .  

The cha rac t e r i s t i c  equations (4.28) can be solved with respect  t o  the  qua
t i t y  Am,(p).  T h i s  y i e lds  t h e  following equation: 
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T h i s  equation can be solved g ra  h i ca l ly  by superimposing, on t h e  curve of 
t h e  a-liary blade mass b b  = hb(ppy two curves corresponding t o  t h e  r igh t -
hand s i d e  of this expression i n  which we take  e i t h e r  t h e  upper s igns (minus s ign  
i n  t h e  numerator and p lus  s i g n  i n  t h e  denominator) o r  t h e  lower signs.  The 
first of these  quan t i t i e s  W i l l  be denoted by Am,(p) and t h e  second, by Am2(p). 

The abscissas  of t h e  i n t e r s e c t i o n  po in t s  of t h e  curve Aml(p) with the  graph 
of aux i l i a ry  blade mass &,(p) y i e l d  t h e  natural v ib ra t ion  frequencies of a 
r o t o r  on a n  e l a s t i c  shaft, corresponding t o  v ib ra t ion  modes i n  which t h e  center  
of t h e  hub r o t a t e s  i n  t h e  d i r e c t i o n  of r o t a t i o n  of t h e  ro tor ,  with a n  angular 
ve loc i ty  p r e l a t i v e  t o  t h e  coordinate system xOy f ixed  t o  the  r o t o r  and hence 
wi th  an angular ve loc i ty  p + w relative t o  the  body-fixed coordinate system 
(he l icopter  body). Obviously, such modes can be exci ted only by t h e  harmonics 
( z  - l)w, (22 - 1 ) w ,  e t c .  The abscissas  of t h e  i n t e r s e c t i o n  poin ts  of t h e  
curves Am2(p) and Amb(p) yield t h e  natural v ib ra t ion  frequencies of a r o t o r  on 
an  e l a s t i c  sha f t  i n  which t h e  hub center  r o t a t e s  i n  a d i r ec t ion  opposite t o  t h a t  
of t h e  ro to r .  Such v ib ra t ion  modes can be exci ted only by t h e  harmonics ( z  + 
+ I)., (22 + l ) w ,  e tc .  

Figure 2.32 gives  the  graphs f o r  t h e  curves Amb(p), Am,(p), and Am ( ) 
constructed f o r  t h e  following i n i t i a l  data: eo = 500 kg/m; m h u b  = 3s kzzmz/m; 
m b  = Pj kg*sec2/m; w o  = 190 rpm; 2 = 5. These graphs show appreciable d i f f e r 
ences between t h e  na tu ra l  frequencies of a r o t o r  on an  e l a s t i c  sha f t  and t h e  
na tu ra l  frequencies of an  i s o l a t e d  blade. For example, t h e  poin t  H of an in- /250
f in i t e  d iscont inui ty  of t h e  curve Amb(p) corresponds t o  t h e  frequency of a 
single-node overtone of natural vibrat ions of a n  i s o l a t e d  blade of t h e  given 
r o t o r  (with a s ta t ionary  hub). I n  this case, p = p1 = 64.0 cycles/min. Here, 
Fig.2.33 shows t h e  v ib ra t ion  mode of this overtone. 

p=p: ,  

Fig.2.33 Modes of Blade Vibrations.  
a - Mode of blade v ibra t ions  without considerat ion of 
sha f t  e l a s t i c i t y ;  b - Modes of blade v ibra t ions  wi th  

considerat ion of blade e l a s t i c i t y .  

I n  addi t ion  t o  this na tu ra l  frequency, a r o t o r  on a n  e l a s t i c  sha f t  a l s o  has 
v ibra t ion  frequencies correspondi t o  t h e  po in t s  A, By C and D of t h e  in t e r 
cepts  of t h e  curves Am,(p) and Am,7p )  with t h e  curve Amb(p). Here, vibrat ions 
of modes corresponding t o  t h e  po in t s  A and D can be exci ted only by t h e  har
monics ( z  - l ) w ,  (22 - l ) w ,  e tc .  ( i n  this case, 4.w and 9 w  etc.) .  Vibrations cor
responding t o  t h e  po in t s  C and B can be exci ted only by t h e  harmonics ( 2  + l)w, 
(22 + l ) w ,  e tc .  ( i n  this case, 6w, llw, etc . ) .  
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These resonance curves were p lo t t ed  f o r  a he l icopter  which first had been 
equipped with a four-blade ro to r ;  however, later t h e  r o t o r  hub had t o  be modi
f i e d  and t h e  r o t o r  was designed as a five-blade type so as t o  e l iminate  t h e  se
vere resonance of t h e  blade wi th  t h e  harmonic 3 w i n  the  plane of r o t a t i o n  
(point A). 

Figure 2.33 gives  t h e  natural blade v ibra t ion  modes i n  the  plane of rota
t ion,  with considerat ion of shaft e l a s t i c i t y  corresponding t o  t h e  po in t s  A (p: = 
= 560 cycles/min) and B(pi = 761 cycles/min). 

In  conclusion, we should mention t h a t  t h e  above method f o r  determining t h e  
natural frequencies of a blade i n  the  plane of r o t a t i o n  with considerat ion of 
shaft e l a s t i c i t y  is  one of t h e  most c q l e x  examples of using t h e  method of dy
“ i c s t i f f n e s s ; t h i s  was t h e  main reason f o r  descr ibing it here i n  some d e t a i l .  
A s  regards f ind ing  the  natural blade v ibra t ions  i n  t h e  f lapping plane with con
s ide ra t ion  of e l a s t i c i t y  of t h e  hub attachment and of t h e  blade v ibra t ion  fre
quencies i n  t h e  plane of r o t a t i o n  wi th  consideration of t o r s i o n a l  e l a s t i c i t y  of 
t h e  transmission system (which are excited by t h e  harmonics zw, Zzw, 3zw, etc . ) ,  
t h e  ca lcu la t ions  involved are much simpler and can be car r ied  out i n  f u l l  on t h e  
basis of t h e  p r inc ip l e s  set f o r t h  i n  Section 2. 
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CHAPTER 111 /251 

Ground resonance usua l ly  is  t o  mean spontaneous Vibrations (build-up) of a 
he l icopter  on t h e  ground wi th  increasing amplitude. T h i s  phenomenon was  first 
noticed after a drag hinge permit t ing t h e  blade t o  mve i n  t h e  plane of r o t a t i o n  
of t h e  r o t o r  w a s  introduced i n t o  t h e  design of t h e  r o t o r  hub. 

I n  t h e  h i s to ry  of he l icopter  engineering t h e r e  were quite a f e w  cases where 
a hel icopter  was destroyed by v ibra t ions  of this type. Attempts t o  eliminate 
ground resonance on a fu l l - sca le  hel icopter  sometimes required extensive modifi
ca t ions  of t h e  hel icopter  design. T h i s  forced design engineers t o  work on t h e  
development of t h e  theory of ground resonance and reliable methods of i t s  calcu
la t ion ,  which would permit s e l ec t ing  t h e  cha rac t e r i s t i c s  of t h e  s t r u c t u r a l  mem
bers determining t h e  s tab i l i ty  margin of t h e  he l icopter  on t h e  ground. 

A t  present  t he re  i s  a theory of ground resonance which explains a l l  t h e  
most important features of this phenomenon and permits ca lcu la t ing  t h e  design 
c h a r a c t e r i s t i c s  on which depends ground resonance. T h i s  theory arose as a re
sult of numerous t h e o r e t i c a l  and experimental inves t iga t ions  of ground resonance 
car r ied  out both i n  t h e  Soviet  Union and abroad. O f  t h e  Soviet  works on t h e  
theory of ground resonance we m u s t  po in t  out first t h e  works of B.Ya.Zherebtsov 
and A.I.Pozhalostin. 

Invest igat ions of ground resonance have shown t h a t  t h e  phys ica l  essence of 
this phenomenon involves t h e  follow5ngt During natural v ibra t ions  of t h e  r o t o r  
blades i n  t h e  plane of r o t a t i o n  ( r e l a t i v e  t o  t h e  drag hinges), which can arise 
from any impetus (wind gust,  rough landing, etc.) ,  i n e r t i a  forces  appear i n  t h e  
plane of r o t a t i o n  of t h e  ro to r .  Being t ransmit ted t o  t h e  he l icopter  fuselage,  
they cause i t s  v ibra t ions  on t h e  e l a s t i c  landing gear.  The forces  swinging t h e  
he l icopter  vary with a d e f i n i t e  frequency depending upon t h e  natural frequency 
of t h e  blade i n  t h e  plane of ro ta t ion 'and  t h e  angular ve loc i ty  of r o t a t i o n  of 
t h e  ro to r .  A he l icopter  i s  most easily swung when t h e  frequency of change of t h e  
exci t ing forces  i s  close t o  t h e  frequency of n a t u r a l  v ibra t ions  of t h e  hel icopter  
on a n  e l a s t i c  landing gear.  Simultaneously wi th  v ibra t ions  of t h e  he l icopter  
body, forces  arise which swing t h e  hel icopter  i n  t h e  plane of ro t a t ion .  The 
presence of this bi la teral  couple between v ibra t ions  of t h e  hel icopter  and blades 
r e s u l t s  i n  t h e  hel icopter  becoming unstable at a c e r t a i n  angular ve loc i ty  of 
ro to r  ro ta t ion ,  i.e., t h e  he l icopter  v ibra t ions  once begun ( a s  a consequence of 
some impetus) a r e  not d q e d  but increased. 

The bas ic  means of combatting ground resonance are: 

1)The i n s t a l l a t i o n  of s p e c i a l  dampers on t h e  drag hinges of t h e  r o t o r  
blades which damp t h e  blade v ibra t ions  i n  the  plane of ro t a t ion .  

2) The introduct ion of s p e c i a l  damping elements i n  t h e  design of the /252 
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shock absorber s t r u t  or t h e  proper  s e l ec t ion  of t h e  cha rac t e r i s t i c s  of Wdrau
l i c  res i s tance  of t h e  shock absorber s t r u t s  i n  forward and reverse strokes,  and 
a l s o  t h e  cha rac t e r i s t i c s  of r i g i d i t y  of t he  shock absorber s t r u t s  and pneumatic 
t i res .  

The proper s e l ec t ion  of t h e  cha rac t e r i s t i c s  of t h e  blade dampers and t h e  
cha rac t e r i s t i c s  of t h e  r i g i d i t y  and damping of t h e  landing gear i s  t h e  main 
purpose of ca lcu la t ing  a he l icopter  f o r  ground resonance. 

The theory of ground resonance which W i l l  be presented below holds t r u e  only 
f o r  r o t o r s  wi th  a number of blades n 2 3 ,  

The theory of ground resonance of a two-blade r o t o r  has a number of s p e c i a l  
features and i s  appreciably more complex (Ref .36). 

Sect ion 1. Stabili ty of Rotor on E las t i c  Base 

1. Statement of Problem and Equations of Motion 

The most important features of ground resonance of a hel icopter  can be ob
tained from an examination of t h e  motion of some idea l ized  mechanical system,

will c a l l  a 

2 
. x
I 

Fig.3.1 Diagram of Rotor 
on E las t i c  Base. 

1- Casing; 2 - Base; 3 -
Blade; 4 - Hnge. 

where 

which we Voter on a n  e l a s t i c  base". 
Such a system i s  schematically shown i n  Fig.3.l. 
The sha f t  of t h e  r o t o r  wi th  heavy and pe r fec t ly  
r i g i d  blades ( 3 ) ,  at tached t o  t h e  r o t o r  hub by 
means of t h e  drag hinges ( 4 ) ,  r o t a t e s  i n  sup
p o r t s  r i g i d l y  connected with some heavy casing 
(body) (1)which i s  e l a s t i c a l l y  mounted t o  a 
s t a t iona ry  base (2)  and has only one degree of 
freedom, namely forward displacement along t h e  
axis O x  p a r a l l e l  t o  t h e  plane of r o t a t i o n  of t h e  
ro to r .  Upon displacement of t h e  body (1)along 
the  Ox-axis, an e l a s t i c  r e s to r ing  force  i s  gen
erated by the  spr ing c and a damping force by 
t h e  damper k. Let us assume the  e l a s t i c  arid 
damping cha rac t e r i s t i c s  of t h e  base t o  be l i nea r ,  
i.e., t h a t  t h e  fo rce  X ac t ing  on t h e  casing (1) 
during i t s  displacement x ( t )  i s  expressed by t h e  
f o m l a  

c = coef f ic ien t  of s t i f f n e s s  of t h e  spr ing (spr ing constant);  
k = damping coe f f i c i en t .  

We W i l l  c a l l  t h e  quan t i t i e s  c and k t h e  coef f ic ien ts  of s t i f f n e s s  and damp
i n g  of t h e  e l a s t i c  base. If' m, i s  t h e  m a s s  of t h e  casing (I)and P, is  t h e  pro
j ec t ion  onto t h e  Ox-axis of t h e  force  exerted on t h e  casing by t h e  ro tor ,  t hen  
t h e  equation of motion of t h e  casing can be wr i t t en  i n  t h e  form 
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m,x +rcx +-cx =P,. (1.2) 

Here and below, t h e  d o t s  denote d i f f e r e n t i a t i o n  wi th  respect  t o  time. 

Furthermore, we w i l l  assume t h a t  t h e  r o t o r  r o t a t e s  uniformly with an  angu
lar ve loc i ty  w i n  vacuum, i.e., we w i l l  neglect t h e  aerodynamic forces .  The 
theory of ground resonance disregarding aerodynamic forces  agrees r a the r  w e l l  
wi th  experiment. Thus, only i n e r t i a  forces  a r i s i n g  during blade vibrat ions i n  
t h e  plane of r o t a t i o n  are taken i n t o  account. 

To construct t h e  equations of motion of t h e  blade, l e t  us t u r n  t o  Figs.3.1 

and 3.2. /253 


Let us s e l e c t  a s t a t iona ry  rectangular  coordinate system Oxyz. The ax is  Oy 
i s  d i rec ted  along t h e  a x i s  of t h e  r o t o r  shaf t ,  at a pos i t i on  of t he  casing (1)

corresponding t o  s t a t i c  equilibrium. The direc
t i o n  of t h e  Ox-axis i s  taken such t h a t  t h e  only 
possible  displacement of t h e  casing i s  d i rec ted  
along t h e  Ox-axis . 

A s  usual, l e t  x be the  displacement of t h e  
a x i s  of t h e  r o t o r  shaft together  with t h e  casing 
along t h e  Ox-axis (Fig.3.2). Furthermore, l e t  
$k be t h e  azimuthal angle of t h e  k-th r o t o r  blade 
reckoning from t h e ' p o s i t i v e  d i r ec t ion  of t he  Ox-
axis. 

The angles $k of d i f f e r e n t  r o t o r  blades are 
determined by means of t h e  formula 

Fig.3.2 For Derivation of 
Equations of Motion. (1.3) 

where n i s  t h e  number of r o t o r  blades;  k = 1, 2, ..., n. 

We denote by t v . h  t he  dis tance AB (F'ig.3.2) from t h e  axis of r o t a t i o n  A t o  
t h e  axis of t h e  v e r t i c a l  o r  drag hinge B, and by 5 k  t h e  angle of de f l ec t ion  of 
t he  k-tli blade during i t s  r o t a t i o n  relative t o  t h e  drag hinge, taking Sk as posi
t ive when t h e  blade i s  def lected i n  t h e  d i r e c t i o n  of r o t a t i o n  of the  ro tor .  

Then, t h e  coordinates x k  and zk of t h e  element of t h e  k-th b h d e  wi th  a 
m a s s  dm at a dis tance p from t h e  a x i s  of t h e  drag hinge a r e  expressed by t h e  fo l 
lowing formulas: 

Different ia t ing these  e5pressions twice wi th  respect  t o  t i m e ,  we ob ta in  
formulas for determining the,  components of t h e  acce lera t ion  of t h e  blade element: 
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I n  der iving t h e  equations of small blade v ibra t ions  r e l a t i v e  t o  t h e  drag 
hinge we must, as usual, l i m i t  ourselves t o  small quant i t ies  of t h e  first order.  
Therefore, we can assume t h a t  

(w +i,)Z =w2+ 20ik. 

Thus, with a n  accuracy t o  small quant i t ies  of t h e  second order, t he  formu
las f o r  t h e  accelerat ions Sk and j ; k  can be w r i t t e n  i n  t h e  form 

When t h e  system moves i n  a vacuum, t h e  r o t o r  blades a t  each i n s t a n t  of 
time t are loaded only by i n e r t i a  forces .  The elementary i n e r t i a  forces  ac t ing  
on a blade element are expressed by t h e  formulas: 

d X k =  -d i n s k ;].. 
dZk =- dmkzk. 

I n  t h e  drag hinges of t h e  r o t o r  hub, l e t  t he re  be l i n e a r  e l a s t i c  and damp-& 
ing  devices which, during r o t a t i o n  of t h e  blade r e l a t i v e  t o  the  drag hinge, load 
it by t h e  moment 

d i rec ted  toward t h e  s ide  opposite t o  t h e  pos i t i ve  d i r e c t i o n  S k .  We w i l l  c a l l  cb 
and kb ,  respect ively,  t h e  coe f f i c i en t s  of e l a s t i c i t y  and damping of t h e  blade. 

A t  each i n s t a n t  of t i m e ,  t h e  moment from the  i n e r t i a  forces  applied t o  t h e  
blade r e l a t i v e  t o  t h e  drag hinge should be balanced by t h e  moment M. Therefore, 
we can wr i t e  

[ x k e s i n ( $ R + E k ) - Z R e C O S ( $ k f E k ) ]  dnz=cbik+Kbgkr 
I 

where in t eg ra t ion  i s  car r ied  out over t h e  blade length 1.  

The equation of motion of t h e  k-th blade is  derived from t h e  last expres
s i o n  and from eqs.(l.5) after simple transformations.  Since we are in t e re s t ed  
i n  t h e  equations of small blade vibrat ions,  we can limit ourselves t o  >erms of 
t h e  first order  of smallness relative t o  t h e  quant i t ies  x, 2, C k ,  and sk, after 
discarding terms containing squares and products of t hese  quant i t ies .  Then, we 
can put  

cos Ek =1; 
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sin Ek =E k ;  

sin (+& +E k )  =4. sin +Jk+ER cos +k; 

COS (qR+ E R )  zzcos qR-ER sin qk. 

After such s impl i f ica t ions ,  t h e  equation of small v ibra t ions  of t h e  k-th 
blade W i l l  t ake  t h e  following form: 

Here, t h e  following notat ions are used: 

n b  = kb = relative damping coef f ic ien t  of t h e  blade; 
h 

2
Pb, - c b  - n a t u r a l  frequency of a nonrotating blade ( a t  u) = 0) r e l a  
I V . h  t i v e  t o  t h e  drag hinge; 

v o  = dimensionless blade parameter determined by t h e  formula: 

where 
s,,, = pcim = s t a t i c ‘b l ade  moment relative t o  the  drag hinge; 

I,., = Sp”dm = moment of i n e r t i a  of t h e  blade r e l a t i v e  t o  t h e  drag 
E hinge. 

The right-hand s ide  of eq.(1.8) represents  t h e  moment due t o  i n e r t i a  forces  
ac t ing  on t h e  blade, generated by t h e  r o t o r  s h a f t  displacement (x) .  When t h e  
sha f t  i s  s ta t ionary ,  a t  2 = 0, eq.(1.8) descr ibes  t h e  na tu ra l  blade v ibra t ions  
of a uniformly ro t a t ing  r o t o r  i n  t h e  plane of ro t a t ion .  

The general  so lu t ion  of eq.(1.8) without t h e  right-hand s ide  has t h e  form 

where S k o  and rqk are arbitrary constants,  w h i l e  t h e  quantity Pb i s  determined by 
t h e  formula 

Pb = { P i o  +v:w* -nb” 

and represents  t he  angular frequency of natural b h d e  v ibra t ions  i n  t h e  plane of 
ro ta t ion .  

Furthermore, it i s  necessary t o  determine t h e  fo rce  P, exerted on t h e  casing 
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by t h e  rotor .  The force  P, represents  t h e  r e su l t an t  of t h e  i n e r t i a  forces  of 
v ibra t ing  blades and, on t h e  basis of t he  well-known theorem of motion of t he  
center  of i n e r t i a  (center  of grav i ty)  of a mechanical system, can be determined 
as t h e  product of t h e  mass of t h e  blade system and t h e  component of acce lera t ion  
of t h e  common center  of g rav i ty  of t he  blade system along t h e  ax is  ox1 

Let  us der ive  formulas f o r  determining t h e  coordinates of t he  common center  
of grav i ty  of t he  blade system. 

Let  Xk, and zk be t h e  coordinates of t h e  center  of grav i ty  of t h e  k-th 
C 

blade. Then, t h e  coordinates x, and z, of t h e  center  of g rav i ty  of t h e  blade 
system can be calculated by means of t h e  expressions: 

k - 1  1 (1.10) 

Furthermore, l e t  p, be the  d is tance  of t h e  center  of grav i ty  of t he  blade 
from t h e  axis of t he  drag hinge. Then, i n  conformity with eqs.(l.4), t h e  coor
d ina tes  x,, z, can be determined as 

xkc  = x  -k cos 9.4 +@c cos (Ok +kk) ;  

zkc =‘v.h sin +@c sin (+k +Ek). 

Subst i tut ing these  expressions i n t o  eq.( 1.10) and considering t h a t ,  f o r  
n 2 3 [see Chapt.11, Sect.1, Subsect.2, eq.(1.13)1, 

n3 cosq,=o; 1k - l  
n (1.11) 

k2 sin+k=O, I- 1  

w e  oktain the  following simple expressions f o r  t h e  coordinates of the  comon 
center  of g rav i ty  of t h e  blade system: 

(1.12)n 


k -1 
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The force  P, ac t ing  on t h e  e l a s t i c  base can be determined fron: t h e  formula 

P,  =-nm,x,. 

Twice d i f f e r e n t i a t i n g  t h e  f i r s t  equation of t h e  system (1.12), we obta in  /256 

Subst i tut ing this expression i n t o  eq.(1.2) W i l l  f i n a l l y  yield the  follow
ing  equation of motion of t h e  casing: 

T h i s  equation i s  convenienkly wr i t t en  i n  t h e  form 
n 

X+2 noi+p i x  = 
M d 

[ (.ik-u2ik)sin qk+poikcos 
k -1 

where t h e  quantity 

represents  t he  t o t a l  mass of t h e  system, w h i l e  n, i s  the  r e l a t i v e  d a q i n g  coef
f i c i e n t  of t h e  e l a s t i c  base, determined by the  formula 

xno=--,
2 M  

and t h e  quantity po  represents  t he  angular frequency of na tu ra l  vibrat ions of a 
r i g i d  r o t o r  (without drag hinges) on an e l a s t i c  base and i s  determined by t h e  
formula 

We w i l l  now write t h e  system of equations of motion of a ro to r  on an  e l a s t i c  
base, consis t ing of t h e  equations of motion of t h e  blades [eq.(1.8)1 and t h e  
equation of motion of t h e  casing of t h e  base: 

n (1.16) 

k - 1  

where k = 1, 2, ..., n. 
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Thus, t h e  equations of small vibrat ions of a r o t o r  on an  e l a s t i c  base repre
sen t  a homogeneous system of ( n  + 1)l i n e a r  d i f f e r e n t i a l  equations with per iodic  
coe f f i c i en t s  f o r  determining ( n  + 1)unknown funct ions x ( t ) ,  s , ( t )  (where k = 
= 1, 2, ..., n).  

2. S t a b i l i t y  Analyzba.pd &sic  Results 

Invest igat ions conducted by Coleman (Ref .35) and B.Ya.Zherebtsov showed 
t h a t ,  f o r  a ro to r  with a number of blades n 2 3, this system of equations can be 
reduced t o  a system of l i n e a r  equations with constant coef f ic ien ts ,  i f  we re
p lace  < , ( t )  by new var iab les  x,(%) and z , ( t>  represent ing t h e  coordinates of t he  
center  of grav i ty  of t h e  blade system. I n  t h e  case of a two-blade ro tor ,  
eqs.(l . l6) cannot be reduced t o  equations with constants.  An inves t iga t ion  of 
t h e  s t a b i l i t y  of motion of a two-blade r o t o r  on a n  e l a s t i c  base i s  qui te  com
plex. Its presenta t ion  can be found elsewhere (Ref .36). B.Ya .Zherebtsov studied 
a l s o  the  case of a two-blade r o t o r  on an  i so t rop ic  e l a s t i c  support when t h e  
casing of this support 'had two degrees of freedom - i n  d i r e c t i o n  of t h e  Ox- and

/257 
Oz-axes ( see  Fig.3.2) - and t h e  s t i f f n e s s  of t he  base i n  both d i rec t ions  w a s  
i den t i ca l .  I n  this except ional  case, t h e  problem i s  e a s i l y  reduced t o  a system 
of equations with constants.  

Here, we w i l l  i nves t iga t e  t h e  s t a b i l i t y  of a r o t o r  with a number of blades 
n 2 3, which i s  of the  g rea t e s t  p r a c t i c a l  value. 

I n  order t o  obta in  t h e  equations of motion with constant coef f ic ien ts ,  we 
w i l l  transform eqs.(l . l6) t o  t h e  new variables x ( t ) ,  V(t), C( t )  r e l a t ed  with the  
previous formulas: 

" \ 

The new quant i t ies  7 and E,  as i s  apparent from eqs.( l . l2) ,  a r e  equal - with 
a n  accuracy t o  wi th in  t h e  constant f a c t o r  pc/n - t o  t h e  coordinates of t h e  center  
of g rav i ty  of t he  blade system i n  a moving coordinate system x'Az' whose axes 
are p a r a l l e l  t o  t h e  Ox- and Oz-axes of t h e  f ixed system, w h i l e  t h e  o r i g i n  of t h e  
coordinates A coincides wi th  t h e  center  of t he  r o t o r  (see Fig.3.2). 

To der ive t h e  equations of motion i n  t h e  new variables, a l l  equations of 
motion of t h e  blades [ the first equation of t h e  system (1.16)l must first be 
mult ipl ied by cos J l k  followed by addi t ion  of t h e i r  lef t - and right-hand s ides  
from k = 1t o  k = n; mul t ip l ica t ion  is  then performed by s i n  +k again followed 
by addi t ion.  Here, it m u s t  be noted that, f o r  a r o t o r  w i th  a number of blades 
n 2 3, we have by v i r tue  of eqs . ( l . l3)  of Chapter 11: 
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n 

Furthermore, 

The last formulas are obtained by successive d i f f e r e n t i a t i o n  of eqs . ( l . l7 ) .  

This r e s u l t s  i n  t h e  following system of equations: 

(1.20) 


/258
Thus, we ob ta in  a homogeneous system of three l i n e a r  d i f f e r e n t i a l  equations 

of t h e  second order wi th  constant coe f f i c i en t s  r e l a t i v e  t o  three unknown func
t i o n s  x ( t ) ,  T ( t ) ,  and G( t ) .  

Now, t h e  s t a b i l i t y  ana lys i s  of t h e  system can be car r ied  out i n  the  conven
t i o n a l  manner. 

Let us put  

x=x,,ehf; 
q=Toe i f ;  
C =<,eXt, 

where xo, To, and G o  a re  c e r t a i n  constants.  

Subs t i tu t ing  these  expressions i n t o  eqs.(1.20), we obta in  a system of t h ree  
algebraic  l i n e a r  homogeneous equations f o r  determining t h e  quant i t ies  xO, To, 
and G o .  Equating t h e  determinant of this system t o  zero, we obtain t h e  charac
t e r i s t i c  equation f o r  determining h .  On expanding this equation i n  powers of h ,  
we obta in  

-61 f a ~ 5 + b ~ 4 + ~ h 2 f e h + f = 0 ,  (1.21) 
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Here and below, we introduce t h e  following notations: 

(1.22) 

a= A,; 
-

b =Bo+Blw2; 

c =c,+c& (1.23) 

d =Do+DlZ2+D2G4; 

e = +E$ +~ ~ 0 4 ;  


f=Fo+F,02+ F2&4. 
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The dimensionless coe f f i c i en t s  of damping & (of a n  e l a s t i c  base) and 5, 
(blade) are determhed by means of 

The dimensionless coef f ic ien t  e i s  obtained from t h e  formula: 

(1.26) 

It i s  easy t o  explain t h e  mechanical meaning of this important coef f ic ien t .  
The quant i t ies  S,,, and I,., can be wr i t t en  i n  t h e  form 

where pi = d k i s  t h e  radius  of i n e r t i a  of t h e  blade relative t o  the  drag 
m b  


hinge. Therefore, eq.( 1.26) can be r ewr i t t en  as 

1 nm 2 
e=

2 =(:). 
The quantity pc/p i  depends upon t h e  l a w  of mass d i s t r i b u t i o n  over t h e  blade 

length and, f o r  d i f f e ren t  blades, l i es  wi th in  t h e  narrow limits of pc/pi  
= 0.8 - 0.9. 

Consequently, it can be assumed i n  first approximation khat t h e  quantity E 

i s  proport ional  t o  t h e  r a t i o  of t h e  t o t a l  blade mass t o  t h e  t o t a l  system mass 
(mass of t h e  e l a s t i c  base casing p lus  mass of t h e  blades) and thus  can be ca l led  
t h e  relative r o t o r  mass. 

A de ta i l ed  analysis of t‘he cha rac t e r i s t i c  equation shows t h a t  only osc i l la 
t o r y  i n s t a b i l i t y  i s  poss ib le  i n  t h e  system w h i l e  aperiodic i n s t a b i l i t y  i s  -0s
sible (Ref .35). The boundaries of t h e  zones of o sc i l l a to ry  i n s t a b i l i t y  (cor
responding values of 5) can be found i n  t h e  f o l l o d n g  manner: A t  t he  boundary 
of t h e  zone of i n s t a b i l i t y  the re  a r e  purely harmonic (not damped and not in
creasing) vibrat ions,  which furnishes  a pure ly  imaginary value of one of t h e  
roots  of t h e  cha rac t e r i s t i c  equation (1.21)-. Set t ing,  i n  this equation, h = ip  
(where i s  a real quantity) and equating t o  zero t h e  real  and imaginary pa r t s ,  
we ob ta in  t h e  following equations: /260 

(1.28) 
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Since t h e  coef f ic ien ts  a, b, c, d, e, and f are known funct ions of W [see 
eqs.(1.23) and (1.&)1, we can regard eqs.(1.28) as a system of two equations 
with two unknowns p and W .  The values of w and 5, being t h e  so lu t ion  of t h e  
system (1.28), represent t h e  dimensionless angular ve loc i ty  ;;of r o t o r  ro t a t ion  
a t  which harmonic v ibra t ions  of t h e  system are possible ,  and t h e  corresponding 
dimensionless angular v ib ra t ion  frequency 5. 

We can solve t h e  system (1.28) by making use of t h e  f a c t  t h a t  t h e  first 
equation of t h e  system (1.28) i s  biquadrat ic  wi th  respect  t o  5. Prescribing d i f 
f e ren t  values of E,  we can determine from this equation followed by calcula
t i o n  of t h e  value of a c e r t a i n  quantity D(Z) equal  t o  the  left-hand s ide  of t h e  
second equation of t h e  system (1.28) at this value of p: 

From t h e  r e s u l t s  of this calculat ion,  a curve f o r  t h e  dependence of D on w 
can be p lo t ted .  The values of a t  which D vanishes w i l l  a l s o  be t h e  boundaries 
of t h e  i n s t a b i l i t y  zone. We can demonstrate that t h e  values of w, a t  which D > 
> 0, correspond t o  steady motion of t h e  system w h i l e  t h e  values of w, a t  which 
D < 0, correspond t o  unsteady motion. 

Calculation of t he  unstable range i s  qui te  laborious and, f o r  a l l  p r a c t i c a l  
purposes, can be performed only on d i g i t a l  computers. Figures 3.3 - 3.12 show 
c e r t a i n  r e s u l t s  of such ca lcu la t ions  car r ied  out by engineer V.G.Pashkin on t h e  
d i g i t a l  computer 11 Strela". The graphs permit determining t h e  s t a b i l i t y  bounda
ries and t h e  damping margins. 

The s t a b i l i t y  -of t h e  system i s  determined i n  general  by the  following f i v e  
parameters: v,, E ,  Pbo, no, nb. The graphs are p l o t t e d  f o r  t h e  two most fre
quently encountered values v o  = 0.25 and vo = 0.3. Here, t h e  value of pb0 = 0, 
i.e., f o r  a r o t o r  with drag hinge dampers, i s  examined. E la s t i c  elements are 
absent.  The e f f e c t  of e l a s t i c  elements Will be discussed la ter  i n  t h e  text.  For 
each of t h e  values of v o  t he re  i s  a series of graphs corresponding t o  d i f f e ren t  
values of E .  The abscissa  of each graph gives t h e  values of t h e  dimensionless 
angular ve loc i ty  w corresponding t o  t h e  boundaries of t he  i n s t a b i l i t y  zone, while 
t h e  ordinate  gives  t h e  dimenionless coef f ic ien t  n b  of blade damping a t  which 
t h e  i n s t a b i l i t y  zone i s  obtained. The graphs are constructed f o r  d i f f e ren t  
values of t h e  dimensionless damping coef f ic ien t  of an  e l a s t i c  base. 

A s  shown by these  graphs, t h e  width of t h e  i n s t a b i l i t y  zone subs t an t i a l ly  
depends upon t h e  danping coe f f i c i en t s  nb and ii,. on a n  increase  i n  damping E, 
( a t  f ixed  E,) t h e  unstable range narrows and, a t  a c e r t a i n  c r i t i c a l  value ::-, 
cont rac ts  i n t o  a point .  A t  a value i i b  > E$, t h e  i n s t a b i l i t y  zone i s  absent a t  
a l l  values of G. For example, a t  E = 0.02, v, = 0.25 ( see  Fig.3.3), i f  no = 
= 0.06, t h e  i n s t a b i l i t y  zone cont rac ts  t o  a poin t  as soon as nb = 0.128; a t  nb > 
> 0.128, t h e  system i s  stable f o r  any ;;( i n  this case, E; = 0.128).-

The r a t i o  6 .  = -,nb whenever it i s  g rea t e r  t han  unity,  is  conveniently 1266 
-% 
nb 

c a l l e d  t h e  damping margin. 

The value of w a t  which t h e  i n s t a b i l i t y  zone cont rac ts  t o  a po in t  i s  ca l l ed  
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c =O.OZ 

v,-o.25 

Steady 
no t i o n  

Fig .3 .4 Graphs 	for Determining Ins t ab i l i t y  Boundaries 
( e  = 0.04; v,-, = 0.25). 
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' b  
~~0.25 

t-0.06 

v,=0.25 
-0.20 

~a 15 
Steady  
mot ion 

0.10 ~

I 
I .. . J  - . . 1- I .- I I 1 I 

D 1 2 3 IZ 

Fig .3.5 Graphs 	for Determining I n s t a b i l i t y  Boundaries 
(e  = 0.06; v 0  = 0.25). 

I 1 I 1 I I I I
0 1 2 3 lz 

fig .3.6 Graphs 	for Determining I n s t a b i l i t y  Boundaries 
( c  = 0.08; v 0  = 0.25). 
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' b  
0.25 

0.20 


0.15 

0.10 

0.OS 

I I 1 -
a 1 2 3 w 

Fig .3.7 Graphs f o r  Determining I n s t a b i l i t y  Boundaries 
( e  = 0.10; vo = 0.25).  

Fig.3.8 Graphs for DetermLning I n s t a b i l i t y  Boundaries 
( G  = 0.02; v0 = 0.30). 
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E-0.04 
Vo-O.30 xGo= 0.02 

Steady 

I
I . I I 1 1 

D 1 2 J B 

Fig.3.9 Graphs 	f o r  Determining I n s t a b i l i t y  Boundaries 
(E = 0.04.; v 0  = 0.30). 

E=D.OG 

vo=0.30 

ii,=o.oz 
/ .0.04 

~-

Steady 
motion 

Eg.3  .ID Graphs f o r  Determiming I n s t a b i l i t y  Boundaries 
(E = 0.06; v0  = 0.30). 
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Fig.3.11 Graphs for Determining I n s t a b i l i t y  Boundaries 
( C  = 0.08; v0 = 0.30). 
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t h e  c r i t i c a l  value and can be calculated by means of t h e  approximate formula: 

Below, we w i l l  give a p b s i c a l l y  c l e a r  e luc ida t ion  of this formula. 

It should be noted that a n  increase  i n  t h e  qusnt i ty  i i b  does not always lead 
t o  a n  improvement of s t a b i l i t y .  A t  low values of no ( t h i s  can be t raced  from 
t h e  graphs), an  increase  i n  i i b  may even lead t o  a s m a l l  displacement of t h e  
lower boundary of t h e  i n s t a b i l i t y  zone toward smaller values of z. T h i s  might
result i n  t h e  appearance of i n s t a b i l i t y  a t  values of w f o r  which t h e  motion was 
s teady a t  smaller n b .  

An increase i n  damping & of t h e  e l a s t i c  base a t  moderate values of E, a l s o  
leads t o  a; hprovement of s t a b i l i t y ;  however, a t  very low values of E, an  in
crease i n  n, may lead t o  a rightward shift of t h e  upper boundary of t h e  ins ta 
b i l i t y  zone and thus t o  a broadening of t h e  zone i t s e l f .  

An ana lys i s  of t h e  graphs permits t he  fol lowing important conclusion: When
ever t h e  quant i t ies  E, and are of t h e  same order  of magnitude and d i f f e r  t o  
one or t he  other  s ide  by not more than  a f a c t o r  of 2 - 3, any increase i n  damp
ing  E, or E, wi l l  r e s u l t  only i n  a n  increase of s t a b i l i t y .  A t  such values of & 
and no, t h e  g rea t e s t  required damping occurs approximately a t  

w=w,, =-. 1 
1 - V" 

For this qui te  important p r a c t i c a l  case, B.Ya.Zherebtsov's simple approx
imate formula3$ can be derived, which shows t h a t  t h e  damping margin i s  propor
t i o n a l  t o  t h e  product of t h e  quant i t ies  iib and c. T h i s  formula y i e lds  t h e  
values of t h e  product Ebnoa t  which t h e  i n s t a b i l i t y  zone contracts  t o  a poin t :  

his approximate formula holds only a t  F b ,  = 0; i ts  v a l i d i t y  can be t raced  
from t h e  graphs. A t  Fbo # 0, we can use another approximate formula: 

where t h e  dimensionless quant i ty  A i s  determined from the  formula 

>L 

" T h i s  formula w i l l  be derived i n  Sect ion 3 .  Equation (1.31) will a l s o  be con
s t ruc t ed  the re .  



--- 

A=- 1 + y o  

YO+ 1/ 1+Pi, (?) 
Figure 3.13 shows the  dependence of A on j?bo ? f o r  vo  = 0.25. The graph ilE

d i ca t e s  t h a t  t h e  required damping can be subs t an t i a l ly  reduced by introducing && 
a n  e l a s t i c  element i n  t h e  drag hinge of t h e  ro to r .  An hprovement i n  s t a b i l i t y  

of t h e  system by a n  increase i n  eb is  i l l u s t r a t e d  a l s o  
A by t h e  series of graphs i n  F'ig.3.&. 

However, when introducing an  e l a s t i c  element i n t o  
t h e  design of t h e  drag hinge o r  when introducing so-
ca l led  e l a s t i c  i n t e rb l ade  couplings, i t  i s  necessary t o  
r e c a l l  t h a t  t h e  bending moment ac t ing  on t h e  blade roo t  
i n  f l i g h t  is generated both by t h e  damper and by t h e  
e l a s t i c  element i n  t h e  drag hinge. Therefore, upon in-' '*' '' 48 creasing t h e  r i g i d i t y  of t h e  e l a s t i c  element (on in
creasing F b o )  t h e  moment exerted on t h e  blade by t h e  

F'ig.3.13 Effect of e l a s t i c  element ( o r  in te rb lade  couplings) w i l l  increase 
E l a s t i c i t y  of t h e  simultaneously with a decrease i n  t h e  required moment 
Drag Hinge on Re- produced by t h e  damper. The optimal value of j?bo should 

quired Damping. 	 be considered that value a t  which t h e  bending moment 
ac t ing  on t h e  blade i n  f l i g h t  will be m i n i " ,  a t  COR
s t a n t  damping margin wi th  respect  t o  ground resonance. 

T h i s  optimal value of p b o  depends on &, and should be separa te ly  se lec ted  f o r  
each hel icopter .  For more de t a i l s ,  see Sect ion 6. 

3. 	Physical P ic ture  of Rotor Behavior i n  t h e  Presence 
of Ground Resonance 

To e luc ida te  t h e  phys ica l  p i c tu re  of r o t o r  behavior i n  the  presence of 
ground resonance, l e t  us examine t h e  following problem: 

Let t h e  casing of t h e  e l a s t i c  base (fig.3.1) execute harmonic vibrat ions /268
according t o  t h e  prescr ibed l aw:  

x=xo sin pi, (1.33) 

where xo and p are t h e  v ibra t ion  amplitude and frequency o f  t h e  casing. 

Let us examine forced blade v ibra t ions  during such movement of t h e  casing. 
The equation of motion (1.8) of t h e  k-th r o t o r  blade w i l l  take t h e  following 
form i n  this case: 

(1.34)- p2xosin pt  sin 
1p.h 
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F'ig.3.U. Graphs I l lustrat ing t h e  Effect of E l a s t i c i t y
of t h e  Drag Hinge (E = 0.04; v,, = 0.366). 

Considering t h a t  Q k  = w t  + -	237 k (k = 1, 2, ..., n) and representing t h e  
n 

right-hand s i d e  of this equation as two harmonics, we can wr i t e  t he  equation i n  
t h e  form 

T h i s  i s  the  conventional equation of forced v ibra t ions  of a system wi th  one 
degree of freedom. 

The right-hand s i d e  of eq.(1.35) represents  t h e  exc i t ing  force  which, i n  
this case, cons i s t s  of two components, each of which represents  a load varying 
by a simple harmonic l a w  wi th  a frequency equal t o  (LU- p )  o r  (LU+ p) ,  respec
t i v e l y .  E&- v i r t u e  of t h e  l i n e a r i t y  of eq.(1.35), t h e  blade vibrat ions due t o  
each of these  loads can be examined independently. The forced (steady) vibra
t i o n s  of t h e  blade will t ake  p lace  i n  obedience t o  t h e  law: 

where s2, cpl, cpz, are c e r t a i n  constants that are r e a d i l y  determined from 
eq.(1*35) 
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Thus, during v ibra t ions  of t h e  casing of t h e  e l a s t i c  base according t o  a 
simple harmonic l a w  wi th  a frequency p, t h e  r o t o r  blades W i l l  execute forced vi
bra t ions  with two combined frequencies (w + p )  and (w - p )  depending upon t h e  
angular ve loc i ty  u) of r o t o r  ro t a t ion .  

The most i n t ense  blade v ibra t ions  occur a t  resonance, when one of t h e  ex
c i t a t i o n  frequencies (p + w )  o r  (p  - w )  i s  c lose  t o  the  na tu ra l  v ib ra t ion  fre

quency of t h e  blade pb = , J p T .  

Let  us first examine t h e  case of resonance when 

I n  this case, t he  quantity i n  eq.(1.36) w i l l  be appreciably grea te r  than  
t h e  quantity s2, so t h a t  we can neglect t h e  second t e r m  i n  eq.( 1.36). With t h i s  
.s implif icat ion and wi th  t h e  condition (1.37), t h e  l a w  of motion of t h e  blade 
w i l l  have t h e  form 

where 

Let us next ca l cu la t e  the force  P, exerted on t h e  casing of t h e  e l a s t i c  
base by t h e  i n e r t i a  of t h e  r o t o r  blades v ibra t ing  i n  this mode. For this, l e t  

/269 
us f ind t h e  displacement of t h e  center  of g rav i ty  of t h e  blade system by means 
of eq.(1.12). Subs t i tu t ing  i n t o  these  formulas eq.( 1.38) f o r  Sk and taking i n t o  
account t h a t  

n 


and 
n3sin 

n 
k - 1  

easy transformations will y i e l d  t h e  following l a w  of motion of t h e  center  of 
grav i ty  of t h e  blade system: 

x , = x + ce Eo cos p t ;  
2 1 
e2z,=CEosin pt .  l 

If we take  i n t o  account t h a t  t h e  coordinates of t h e  center  of grav i ty  i n  
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t h e  coordinate system x'Az' r e fe r r ing  to t h e  casing are expressed by t h e  formu
las xi = x, - x and z i  = z,, then t h e  center  of g rav i ty  of t h e  system of blades 
i n  this coordinate system moves i n  accordance wi th  t h e  law: 

, I 
zc=y e C E Osin pt .  I 

Thus, at resonance when t h e  equal i ty  (1.37) i s  s a t i s f i e d ,  t h e  center  of 
grav i ty  of t h e  blade system describes,  i n  t he  coordinate system f ixed  wi th  re
spect  t o  t h e  casing, a c i r c l e  of radius  & p e s o .  I n  this case, t h e  angular ve
l o c i t y  of i t s  r o t a t i o n  wi th  respect  t o  this c i r c l e  i s  equal  t o  t h e  frequency p 
of t h e  given v ibra t ions  of t h e  casing. 

bt us then  determine t h e  force  P, ac t ing  on t h e  casing, by means of t h e..
formula P, = -mbx,. Here, we obta in  t h e  following expression: 

p x =  +nm,p2 
[
x,+' 

2 
Eo Icos p t .  

Subst i tut ing here t h e  expression for so from eq.( l.39), we obtain 

Thus, during v ibra t ions  of t h e  casing by t h e  harmonic l a w  [eq.(1.33)1 and 
under t h e  condition of blade resonance [eq.(1.37)1, t h e  force  exerted on t h e  
casing by t h e  v ibra t ing  blades var ies  i n  time by a harmonic law with t h e  same 
frequency p,  with a v ib ra t ion  phase n/2 (with respect  t o  the  vibrat ions of t h e  
casing) and i s  propor t iona l  t o  the  azimuth xo of t h e  vibrat ions of t he  casing. 

Equation (1.42) can a l s o  be represented i n  t h e  form 

On deriving t h e  equation of t h e  casing (1.2) under t h e  e f f e c t  of t h e  m 
fo rce  P, given by such a n  expression, we obta in  

Using our previously adopted notations,  this equation can be w r i t t e n  as 
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If it were poss ib le  t o  f i n d  t h e  parameters of t h e  system at which t h e  l a w  
of motion of t h e  casing [eq.(1.33)1 satisfies this equation, this would mean 
that, a t  such system parameters, pure ly  harmonic motion (undamped v ibra t ions)  
wi th  a frequency p would be possible .  Subs t i tu t ing  eq.(1.33) i d 0  eq.(1.43), it 
i s  easy t o  demonstrate that this i s  obtained when t h e  following two conditions 
are sa t i s f i ed :  

Furthermore, it should be reca l led  that eq.(1.43) was derived from t h e  con
d i t i o n  of blade resonance, i.e., under t h e  condi t ion (1.37) which, taking po = p 
i n t o  account, can be w r i t t e n  i n  t h e  form 

From this equation, one can determine t h e  value of t h e  c r i t i c a l  angular ve
l o c i t y  w,, of rotor r o t a t i o n  at which undamped v ibra t ions  i n  t h e  system are pos
sible e 

Equation (1.44) gives  t h e  value of t h e  product k E b  at which undarped vi
bra t ions  are possible;  then, as now i s  obvious, this formula together  with t h e  
condi t ion (1.45) w i l l  y i e l d  t h e  approximate formula (1.31). 

Thus, undamped v ibra t ions  a r e  poss ib le  only at a value of w a t  which two 
resonances occur simultaneously: resonance of t h e  blade [condi t ion (1.45)1 a d  
resonance of t h e  e l a s t i c  base p = po. A t  such a value of w and on sa t i s fy ing  
t h e  condition (I.&), t h e  na tu ra l  v ibra t ions  of t h e  r o t o r  on a n  e l a s t i c  base can 
be sustained by a variable exci t ing fo rce  generated by t h e  v ibra t ing  blades, 
which here a r e  i n  a state of resonance. 

A study of eq.(1.35) shows that blade resonance i s  poss ib le  i n  two cases, 
namely: when one of t h e  combined frequencies (p + w )  o r  (p  - w )  coincides with 
t h e  natural frequency of blade vibrat ions,  i.e., 

and when 

O f  these  two cases, we examined only t h e  first. For t h e  second case, a l l  
derived formulas are obtained i n  t h e  same manner except that, i n  a l l  expressions, 
t he  quantity w is replaced by t h e  quant i ty  -w, including a l s o  i n  eqs.(l.&). 
T h i s  expression shows t h a t ,  at p = Ip + w I  , undamped v ibra t ions  are poss ib le  
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o d y  if &,Eb < 0, meaning t h a t  i n  this case one of t h e  quant i t ies  & and &, 
should be negative. Consequently ground resonance i s  poss ib le  only a t  Pb = 
= 1.p - w~ and impossible a t  p b = [p + w1. 

L e t  us next peruse t h e  resonance diagram (Fig .3.15). T h i s  diagram gives /271
t h e  curve of t h e  natural blade frequency Pb as a func t ion  of t h e  angular ve

l o c i t y  w, with  superposi t ion of t h e  s t r a i g h t  
l i n e s  p = po + w and p = Ipo - w I  . The diagram
is  p l o t t e d  f o r  t h e  case of Pbo < po.  

A s  we see from t h e  diagram, the re  are two 
values of w at which t h e  condition Pb = I po .- w I ,
corresponding t o  t h e  po in t s  A and B, i s  satis
f i e d .  For t h e  poin t  A, we have t h e  condi t ion 
Pb = po - w and, f o r  t he  poin t  B, t h e  condi
t i o n  pb  = w - Po 

Thus, i n  t h e  first case w < po and i n  t h e  
Fig .3.15 Resonance Diagram. second, w > po. Turning t o  t h e  second condi

t i o n  of t h e  system (l.,!+!+-), we see t h a t  it can 
be s a t i s f i e d  ( a t  p o s i t i v e  values of and n,)

on ly  f o r  w > po.  Consequently, of t h e  two poss ib le  values of w at which blade 
resonance i s  possible ,  only one (w > po)  can correspond t o  undamped vibrat ions 
of t h e  system. 

Let us determine this value of w and c a l l  it ( w c r )  c r i t i c a l .  
eq.(1.45) r e l a t i v e  t o  w and discarding one of t h e  obtained values 
f i n d  

1 + l/vF+p:, (1 - vi )  
ocr=Po - ~ 

1- v i  

A t  Fb, = 0 we obta in  t h e  formula 

Subs t i tu t ing  t h e  value of w,, from eq.(l.46) i n t o  t h e  second condi t ion of 
t h e  system (1.&), we f i n d  

where 
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These formulas exac t ly  coincide wi th  t h e  approximate equations (1.31) and 
(1.32) 

The reasonings set f o r t h  here, together  wi th  t h e  s t a b i l i t y  ana lys i s  given 

i n  Sect ion 2, permit t o  state: The condi t ion 
-
q,n, 
- > c ( 1 - V O )  * 

always pro
8VO 

vides  s t a b i l i t y  a t  t h e  c r i t i c a l  angular ve loc i ty  of r o t o r  r o t a t i o n  determined by 
eq.(1.46). However, as indicated i n  t h e  ana lys i s  of t h e  graphs i n  Figs.3.3 t o  
3.12, this condition holds only when t h e  quan t i t i e s  nb and & are of t h e  same 
order  of magnitude. T h i s  means t h a t  ensurance of s t a b i l i t y  a t  w = wcr does not 
d e f i n i t e l y  ensure s t a b i l i t y  a t  any w. 

4 .  Rotor on a n  I so t ropic  E-bst ic  Ease 

The theory of s t a b i l i t y  of a r o t o r  on a n  e l a s t i c  base presented i n  this 
Section holds only i f  t h e  number of r o t o r  blades n 2 3 and i f  t h e  e l a s t i c  base 
has only one degree of freedom, namely motion along t h e  Ox-axis (Fig.3.2). /272 

However, a n  analogous s t a b i l i t y  theory can be constructed a l s o  f o r  t h e  more 
general  case where t h e  e l a s t i c  base has two degrees of freedom: displacement 
along t h e  axes O x  and 02. A s t a b i l i t y  ana lys i s  f o r  this more complex system i s  
ra the r  cumbersome. On t h e  o ther  hand, i n  p r a c t i c a l  appl ica t ion  one can almost 
always use t h e  formulas f o r  t h e  case of an  e l a s t i c  base wi th  one degree of free
dom. Thus, this can be done whenever t h e  natural longi tudina l  and la teral  vibra
t i o n  frequencies of t h e  he l icopter  on an  e l a s t i c  landing gear  (see Sect.5) are 
far apar t .  

It i s  of i n t e r e s t  t o  give a f e w  simple r e su l t s ,  obtained i n  t h e  s t a b i l i t y  
theory f o r  a r o t o r  on an e l a s t i c  support with two degrees of freedom i n  t h e  
s p e c i a l  case of a so-called i so t rop ic  e l a s t i c  support when t h e  s t i f f n e s s  and 
damping of t h e  e l a s t i c  attachment of t h e  casing t o  t h e  base are i d e n t i c a l  i n  both 
d i rec t ions  (Ox and O z ) .  I n  this case, t h e  e l a s t i c  and damping proper t ies  of t h e  
base are i d e n t i c a l  i n  a l l  d i rec t ions  p a r a l l e l  t o  t h e  plane XOZ. Therefore, such 
a base o r  support i s  ca l led  i so t ropic .  

Let  t h e  s t i f f n e s s  and damping of t h e  i so t rop ic  base, i d e n t i c a l  i n  d i r ec t ions  
of t h e  Ox- and Oz-axes, be characterized respec t ive ly  by t h e  coef f ic ien ts  c and 
k, so t h a t  t h e  forces  P, and P, applied t o  t h e  base are r e l a t ed  with t h e  cor
responding displacements x and z by t h e  formulas 

d x  

p =- C Z - I C - .dz J 
d t  

It i s  found t h a t ,  i n  this case, the re  can a l s o  be i n s t a b i l i t y  of t h e  rot0.r 
on a n  e l a s t i c  base. Here t h e  unstable range i s  c lose  t o  t h e  same value of w = 
= w,, as before: 
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-- 

1 + 1/ vi+X0(1-4) 
(1.49)Wcr =Po 1 - v i  

A t  F b o  = 0,  j u s t  as before, we ob ta in  a simpler formula: 

-. -- 1-Vo (1.50) 

-
I n  this case, t h e  quant i t ies  po, Pb,, and v o  are determined, as usual, by 

t h e  formulas: 

Analogous formulas are obtained f o r  determining t h e  required damping, but 
t h e  required damping i n  this case i s  g rea t e r  by a f a c t o r  of 2. 

The formula f o r  t h e  required damping a t  which t h e  i n s t a b i l i t y  zone con- /273
t r a c t s  t o  a point ,  has t h e  form 

The quant i t ies  E and A are determined, as before,  by eqs.(1.26) and (1.32). 

Sect ion 2. $ t e r a l  Vibrations of a Single-Rotor Helicopter 

1. __Preliminary Comments 

In  ca lcu la t ing  t h e  v ibra t ions  of a hel icopter  on an  e l a s t i c  landing gear we 
can regard t h e  fuselage as a pe r fec t ly  s o l i d  body at tached t o  a s t a t iona ry  base 
(ground) by means of a system of e l a s t i c  elements. 

The ca l cu la t ion  of ground resonance of a hel icopter ,  a s  Will be shown below, 
can be reduced t o  t h e  ca lcu la t ion  of a r o t o r  on an  e l a s t i c  base, examined i n  
Sect ion 1. The i n i t i a l  da ta  for such a ca l cu la t ion  ( cha rac t e r i s t i c s  of t h e  
e l a s t i c  base) are derived from a preliminary ca lcu la t ion  of na tu ra l  v ibra t ions  
of a r i g i d  fuselage on an e l a s t i c  landing gear. 

A hel icopter  regarded as a s o l i d  body on an e l a s t i c  landing gear has six 
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degrees of freedom. However, s ince  t h e  fuselage,  as a ru l e ,  has a plane of sym
m e t r y ,  t h e  longi tudina l  and lateral na tu ra l  v ibra t ions  of t h e  hel icopter  can be 
examined independently of each other .  

For a s ingle-rotor  hel icopter  wi th  an  elongated fuselage,  t h e  lateral vi
bra t ions  are general ly  calculated from t h e  viewpoint of ground resonance. I n  
t h e  presence of longi tudina l  vibrat ions,  t he  damping margin f o r  eliminating 
ground resonance i s  appreciably grea te r .  Therefore, t o  ca lcu la te  ground reso
nance of a s ingle-rotor  hel icopter  it su f f i ces  t o  examine only lateral  v ibra t ions  
( see  a l s o  s e c t  .5). 

When examining t h e  lateral vibrat ions,  we must t ake  i n t o  account three de
grees  of freedom: 

1)lateral  displacement of t h e  center  of g rav i ty  of t h e  hel icopter ;  
2) r o t a t i o n  of t h e  hel icopter  about t h e  longi tudina l  axis ( ro l l i ng ) ;
3) r o t a t i o n  of t h e  hel icopter  about t h e  v e r t i c a l  axis (yawing). 

Generally speaking, t h e  he l icopter  v ibra t ions  corresponding t o  these  three 
degrees of freedom cannot be regarded as independent. For exanple, on la teral  
displacement of t h e  center  of g rav i ty  of a hel icopter ,  fo rces  are generated t h a t  
cause ro l l ing ,  e t c .  

However, i n  a s ingle-rotor  he l icopter  f o r  which t h e  longi tudina l  fuselage 
dimensions are r e l a t i v e l y  la rge  i n  comparison wi th  i t s  lateral dimensions ( t h i s  
need not be �he case, e.g., f o r  he l icopters  of coaxia l  and side-by-side con
f igura t ions) ,  t h e  yawing v ibra t ions  are weakly r e l a t e d  wi th  lateral  v ibra t ions  
of t h e  hel icopter  and wi th  i t s  r o t a t i o n  about t h e  longi tudina l  axis.  Therefore, 
i n  f i rs t  appro.dmation, t h e  yawing v ibra t ions  f o r  a s ingle-rotor  hel icopter  can 
be regarded as independent. Furthermore, during yawing v ibra t ions  of a hel i 
copter t h e  displacements of t h e  center  of t h e  r o t o r  i n  t h e  plane of r o t a t i o n  are 
r e l a t i v e l y  small ( i n  comparison wi th  la teral  v ibra t ions)  so tha t ,  as a ru le ,  
yawing v ibra t ions  f o r  a s ingle-rotor  hel icopter  are not dangerous so  far as 
ground resonance i s  concerned. A s  we Will see la ter  (Sect.S), such v ibra t ions  
are dangerous f o r  hel icopters  of fore-and-aft and side-by-side configurations.  

Thus, i n  studying t h e  lateral v ibra t ions  of a s ingle- ro tor  hel icopter  it is  
su f f i c i en t ,  i n  first approximation, t o  consider t h e  fuselage as a body wi th  two 
degrees of freedom: 

1)lateral displacement of t h e  center  of g rav i ty  of t h e  hel icopter ;  
2) r o t a t i o n  of t h e  he l icopter  about t h e  longi tudina l  axk ( r o l l i n g ) .  

With such s impl i f ica t ions ,  t h e  problem of n a t u r a l  la teral  vibrat ions of ,&& 
a hel icopter  can be reduced t o  t h e  problem of natural v ibra t ions  of a two-dimen
s i o n a l  so l id  body e l a s t i c a l l y  attached i n  i t s  own plane (Fig.3.16). 

2. 	 Late ra l  and Angular S t i f fnes s  of knd i rw  Gear. 
Flexural  Center 

Let a r i g i d  body A, simulating a hel icopter  fuselage,  be mounted t o  a sta
t iona ry  base by means of a system of spr ings (Fig.3.16). We s e l e c t  a f ixed  co
ord ina te  system yc,z, d i r ec t ing  t h e  axis coy along t h e  axis  of spmetry of t h e  
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body and t h e  a x i s  coz along t h e  a x i s  of t h e  hor izonta l  spr ings c,l. 

If, t o  t h e  body A, a force  P, p a r a l l e l  t o  t h e  ax is  coz a t  a dis tance y from 
t h e  poin t  co i s  applied, then  t h e  deformations of t h e  spr ings Will cause t h e  
body A t o  be displaced i n  i t s  own plane so that i t s  axis of synadetry W i l l  come 

t o  occupy a c e r t a i n  pos i t i on  CAY' .  
Let  us denote by cp t h e  angle of rota
t i o n  of t h e  ax is  of symmetry of t h e  
body (angle  of roll) and by z t h e  dis
placement of t h e  poin t  c o  (segment 
COCA)  

Let  t h e  spr ings have l i n e a r  char
a c t e r i s t i c s .  Then, as i s  known, a 
poin t  of appl ica t ion  of force  i s  al
ways found on t h e  ax is  coy (or a value 
of y)  a t  which t h e  angular displace
ment cp of t he  body W i l l  be equal t o  
zero, meaning t h a t ,  upon appl ica t ion  
of t h e  force  P, a t  this point ,  t h e  
body Will undergo purely forward d is 
placement (cp = 0) .  We W i l l  c a l l  such 
a poin t  t h e  f l e x u r a l  center  of t h e  
shock absorber system. 

If, t o  t h e  body A, a couple With 
a moment M is applied, then  t h e  body 
W i l l  undergo only angular displace-

Fig .3 .lh Diagram of E la s t i c  Mount
ing of Helicopter. 

ment - turning about t h e  flexural center .  

It i s  easy t o  see that, f o r  t h e  simplest  shock absorber system, as it i s  
shown i n  Fig.3.16, t h e  center  of g rav i ty  W i l l  be located a t  t h e  poin t  c0 .  The 
p o s i t i o n  of t h e  center  of grav i ty  of t h e  shock absorber system i s  conveniently 
characterized by t h e  magnitude of t h e  d is tance  e from t h e  center  of grav i ty  c of 
t h e  body t o  t h e  center  of g rav i ty  c 0 .  

If, t o  t h e  body, a force  P, d i rec ted  along t h e  ax is  of symmetry coy i s  ap
p l i ed ,  then  t h e  body W i l l  undergo only forward displacement y along t h e  ax is  coy. 
Since t h e  cha rac t e r i s t i c s  of a l l  e l a s t i c  elements of a shock absorber system are 
l inea r ,  t h e  forces  P,, P, and t h e  moment M of t h e  couple are l i n e a r l y  r e l a t e d  
wi th  t h e  corresponding displacements y, z, and cp of t h e  body A. 

Let this r e l a t i o n  be expressed by t h e  formulas: 

We Will c a l l  t h e  quant i t ies  cy ,  c,, and cy, respect ively,  t h e  coe f f i c i en t s  
of v e r t i c a l ,  lateral, and angular s t i f f n e s s  of t h e  shock absorber system. 



The e l a s t i c  p rope r t i e s  of t h e  shock absorber l eg  are f u l l y  determined by 
four parameters: p o s i t i o n  of t h e  flexural center  (e) and coe f f i c i en t s  of stiff
ness c y ,  c,, and ccp-

For t h e  simplest  shock absorber system depicted i n  Fig.3.16, t h e  coef- /275
f i c i e n t s  of s t i f f n e s s  of t h e  shock absorpt ion can be determined by means of t h e  
formulas : 

where 
c: and c i  = 	coe f f i c i en t s  of s t i f f n e s s  of t h e  v e r t i c a l  and horizontal  

spr ings ; 
2a 	 = dis tance  between t h e  axes of t h e  v e r t i c a l  springs (wheel 

t r ack ) .  

n) 

Fig .3 . l7 Various Landing Gear Configurations. 
a - Pyramidal; b - With v e r t i c a l  s t r u t s .  

The types of hel icopter  landing gears  are mainly of two var iants :  
1)pyramidal landing gear;  
2) landing gear  with v e r t i c a l  s t r u t s .  

The e l a s t i c  shock a.bsorber systems corresponding t o  these  two types of land
ing  gear  are depicted i n  Fig.3.17, a and b. 

The pneumatic t i res  i n  this scheme can be considered pe r fec t ly  r ig id ,  aLld 
t h e i r  e l a s t i c i t y  can be simulated by s p e c i a l  spr ings wi th  s t i f f n e s s e s  cpy” and 
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cPZn, equal, respect ively,  t o  t h e  v e r t i c a l  and lateral s t i f f n e s s  of t h e  pneumatic
t ire.  

The coef f ic ien t  of v e r t i c a l  s t i f f n e s s  of t h e  t i r e  can be determined from 
the  diagram of s t a t i c  t i r e  compression, which is always available i n  t h e  catalog 
of wheels and represents  t h e  r a t i o  of t h e  magnitude of t h e  force  compressing t h e  
t i r e  toward t h e  r i m  surface t o  t h e  magnitude of t h e  corresponding t i r e  compres
sion. The la teral  s t i f f n e s s  of t h e  t i re ,  i f  there  are no da ta  avai lable ,  can 
a l s o  be determined experimentally. The magnitude of la teral  s t i f f n e s s  of t h e  
t i r e  must a l s o  be k n m  f o r  ca lcu la t ions  of shinany. Therefore, i f  shimmy has 
been calculated f o r  a given wheel, t h e  magnitude of t h e  lateral  s t i f f n e s s  w i l l  be 
known. For an  approximate determination of la teral  s t i f f n e s s  of a t i r e  we can 
a l s o  use Table 3.1. 

Type 
T i r e  determined by the  diagram of s t a t i c  compression 

of t h e  s t r u t  which gives  t h e  force  P ac t ing  on 
t h e  s t r u t  as a funct ion of t h e  s t roke  s of the  

Arched 0.7-0.9 s t r u t .  
Semi-balloon 0.4-0.64 

High-pressure 0.3-0.4 
I n  ca lcu la t ing  small vibrat ions,  t he  s t r u t  

can be replaced by a n  equivalent l i n e a r  e l a s t i c  

of Pneumatic cp/cr 
l i n e a r  e l a s t i c  element, and i t s  cha rac t e r i s t i c  i s  

where sSt  i s  the  standing compression of t h e  shock absorber. 

I n  a landing gear system with v e r t i c a l  s t r u t s  (Fig.3.17,b) t h e  flexural 
center  of shock absorption i s  always s i tua t ed  a t  t h e  poin t  co  on t h e  ground sur
face.  The coef f ic ien ts  of s t i f f n e s s  of such a landing gear a r e  determined by 
eqs.(2.4) where c i  and c! are equal, respect ively,  t o  

For a pyramidal landing gear ( Fig .3 4.1,a) ,  t h e  f l e x u r a l  center  i s  always 
above t h e  ground surface,  and i t s  pos i t i onmus t  be calculated by s p e c i a l  formu
las which we W i l l  give below. 

The pyramidal landing gear  i s  a s p e c i a l  vers ion of a more co l e x  landing 
gear  system developed by t h e  B r i t i s h  B r i s t o l  Aeroplane Co. (Ref .33  and depicted 
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(schematically) i n  Fig.3.18. T h i s  landing gear  system d i f f e r s  from the  pyrami
d a l  landing gear by t h e  presence of a rocker AB and a s p e c i a l  horizontal  spr ing 
of s t i f f n e s s  c a p .  I n  this system, the  height of t h e  p o s i t i o n  of t h e  f l e x u r a l  
cen ter  co (i.e.,  t h e  quant i ty  e) can be varied by se l ec t ing  a c e r t a i n  spr ing con
s t a n t  c a p .  I n  pa r t i cu la r ,  by choosing a c e r t a i n  value of cSp it i s  poss ib le  t o  
obtain a pos i t i on  a t  which t h e  f l e x u r a l  cen ter  of t h e  shock absorber system co
inc ides  wi th  t h e  center  of g rav i ty  of t h e  hel icopter .  I n  this case, as will be 
seen  later,  t he re  i s  no coupling between t h e  r o l l i n g  v ibra t ions  and the  la teral  
v ibra t ions  of t h e  hel icopter ,  which permits obtaining good hel icopter  character
i s t i c s  with respect t o  ground resonance (see Sect .4,Subsect. 3). 

For t he  landing gear  system dep5cted.i.n Fig.3.18, we can write t h e  follow
ing  formulas which can be derived e a s i l y  by the usua l  methods of s t r u c t u r a l  
mechanics : 

1 cy = 
1 1 

( G p )  + (w) ’+ (5) 

m 
(2.10) 


where 
= distance between ground surface and t h e  po in t  F of i n t e r sec t ion  of 

the  axes of t h e  shock s t r u t s  ( see  Fig.3.18); 
1 = distance between shock absorber ax is  and t h e  po in t  A; 

1, = distance between t h e  poin5s F and A; 
1, = distance between t h e  poin t  F and hel icopter  center  of gravi ty .  

A s  a spec ia l  case, t h e  derived formulas contain t h e  formulas f o r  calcu
l a t i n g  t h e  pyramidal landing gear (see Fig.3.17,a). To obta in  formulas of t h e  
pyramidal landing gear, it i s  necessary t o  set  cap  = i n  e q ~ ~ ( 2 . 7 )and (2.8). 

3. Natural  Lateral  Vibrations of a Helicopter 

Let  us now t u r n  t o  Fig.3.16. I n  studying t h e  la teral  vibrat ions,  l e t  us 
use, f o r  t h e  body A, two degrees of freedom corresponding t o  the  coord iwtes  cp 
and z .  We w i l l  impose an add i t iona l  l imi t a t ion  on t h e  motion of t h e  body A: We 
will s t i p u l a t e  that t h e  po in t  0,  belonging t d  t h e  body A a t  a dis tance ak from 
t h e  center  of g rav i ty  of t he  body remains s ta t ionary .  Then, t he  body A w i l l  have 
one degree of freedom - r o t a t i o n  about t he  poin t  0,. The equation of natural v i 
bra t ions  of the  body A, a t tached i n  this manner, w i l l  have t h e  form 

(2.11) 



where 
I,, = moment of i n e r t i a  of t h e  body r e l a t i v e  t o  the  poin t  0,: 

lok  =f,+ma:; (2.12) 

I, = moment of i n e r t i a  of t h e  body r e l a t i v e  t o  t h e  center  of grav i ty ;  
m = m a s s  of t h e  body. 

The coef f ic ien t  cok represents  
t h e  angular s t i f f n e s s  of t h e  shock 
absorber system upon r o t a t i o n  of /278
t h e  body A r e l a t i v e  t o  t h e  po in t  0,. 
The quantity cok i s  r ead i ly  deter
mined i f  t h e  p o s i t i o n  of t h e  f lex
ural  center  co of t h e  shock ab
sorberand  i t s  angular s t i f f n e s s c c p  
and lateral s t i f f n e s s  c, are 
known. 

Upon r o t a t i o n  of t he  body 
through an angle cp r e l a t i v e  t o  t h e  
poin t  o k ,  t h e  flexural center  i s  
displaced by t h e  amount 

z=cp (ah-e) . (2.13) 

I n  this case, a force  P, = c,z 
d i rec ted  t o  t h e  l e f t  and a couple 
of moment M = cYcp d i rec ted  counter-

Fig.3.U Landing Gear Scheme of t h e  clockwise w i l l  be applied t o  t h e  
Eit-istol 192 Helicopter. 	 body a t  the  f l e x u r a l  center .  The 

moment of these  forces  r e l a t i v e  t o  
t h e  poin t  0 ,  i s  

M=P, ( U k - e > + C , ~ = [ [ C , $ C , ( O k - e ! ' l ( p .  

Hence, we obta in  t h e  f o l b w i n g  formula f o r  t h e  angular s t i f f n e s s  cok:  

The natural v ib ra t ion  frequency of t h e  body wi th  t h e  f ixed poin t  0, i s  

C 

*&

P k = r  % 

Ok 

o r  



During v ibra t ions  of t h e  system at  t h e  poin t  o k ,  a r eac t ion  force  R arises 
which w i l l  depend on t h e  pos i t i on  of t h e  poin t  0, If we could s e l e c t  a po in t  
of attachment 0, (a  value of ak )  f o r  which R = 0, this would mean t h a t  such a 
po in t  0, i s  t h e  natural v ib ra t ion  node of a free system wi th  a movable poin t  o k ,  
and t h e  corresponding frequency Pk i s  t h e  natural v ib ra t ion  frequency of a f r e e  
system. 

The r eac t ion  fo rce  R i s  r ead i ly  determined: During vibrat ion,  t h e  body A 
i s  loaded by t h e  i n e r t i a  force  FfiappEed a t  t h e  center  of g rav i ty  and p a r a l l e l  
t o  t h e  a x i s  O,, 

8"=-mi,=-m"y a k  7 

and a l s o  by t h e  couple of i n e r t i a  forces .  The forces  exerted by the  shock ab
sorp t ion  on t h e  body are a l s o  reduced t o  the  hor izonta l  force  

P, =c,z =c,cp (+-e) 

and t o  t h e  couple. Therefore, p ro jec t ing  a l l  forces  ac t ing  on t h e  body onto the  
axis coz, we obta in  

If 


t h e n  

R=[cz (a,-e) -mpia,] yoCOS pkt .  

Equating this expression t o  zero yields 

cz (ak-e)-mpia,= 0. 

From this, we ob ta in  t h e  following formula r e l a t i n g  t h e  natural frequency /279 
of t h e  system with t h e  po.sit ion a, of t h e  vibration.node: 

ea, = 
1 -(z)2 (2.16) 

' 

where 

Excluding t h e  quant i ty  pk from eqs.(2.15) and (2.16), we obtain a quadratic 
e m a t i o n  f o r  determining t h e  quantity T h i s  quadratic equation always has 
two r e a l  roo ts  a l  and a2,  which correspond t o  the  two natural v ibra t ion  over
tones of t h e  system. For each overtone, we ob ta in  a c e r t a i n  na tu ra l  v ib ra t ion  
frequency pk which, a t  a known ak ,  can be determined from eqs.( 2.16) o r  (2.15). 

To determine t h e  natural v ibra t ion  frequencies pk  and t h e  corresponding 
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Fig.3.19 Graphs for Determining Fig.3.20 Graphs for Determining 
t h e  Natural  Helicopter t h e  Posi t ion of Vibration 

Frequencies. Nodes. 

p r - 215cyc/min" I I t YI I  I Vibration node 
tone 

J of f i r s t  overtone 

Fig.3.21 	 Charac ter i s t ic  Vibration Modes of t h e  
First and Second Overtones. 

C 

Fig.3.22 Diagram of 
a Linear E la s t i c  Ele
ment with Damping. 
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quarrtities ak, it i s  converLent t o  reduce a l l  formulas t o  a dimensionless form, 
introducing t h e  notat ions : 

-
a , = eak .9 ( 2 3 )  


The f i n a l  formulas f o r  determining a, (k = 1, 2) and Pk (k  = 1, 2) can be 
wr i t ten ,  i n  such notations,  i n  t h e  form 

(2.22) 

where 

(2.23) 

>,=I/1-=;1 ( a t  R = l ,  2). (2.24)
=k 

For convenience of ca lcu la t ing  t h e  pos i t i ons  of t he  na tu ra l  v ibra t ion  nodes 
of t h e  first and second harmonics and t h e  corresponding v ib ra t ion  frequencies, 
Figs.3.19 and 3.20 show graphs calculated by means of eqs.(2.22), (2.23), and 
(2.24) 

The lower of t h e  frequencies p1 and pz Will be ca l led  t h e  frequency of t h e  
first v ib ra t ion  overtone w h i l e  t h e  higher frequency W i l l  be t h a t  of t h e  second 
overtone. The v ib ra t ion  node of t h e  first overtone i s  always below the  center  
of g rav i ty  of t h e  he l icopter  (al> 0) w h i l e  t h e  v ib ra t ion  node of t he  second 
overtone i s  always above t h e  center  of g rav i ty  (a, < 0) .  

Figure 3.21 shows t h e  cha rac t e r i s t i c  v ib ra t ion  modes of t h e  first and second 
harmonics for a single-rotor  hel icopter  wi th  a pyramidal landing gear. 

4. Determination of D a m p i n g  Coeff ic ients  

The damping of v ibra t ions  ( i  .e. , absorption of energy .during.v ibra t ions)  i s  
general ly  small and can be neglected i n  determinations of t he  na tu ra l  frequencies 
and pos i t ions  of t h e  nodes ( a s  was done i n  Subsect .3). 

Damping of v ibra t ions  takes  p lace  mainly i n  t h e  shock s t r u t s  of t h e  land- /281 
ing  gear. Damping i n  pneumatic t ires can be disregarded i n  first approximation. 

L e t  us examine t h e  system depicted i n  Fig.3.Z. kt c e r t a i n  l i n e a r  e l a s t i c  
elements with damping be i n s t a l l e d  i n  p lace  of t h e  spr ings.  Such an element i s  
schematically shown i n  Fig.3.22. Let t h e  force P ac t ing  on this element and its 
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displacement s ( s t roke  of t h e  element) be connected by t h e  r e l a t i o n  

We w i l l  c a l l  t h e  quant i t ies  c and k, respect ively,  t h e  coe f f i c i en t s  of 
s t i f f n e s s  and damping of t h e  e l a s t i c  element. 

We w i l l  denote t h e  coe f f i c i en t s  of s t i f f n e s s  and damping of t h e  e l a s t i c  
elements i n  the  system shown i n  Fig.3.16 by c l ,  c:, k:, and k:, respectively?'. 
The equation of v ibra t ions  of t h e  body A r e l a t i v e  t o  t h e  node can be wr i t t en  
analogously t o  eq.(2. l l )  i n  t h e  form 

fOk(P -tko,b+ CORY =0, (2.26) 

where t h e  quant i t ies  I,, and c,, are determined from eqs.(2.12) and ( 2 . a )  and 
t h e  quant i ty  kok,  by t h e  formula 

ko, =2Rka2+2k: (ak-e)2. (2.27) 

We w i l l  c a l l  this quant i ty  t h e  angular coef f ic ien t  of damping of t h e  shock 
absorber system upon r o t a t i o n  of t h e  body r e l a t i v e  t o  t h e  v ibra t ion  node 0,. 

Equation (2.26) can be w r i t t e n  i n  t h e  form 

Y4- 2 4 4  +PtY =0 ,  (2.28) 


where Pk ( k  = 1, 2) i s  t h e  frequency of t h e  k-th v ib ra t ion  overtone, while t h e  
damping coe f f i c i en t  nk i s  determined by t h e  formula 

The natural v ibra t ions  of t h e  k-th overtone of t h e  hel icopter  can be de
scr ibed approximately by t h e  l aw:  

where 
cpo = ini t ia l  angle of def lec t ion ;  

4 = phase angle.  

The natural v ib ra t ion  frequency Pk can be taken as approximately equal t o  
t h e  natural v ib ra t ion  frequency of t h e  k-th overtone, calculated without con-

'' The manner of determining t h e  coe f f i c i en t  k: and k: W i l l  be shown i n  Subsec
t i o n  5 of this Section, and a l s o  i n  Subsections 1 and 2 of Section 3. 
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s i d e r a t i o n  of danqsing . 
In order  t o  ca l cu la t e  t h e  quan t i t i e s  k: and k,’ f o r  a spec i f i c  landing gear 

system (see F’ig.3.17,a and b) it i s  necessary t o  determine first t h e  e f f e c t  of 
t h e  system formed by t h e  shock s t r u t  and t h e  t i r e .  

Combined Acti-0~n-G t h e  .s;Vs&em Shock.~ Strut-P.ne:wa$i.c. T i r e  

We w i l l  d i scuss  here a landing gear system wi th  v e r t i c a l  s t r u t s  (see 
F’ig.3.17,b). The t i re -o leo  combination represents  two spr ings  with s t i f f n e s s e s  
c B a 8and cYpn connected i n  sequence. 

Let us examine t h e  work done by such a system f o r  t h e  case i n  which t h e  1282 
shock absorber has damping. Such a system i s  shown i n  Fig.3.23. Let t h e  shock 
absorber have a l i n e a r  cha rac t e r i s t i c  analogous t o  eq.( 2.25) : 

After der iving t h e  equations of motion of t h e  t i re -o leo  system, it i s  easy 
t o  show t h a t ,  wi th  t h e  given harmonic l a w  of 
v a r i a t i o n  of i t s  t o t a l  s t roke  s with a fre
quency p, t h e  force  P ac t ing  on t h e  shock ab
soroer  i s  expressed by t h e  formula 

ds 
P=ceps+keq ’ (2.32) 

Fig.3.23 Schematic Diagram of where ses and k,, are t h e  cha rac t e r i s t i c s  of 
Tire-Oleo System. 	 some e p v a l e n t l y  l i n e a r  shock absorber of 

t h e  conventional type (Fig.3.22) and can be 
determined by means of t h e  formulas : 

Thus, i n  v ib ra t ion  ana lys i s  a landing gear system wi th  v e r t i c a l  s t r u t s  (see 
Fig.3.17,b) can be replaced by t h e  system shown i n  F’ig.3.16, i n  which t h e  char
a c t e r i s t i c s  of e l a s t i c i t y  and damping of v e r t i c a l  spr ings are selected accord
i n g  t o  eqs.(2.33) and (2.34). A t  k B e 8= 0, eq.(2.33) y i e l d s  a value of c, 
equal t o  t h e  value of c i  obtained by t h e  second equation of t h e  system (2.8). 
Consequently, i n  t h e  presence of damping, eq.(2.6) - general ly  speaking - does 
not hold. However, f o r  an approximate ca lcu la t ion  of natural frequencies we can 
use eq. (2.6) f o r  determining c:, s ince  t h e  value of c,, determined by eq.( 2.33) 

5 



i s  close t o  t h e  value of c i  found from eq.(2.6). After determining t h e  natural 
frequency p, t h e  value of c: can be ref ined by eq.(2.33), followed by ref ine
ment of t h e  ca lcu la t ion  of t h e  frequency p.  

For an  exact ca lcu la t ion  of t h e  natural frequencies we can use t h e  method 
of successive approAmations ( i n  prac t ice ,  t h e  above cor rec t ion  equivalent t o  
t h e  first approximation i s  su f f i c i en t )  or else t h e  following method: Prescrib
ing  t h e  values of c: i n  t he  i n t e r v a l  

w e  f i n d  t h e  natural frequencies and then, from eq.(2.33), we f i nd  f o r  t h e  given 
ce 9 = c i  t he  corresponding value of ka.  A s  a r e s u l t  of this calculat ion,  t h e  
graph of t h e  natural v ib ra t ion  frequencies of t h e  system can be p lo t t ed  as a 
funct ion of k s , a .  Calculations show t h a t  t h e  natural v ibra t ion  frequencies and 
modes depend l i t t l e  on t h e  quant i ty  ka. a . Therefore, i n  p r a c t i c a l  appl ica t ion
it i s  su f f i c i en t  t o  carry out t h e  above-described approximate ca lcu la t ion  with a 
subsequent s ing le  refinement of t h e  frequencies.  

To ca lcu la te  t h e  damping coef f ic ien t  n, [eq.(2.29)] we can set, neglect- /283
i ng  t h e  t i r e  damping, i n  eqs.(2.27): 

For a pyramidal landing gear, t h e  damping of vibrat ions can be calculated 
approximately by t h e  same method; however, i n  ca lcu la t ing  keq ,  t h e  quant i t ies  

c a s *  and k a e a  i n  eq.(2.34) must be subs t i tu ted  
by t h e  values of t h e  so-called s t i f f n e s s  and 
damping of t h e  shock absorber reduced t o  the  
t i r e  ci:: and k;::, determined by means of t h e  
formulas : 

Fig .3 .& Equivalent Damping 
as a Function of Shock where 1 i s  t h e  d is tance  between t h e  shock ab-

Absorber Damping. 	 sorber  a x i s  andthe  poin t  A (see Figs.3.18 and 
3.17,a) of t h e  in t e r sec t ion  of t h e  axes of t h e  
lower inc l ined  s t r u t s .  

Let us discuss  i n  more d e t a i l  t h e  dependence of t h e  equivalent damping co
e f f i c i e n t  ke, of t h e  t i re -o leo  system on t h e  quant i ty  ka.  a . Figure 3 .& gives  
t h e  graph of this dependence. A s  indicated there ,  t h e  quant i ty  kC Q  increases  
wi th  increasing kB.a only up t o  a c e r t a i n  value ks. a = k",: at w h c h  mazhum 
damping kEix is  a t ta ined .  Upon f u r t h e r  increase  i n  ks. a ,  the  damping of t h e  
t i re -o leo  system decreases. 



From eq.( 2.34) it i s  easy t o  obta in  t h e  expression f o r  t h e  optimal value 
of k::: : 

(2.36) 

and (2.34) give t h e  corresponding valuesFor this value of k,.,, e q ~ ~ ( 2 . 3 3 )
of c : ~  and k;agx : 

We see  from the  last formula that t h e  maximum obtainable  value of k t t x  i s  
Cs .  agrea te r  t h e  smaller t h e  r a t i o  -and t h e  l a rge r  cYpn. Therefore, from the  
cxn 

viewpoint of damping of l a t e r a l  he l icopter  vibrat ions,  t he  t i r e  should be as 
r i g i d  as possible  and t h e  shock absorber should be as l i t t l e  r i g i d  as possible .  
A t  improper se l ec t ion  of t h e  landing gear cha rac t e r i s t i c s  (g rea t e r  r e l a t i v e  

C
s t i f f n e s s  of t h e  shock absorber 8.8) it may happen t h a t  ground resonance is  

Y 
CP n 

impossible t o  eliminate no matter how far  t h e  shock absorber damping is  in
creased. 

6 .  	Reduction of t he  Problem t o  Calculation of a Rotor 
on an  E las t i c  Base 

After ca lcu la t ing  t h e  na tu ra l  vibrat ions of t h e  hel icopter  on t h e  ground, 
i.e., after determining frequencies, pos i t i on  of t h e  v ib ra t ion  nodes, and damp
ing  coef f ic ien ts  for both natural v ibra t ion  overtones, i t  becomes poss ib le  t o  
ca lcu la te  ground resonance i n  first approximation by reducing t h e  problem t o  
ca lcu la t ion  of a r o t o r  on a n  e l a s t i c  base. 

It would be poss ib le  t o  ca r ry  out an  exact ca l cu la t ion  of ground resonance 
by deriving the  equations of motion of t he  r o t o r  blades and of t h e  he l icopter  
body i n  a manner similar t o  that used i n  Sect ion 1 f o r  a r o t o r  on a n  e l a s t i c  
base. Then, t h e  order of t h e  cha rac t e r i s t i c  equation would be higher t h e  more 
degrees of freedom of t he  hel icopter  on an e l a s t i c  landing gear  are taken i n t o  
account. However it would be necessary i n  each case t o  perform cumbersome cal
culat ions.  

An approximate ca lcu la t ion  based on reducing t h e  problem t o  a rotor on a 
f l ex ib l e  support pe r rd t s  using establ ished d a t a  obtained for a r o t o r  on a n  elas
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t i c  base. The accuracy of such a ca lcu la t ion  i s  adequate f o r  p r a c t i c a l  applica
t ion .  

The essence of such a n  approximate ca lcu la t ion  i s  as follows: An indiv idua l  
ca lcu la t ion  of ground resonance i s  ca r r i ed  out f o r  each natural v ibra t ion  har
monic of t he  hel icopter  on t h e  ground; i n  this, t h e  hel icopter  casing i s  C O ~ 
s idered as a body with one degree of freedom - r o t a t i o n  about t h e  corresponding 
v ibra t ion  node. 

The equation of motion of a he l icopter  wi th  a fixed v ib ra t ion  node has t h e  
form 

The right-hand s ide  of this equation represents  t h e  moment of t h e  force  P 
due t o  t h e  v ibra t ing  r o t o r  blades r e l a t i v e  t o  t h e  v ibra t ion  node of t h e  harmonic 
i n  question. The quant i ty  h is  t h e  d is tance  from t h e  plane of t h e  r o t o r  t o  the  
center  of g rav i ty  of t h e  hel icopter .  

We then  introduce a new variable x = rp(h + a ) representing t h e  degree of 
displacement of t h e  r o t o r  center .  Equation (2.39r can now be r ewr i t t en  i n  a 
form analogous t o  t h e  equation of motion [eq.(1.2)1 of a n  e l a s t i c  base: 

where t h e  quant i t ies  Gq,  kEq, c e q  represent t h e  mass, damping, and s t i f f n e s s  of 
t h e  equivalent e l a s t i c  base and are calculated by means of t h e  formulas: 

Thus, t h e  problem reduces t o  t h e  ca l cu la t ion  of a r o t o r  on an  equivalent e l a s t i c  
base whose cha rac t e r i s t i c  is  determined from eqs.(2.41), (2.42), and (2.43). 

It i s  easy t o  demonstrate that, f o r  ca lcu la t ing  ground resonance by means 
of t h e  formulas given i n  Section 1, we require only three cha rac t e r i s t i c s  of t h e  
e l a s t i c  base m, = me q ,  no = nk [see eq.(2.8)1,  and p, = Pk, which are obtained 
from calculat ions of t h e  natural lateral v ibra t ions  of t h e  helicopter.  

Thus, f o r  each na tu ra l  v ib ra t ion  overtone of t h e  hel icopter  on a n  e l a s t i c  /285
landing gear, we car ry  out a n  approximate ca lcu la t ion  

on a flexible support (Sect .1) 
of ground resonance by 

means of t h e  formulas derived f o r  a r o t o r  I n  
such a calculat ion,  we can determine t h e  boundaries of t h e  instabil i ty zones and 
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t h e  magnitudes of t h e  damping coe f f i c i en t s  of t h e  blade and landing gear, which 
are required f o r  e l iminat ing instabil i-Ly wi th  respect  t o  each v ibra t ion  over
tone. 

7 Analysis of t h e- -Resul ts  off'Croqd-Re.sonance- C.alc&..t$sg-

The r e s u l t s  of ground resonance ca lcu la t ions  are conveniently represented 
as a diagram of sa fe  rpm. Figure 3.25 shows such a diagram f o r  t h e  Mi-& heli
copter.  The absc issa  gives  t h e  ro to r  rpm w h i l e  t h e  ord ina te  shows t h e  r o t o r  
t h r u s t  T. 

The v ibra t ion  frequencies of t h e  hel icopter  o n  t h e  ground are calculated i n  
two var ian ts  : 

1)shock s t r u t s  of t h e  landing gear operat ive;  
2) shock s t r u t s  inoperat ive.  
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Fig .3.25 Diagram of Safe Revolutions f o r  t h e  M i - 4  
Helicopter. 

w 1  - Frequency of first v ibra t ion  overtone with s t r u t s  inopera
t i v e ;  w, - Frequency of second v ibra t ion  overtone with s t r u t s  
inoperat ive;  v$- and w z  - Frequency of first and second overtones 

with s t r u t s  operat ive.  

T h i s  must be done s ince  t h e  shock s t r u t s  of t h e  landing gear  operate only 
when t h e  compressive force  of t h e  s t r u t  i s  g rea t e r  than  t h e  so-called force  of 
pret ightening of t h e  shock absorber. Therefore, a t  a c e r t a i n  ( c r i t i c a l )  value 
of t h r u s t  T = T,, of t he  ro tor ,  t he  force  compressing t h e  s t r u t  becomes less than  
the  force  of pret ightening of t h e  shock absorber and t h e  s t r u t  ceases t o  operate. 
A t  T > T,,, t he  shock absorber s t r u t s  behave as r i g i d  rods, and t h e  hel icopter  
i s  ab le  t o  rock only as a consequence of e l a s t i c i t y  of t h e  t ires which are vir
t u a l l y  devoid of damping. The unstable range of t h e  hel icopter  with inoperat ive 
s t r u t s  .is usual ly  impossible t o  eliminate and i s  always present  i n  t h e  diagram 
of safe rpm (this range i s  hatched i n  Fig.3.25). 

The boundaries of t h e  i n s t a b i l i t y  zones ard t h e  zone of poss ib le  values of 
ro to r  t h r u s t  T and r p m  n permitted by t h e  r o t o r  and engine con t ro l  systems 

3w. 

. 



-- 

(system pitch-gas) are p lo t t ed  i n  t h e  diagram of safe rpm. Lf none of t h e  pos
sible combinations of t h e  values of T and n come t o  l i e  outs ide t h e  boundaries 
of t h e  unstable range, s tabi l i ty  of t h e  he l icopter  i s  ensured. I n  t h i s  case, it 
i s  always des i rab le  ( f o r  g rea t e r  de t a i l s ,  see Sect.6) t o  have a c e r t a i n  s t a b i l i t y  
margin, i.e.,  s u f f i c i e n t  d i s tances  i n  t h e  diagram between t h e  boundaries of t h e  
unstable range and t h e  boundaries of t h e  poss ib le  T and n values. 

For a s i n g l e r o t o r  he l icopter  wi th  conventional larding-gear design && 
(pyramidal landing gear  o r  gear  wi th  v e r t i c a l  s t r u t s  ; see Fig .3.17,a and b) , t h e  
frequency of t h e  first v ib ra t ion  overtone general ly  i s  below the  operating rpm 
of t h e  r o t o r  (Fig.3.25), whereas t h e  frequency of t h e  second overtone usual ly  i s  
above this rpm. Therefore, s e l ec t ion  of t h e  damping coe f f i c i en t s  must ensure 
absence of an i n s t a b i l i t y  zone of t h e  first v ib ra t ion  overtone wi th  t h e  s t r u t s  
operative.  Here, a reliable damping margin i s  required.  The s t a b i l i t y  margin 
wi th  respect  t o  t h e  second v ib ra t ion  overtone can be ensured i n  p rac t i ce  only 
W i t h  respect  t o  r o t o r  rpm" and can be character ized by a c e r t a i n  quantity 7 :  

where 
n, a x  = &mum poss ib le  r o t o r  r p m ;  

n, = r p m  corresponding t o  t h e  lower boundary of t h e  i n s t a b i l i t y  zone 
of t h e  second overtone. 

-Section 3. Charactgr is t ics  o f D a w i l w  of Landing Gear and Blade. 
-Influence on Ground Resonance 

1. Determination o f  t h e  D-ing coefficient^ of t h e  Iandirq 
-Gear ShocL Absorber 

In ca lcu la t ing  t h e  natural frequencies of a hel icopter  we assumed that t h e  
shock absorbers of the  landing gear have l i n e a r  cha rac t e r i s t i c s .  Actually, t h e  
cha rac t e r i s t i c s  of t h e  shock s t r u t  of a landing gear are nonlinear as a ru l e .  
However, f o r  ca lcu la t ing  small hel icopter  v ibra t ions  (as usual ly  done i n  t h e  
theory of nonlinear v ibra t ions)  t h e  nonlinear shock absorber can be replaced by 
some equivalent l i n e a r  shock absorber, f o r  which t h e  coe f f i c i en t s  of s t i f f n e s s  
and damping depend on t h e  v ib ra t ion  frequency and amplitude. For an  approximate 
determination of t h e  s t i f f n e s s  of a n  equivalent l i n e a r  shock absorber we have 
proposed eq.(2.5). To determine t h e  coef f ic ien t  of damping k of a n  equivalent

This formula canl i n e a r  shock absorber, we can suggest another s h p l e  formula. 
be derived i f  we consider as equivalent a l i n e a r  shock absorber which, pe r  vibra
t i o n  period, absorbs t h e  same energy as a real  shock absorber a t  t h e  same vibra
t i o n  frequency and amplitude. 

The most common designs of shock s t r u t s  of a given landing gear absorb 
energy because of f r i c t i o n  i n  t h e  packing glands and of t h e  hydraulic res i s tance  
set q when t h e  hydraulic f l u i d  i s  forced through small o r i f i c e s .  

If we assume t h e  force  of hydraulic r e s i s t ance  i n  such a shock s t r u t  as pro-



p o r t i o n a l  t o  t h e  square of veloci ty ,  t hen  t h e  dependence of t h e  force  of resist

ance P of t h e  s t r u t  on t h e  rate -ds  of i t s  compression can be expressed as 
d t  

where Po i s  t h e  force  of f r i c t i o n  i n  t h e  gland, w h i l e  o1 and o2 are t h e  coeff i 
c i en t s  of hydraulic res i s tance  of t h e  s t r u t  i n  t h e  forward and r e t u r n  s t rokes.  

Let t h e  rod of t h e  shock absorber execute v ibra t ions  according t o  t h e  l a w  

s = so s i n  p t  and, consequently, s = -	d s  = ps, cos p t .
d t  

Let us then  ca l cu la t e  t h e  energy absorbed by t h e  shock absorber under 
these conditions during one o s c i l l a t o r y  period. T h i s  energy i s  determined by 
means of t h e  formula 

On ca lcu la t ing  this i n t e g r a l  f o r  t h e  case i n  which t h e  funct ion P ( t )  i s  
given by eqs.(3.1), we ob ta in  

A =4POs, +-a ap2s;,
3 

The damper with l i n e a r  damping (P = k *), under t h e  same conditions, ab
d t  

sorbs  t h e  energy A, = rrkpso during one osc i l l a to ry  period. 

A comparison of t h e  expressions f o r  A and A, y i e l d s  t h e  following formula 
f o r  determining t h e  coef f ic ien t  of a n  equivalent l i n e a r  damper: 

Thus, i n  a real shock absorber s t r u t ,  t h e  quant i ty  k,, depends on t h e  ampli
tude so and on t h e  v ib ra t ion  frequency p, a f a c t  t h a t  must be taken i n t o  con
s ide ra t ion  i n  ca lcu la t ing  hel icopter  vibrat ions.  



Figure 3.26 shows t h e  quant i ty  k,, as a func t ion  of t h e  v ib ra t ion  arqli
tude so. On an  increase  i n  v ib ra t ion  amplitude, t h e  quant i ty  k,, decreases, 
reaches a minimum value ktl,n a t  a c e r t a i n  amplitude sg and, y o n  a fu r the r  in
crease i n  amplitude, rises again. 

An ana lys i s  of eq.(3.4.) r ead i ly  yields t h e  following formulas f o r  determin
ing  t h e  minimum value k::" and t h e  corresponding v ib ra t ion  amplitude sg of t h e  
rod : 

(3  05) 

(3*6) 

We see from eq.(3.5) that t h e  minimum damping of t h e  shock absorber does 
not depend on t h e  v ib ra t ion  frequency and amplitude. For a rough estimate of 
t h e  damping capabi l i ty  of t h e  shock absorber system of t h e  landing gear  it i s  
convenient t o  use eq.(3.5) and t o  assume, i n  ca lcu la t ing  t h e  t i re -o leo  system, 
that  k S s a  = ktin. Here, it i s  a l s o  use fu l  t o  determine t h e  quant i ty  s3 by means 
of eq.(3.6). 

Whenever the re  i s  an  occasion t o  make damping tests on fu l l - sca le  shock 
s t r u t s ,  it is  suggested t o  perform such tests s ince  t h e  proposed formulas yield 
only approximate damping cha rac t e r i s t i c s .  

Damping tests can be ca r r i ed  out by one of two methods: 
1)determination of t h e  dependence of t h e  force  of b d r a u l i c  res i s tance  

on t h e  rate of t ravel  of t h e  rod; 
2) 	determination of t h e  energy absorbed by t h e  shock absorber i n  the  

presence of harmonic vibrat ions of t h e  rod. 

When conducting t e s t s  by e i t h e r  of these  methods, t h e  air ( o r  nitrogen) /288
should be drained from t h e  shock s t r u t ,  s ince  
only t h e  damping forces  are t o  be determined i n  

Y t h e  tes t .  

t h e  rod of t h e  shock absorber under t h e  e f f e c t  of 
a constant load at  var ious values. 

I n  t h e  second method of t e s t ing ,  harmonic 
v ibra t ions  are imparted t o  t h e  rod of t h e  shock 
absorber on a s p e c i a l  r i g  wi th  a ro t a t ing  eccerb 

Fig .3.26 Vibration AmpE- t r i c .  The variable axial force  i n  t h e  shock ab

tude Dependence of Equiva- sorber  i s  measured a t  d i f f e r e n t  values of t h e  

lent Damping f o r  Shock v ib ra t ion  amplitude and frequency (revolut ions of 

Absorber wi th  Dry  F'riction t h e  eccent r ic )  of t h e  rod. 

and Quadratic Hydraulic 


Resistance. For a landing gear  wi th  v e r t i c a l  s t r u t s  



(Fig.3.17,b), d i r e c t  tests of t h e  t i re -o leo  system should be car r ied  out. It i s  
des i rab le  t o  make such tests a l s o  f o r  a pyramidal landing gear  ( see  Fig.3.17,a). 
Here, t h e  shock absorber connected i n  sequence wi th  t h e  t i r e  can be t e s t ed  i n  
t h e  same manner as that used f o r  a landing gear  wi th  v e r t i c a l  s t r u t s  except t h a t  
a spec ia l  t i r e  i d e n t i c a l  wi th  t h a t  used on t h e  he l icopter  i s  selected,  whose 
s t i f f n e s s  i s  g rea t e r  by a f a c t o r  of n than  that of t h e  t i r e  corresponding t o  a 
pyramidal landing gear.  The value of n i s  ca lcu la ted  by means of t h e  formula 

where P S a a  i s  t h e  fo rce  i n  t h e  shock absorber under t h e  v e r t i c a l  force  PYpn on 
t h e  t i r e .  

2. 	 Effect  of Locking of t h e  Shock Absorber as a Consequence 
of F r i c t iona l  Resistance of t h e  Gland and Self-Excited-~ 

Vibrations of t h e  Helicopter 

The force  of f r i c t i o n  Po i n  t h e  packing (glands) of t h e  shock absorber f o r  
a l l  p r a c t i c a l  purposes i s  independent of t h e  rate of motion of t h e  rod [eq.(3.1)]. 
Therefore, t h e  e f fec t  of f r i c t i o n  i n  t h e  gland i s  analogous t o  t h e  e f f e c t  of so-
ca l led  dry ( o r  Coulomb) f r i c t i o n .  

T h i s  leads t o  t h e  e f f e c t  t ha t ,  i n  t h e  presence of small v ibra t ions  a t  a 
variable force  P < Po, t h e  shock absorber does not operate and behaves l ike a 
r i g i d  rod. Therefore, a t  a s u f f i c i e n t l y  small v ibra t ion  amplitude of t h e  heli
copter t he  shock absorbers are inoperat ive and only t h e  tires, which are v i r tua l 
l y  deprived of damping, a c t  as e l a s t i c  components of t h e  landing gear  system. 

If t h e  angular ve loc i ty  of r o t o r  r o t a t i o n  l ies  wi th in  t h e  i n s t a b i l i t y  zone 
of t h e  hel icopter  wi th  inoperat ive shock absorbers, t h e  pos i t i on  of equilibrium 
of t h e  hel icopter ,  general ly  speaking, w i l l  always be unstable and small heli
copter v ibra t ions  of increasing amplitude are sure t o  arise. Upon an  increase 
i n  amplitude of t h e  vibrat ions,  t he  variable force i n  t h e  shock absorber a l s o  
increases .  A t  a c e r t a i n  v ibra t ion  amplitude a”, t h e  force  P i n  t h e  shock ab
sorber becomes equal t o  Po. A t  l a rge  v ib ra t ion  amplitudes of a > a-: t h e  force  
P > Po, and ( i f  T < T c r )  t h e  shock absorbers begin t o  operate.  

If t h e  shock absorption damping i s  properly selected,  self-excited vibra
t i o n s  with a c e r t a i n  constant small amplitude a, g rea t e r  than  a’?, are generated 
i n  the  system. 

Thus, f o r  any he l icopter  wi th in  t h e  unstable range with the  s t r u t s  in
operative, t he re  id11 always be self-excited v ibra t ions  caused by t h e  e f f ec t  of

/289 
dry f r i c t i o n  i n  t h e  landing gear  shock absorbers. 

Such self-exci ted v ibra t ions  should never be confused wi th  ground resonance 
i n  t h e  conventional meaning of t h e  t e r m .  Self-excited v ibra t ions  are safe and 
may arise even when t h e  margin f o r  ground resonance ( a t  l a rge  displacements) i s  
s u f f i c i e n t l y  grea t .  



In t h e  most common designs of shock absorbers (oleo-pneumatic s t r u t s ) ,  t h e  
f r i c t i o n  i n  the  gland i s  relatively great  so that, i n  calculat ing t h e  amplitude 
of such self-exci ted vibrat ions,  only t h e  damping caused by tl6s f r a c t i o n  need 

be allowed f o r  and t h e  forces  of 
fiydraulic res i s tance  i n  t h e  shock 
absorber can be neglected. With -P such an  a p p r o d t e  calculat ion,  
t h e  amplitude of self-excited Vi
bra t ions  can only be grea te r  than 

A t h e  a c t u a l  amplitude. 

To estimate t h e  amplitude of 
F ig  .3.27 Diagram of In-Series Connec- self-excited vibrations,  we can de
t i o n  of Tire and Shock Absorber wi th  r i v e  c e r t a i n  simple formulas. 

Dry Fr ic t ion .  
l a n d  2 - Springs; 3 - Piston.  Let us examine a system con

s i s t i n g  of two springs (1)and (2)  
connected i n  se r i e s ,  one of which 

wi th  a s t i f f n e s s  c;,, simulates t h e  t i r e  and t h e  o ther  with a s t i f f n e s s  c,.,, t h e  
shock absorber (Fig.3.27). Some element [p i s ton  (3)1 wt th  dry f r i c t i o n  char
ac te r ized  by t h e  force  Po i s  connected i n  p a r a l l e l  with t h e  spr ing (2) .  

Under t h e  e f f e c t  of a force  P ( t )  varying i n  time according t o  a c e r t a i n  
law,  l e t  t h e  system execute v ibra t ions  such that t h e  poin t  A whose displacement 
we denote by s w i l l  execute t h e  harmonic v ibra t ions  

s=~ocospt .  ( 3  -7) 

If t h e  amplitude so i s  small, t h e  spr ing (2) does not work and t h e  spr ing
(1)w i l l  suffer a deformation s1 = s varying i n  accordance with t h e  harmonic 
l a w  (3.7). I n  this case, t h e  force  P a l so  varies i n  obedience t o  the  harmonic 
l a w  

p ="i".socos p t  . 

However, t h e  work done by t h e  system Will be of this type only i f  P,,, < Po and 
1

t hus  i f  so < -.10 A s  soon as s o  > 0, t h e  spr ing (2) starts moving. Here,
Y 

C D ,  c:: n 
t h e r e  are c e r t a i n  t i m e  i n t e r v a l s  when t h e  spr ing (2)  operates [ s l i d ing  i n  t h e  
element ( 3 ) l  and t i m e  i n t e r v a l s  when t h e  spr ing does not operate. 

Le t  6 = s - s1 be t h e  deformation of t h e  spr ing ( 2 ) ,  which we w i l l  consider 
as pos i t i ve  i f  t h e  spr ing (2)  i s  compressed. Then, t h e  dependence of t h e  com
pressing force  P on t h e  quantity 6 can be w r i t t e n  i n  t h e  form 

In  t h e  presence of o s c i l l a t o r y  motion, t h e  dependence P = P(6)  has t h e  form 
of a hys te res i s  loop (Fig .3.28). 
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When t h e  quant i ty  6 reaches a maximum value of a and remains constant 
after this ( 6  = a ) ,  force  P can t ake  any value i n  t h e  i n t e r v a l  c,.,a - P s P I 

/290 
I c,.,a + Po. 

The r e l a t i o n  6 ( t )  f o r  time intervals corresponding t o  s l i d i n g  (f,# 0) can 
be determined from t h e  equation 

which expresses t h e  equa l i ty  of forces  on both elements (1)and (2). 

Fig.3.28 Eysteresis h o p  f o r  Fig .3.29 Iaw of Time Rate of Change 
Shock Absorber wi th  Dry of Forces and Displacements i n  

Fr ic t ion.  Shock Absorber. 

From this equation, we f i n d  6 ( t )  f o r  t h e  s l i d i n g  sect ions:  

For sect ions where s l i d i n g  i s  absent, we have 6 = fa .  

Figure 3.29 gives  graphs of t h e  t i m e  rate of change of t h e  quant i t ies  s ( t ) ,  

6 ( t ) ,  and P ( t )  f o r  t h e  case c S a a  = c;,, and so = 2 -.PO The magnitude of t h e  
Y 


‘pn
v ib ra t ion  amplitude a of t h e  shock absorber rod can be found from t h e  expression 
f o r  6 ( t ) ,  i f  we s e t  t he re  cos p t  = 1. T h i s  Will y ie ld  

The work done by t h e  f r i c t i o n a l  force during v ibra t ions  can be determined 
from t h e  formula 
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Ap, =4 Poa. 

Let  us  compare t h e  system shown i n  Fig.3.27 wi th  some equivalent l i n e a r  
shock absorber wl-iich, at a n  q l i t u d e  of t h e  rod so, absorbs t h e  same work and 
has t h e  same value of force  P, a x .  

Equating t h e  expression f o r  work done by t h e  l i n e a r  shock absorber ( A  = 
= rrk,,psE) t o  t h e  work done by t h e  f r i c t i o n a l  force  AP, ,  we obtain t h e  follow
i n g  expression f o r  t h e  damping coef f ic ien t  k,, of a n  equivalent Linear shock /291
absorber: 

(3.10) 

where T l  i s  some dimensionless coef f ic ien t  depending on t h e  v ibra t ion  amplitude so 
and determined by the  formula 

-\i-
5 +- Po 
C F n  C F n . S oCeg 'CF" . 

& + 1  

Fig.3.30 Dimensionless Figure 3.30 shows t h e  dependence of t h e  
Damping Coefficient 17 as a quant i ty  17 on the  dimensionless v ibra t ion  a m p l i -
Function of t he  Relative tude so. The quant i ty  17 reaches a maximum-
Vibrat ion Amplitude zo. value QDLx = 2 a t  so = 2. A t  so > 2, t he  damp

ing  drops with a n  increase  i n  v ibra t ion  ampli
tude. 

e qThe maximum value of k,, = kmaXi s  equal t o  



A comparison of this value wi th  t h e  value of k:,"x obtained f o r  t h e  l i n e a r  
t i re -o leo  system [see  eq.(2.38)1 shows that t h e  shock absorber wi th  dry f r i c t i o n  
i n  a system wi th  a pneumatic t i r e  produces, under t h e  same conditions, a m a x i 
mum daarping lower by a f a c t o r  of n/2 than  t h e  l i n e a r  shock absorber. 

Thus, t he  amplitude of self-exci ted hel icopter  v ibra t ions  caused by f r i c t i o n  
i n  t h e  packing of t h e  shock absorbers can be found from t h e  cord i t ion  (3.10): 

where k req  i s  the  damping required f o r  e l iminat ion of grourd resonance. 

From this equation, we determined t h e  corresponding value of 7 and then, 
from t h e  graph i n  Fig.3.30, t h e  corresponding value of s o .  

3. Character is t ics  of Blade Damers and t h e i r  Analysis /292 
lin our presenta t ion  of methods f o r  ca lcu la t ing  ground resonance, we pro

posed t h a t  t he  drag hinge dampers have l i n e a r  cha rac t e r i s t i c s ,  ;.e., t h a t  t h e  
moment of t he  damper M is  proport ional  t o  the-angular  ve loc i ty  5 of r o t a t i o n  of 
t h e  blade r e l a t i v e  t o  t h e  drag hinge: M = kb5. 

Fig.3.31 Typical Charac te r i s t ics  of Blade Dampers. 
a - Linear dampers; b - Fr ic t ion  dampers; 

c - Stepped damper. 

Actually, t h e  cha rac t e r i s t i c s  of blade dampers are nonlinear as a ru l e .  
Two types of dampers are predominantly used: 

1)hydraulic dampers; 
2) f r i c t i o n  dampers. 

Eydraulic danpers may have d i f f e ren t  cha rac t e r i s t i c s  depending upon design.
I n  pa r t i cu la r ,  a hydraulic damper can be l i n e a r  (so-called laminar damper, char
a c t e r i s t i c  a i n  Fig.3.31). However, l i n e a r  dampers are used extremely ra re ly ,  
s ince  they have ser ious  shortcomings. 

One of t h e  shortcomings i s  t h e  great  s e n s i t i v i t y  of l i n e a r  dampers t o  tem
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perature ,  which i s  explained by t h e  f a c t  that damping i n  such dampers i s  pro
por t iona l  t o  t h e  v i scos i ty  of t h e  hydraulic f l u i d  which i s  g rea t ly  dependent 
upon temperature. 

Another shortcoming of l i n e a r  dampers i s  that the  moment of such a damper 
i s  proport ional  t o  t h e  blade v ibra t ion  frequency. Actually, i f  a blade executes 
harmonic vibrat ions relative t o  the  drag hinge 5 = so s i n  v t ,  . then  the moment 
of t h e  l i n e a r  damper va r i e s  i n  accordance wi th  t h e  l a w  M = kb5 = vkb5, cos v t .  

T h i s  causes t h e  l i n e a r  dampers, during forward f l i g h t  of a helicopter,  t o  
load t h e  root  po r t ion  of t h e  blade with l a rge  bending moments, s ince  t h e  blade 
v ibra t ion  frequency i n  f l i g h t  i s  by a f a c t o r  of about 4 grea te r  than  a t  ground 
resonance. 

T h i s  drawback i s  l a rge ly  absent i n  t h e  most widely used hydraulic dampers 
with a st  ped cha rac t e r i s t i c  (see Fig.3.31,~)  and a l s o  i n  f r i c t i o n  dampers (see 
Fig.9.31,3. The poin t  A on t h e  cha rac t e r i s t i c  curve of the  stepped damper cor
responds t o  t h e  in s t an t  of opening of s p e c i a l  valves.  

The cha rac t e r i s t i c  of a f r i c t i o n  damper ( see  Fig.3.31,b) can be regarded as 
a p a r t i c u l a r  case of a stepped cha rac t e r i s t i c .  

To ca lcu la te  ground resonance of a hel icopter  with nonlinear blade dampers, 
t h e  l a t te r  can be replaced by some l1equivalentl1 l i n e a r  dampers whose coef f ic ien t  
of damping depends upon the  amplitude and frequency of blade vibrat ions.  The 
coef f ic ien t  k,, of such an  equivalent l i n e a r  damper can be determined from t h e  
condition of absorption by this damper of t h e  same energy pe r  o sc i l l a to ry  period, 
a t  a given harmonic v ib ra t ion  amplitude and frequency, as i s  absorbed under /293
the  same conditions by a nonlinear damper. For a f r i c t i o n  damper, we have 

where 
M, = t ightening moment of t h e  damper ( see  Fig.3.31,b);
5 ,  = amplitude of blade vibrat ions;  
v = frequency of blade vibrat ions.  

From t h e  same formula, we can determine approximately t h e  value of k,, f o r  
hydraulic dampers wi th  a stepped cha rac t e r i s t i c ,  i f  t h e  la t ter  is  c lose  t o  t h e  
cha rac t e r i s t i c  of t he  f r i c t i o n  damper. 

I n  t h e  gene+ case, t h e  quant i ty  k,, can be determined from t h e  known 
cha rac t e r i s t i c  M ( S )  of a nonlinear damper by means of t h e  formula 

r 

a t  2n
E ’Eo sin vt a n d T  =-. 
V 
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For a manufactured damper, t h e  quant i ty  k,, can be determined a l s o  experi
mentally i n  s p e c i a l  laboratory tests. I n  such tests, harmonic vibrat ions are 
inparted t o  t h e  rod of t h e  damper and t h e  magnitudes of t h e  damper moment are 
recorded on an  oscillogram. 

The main shortcoming of dampers wi th  a stepped cha rac t e r i s t i c  and, i n  par
t i c u l a r ,  of f r i c t i o n  dampers i s  t h e  presence of a so-called exc i t a t ion  threshold 

f o r  hel icopters  equipped wi th  dampers of this type. 
A 	 A hel icopter  which i s  stable a t  small vibra t ion  

amplitudes may become unstable a t  la rge  v ibra t ion  
amplitudes exceeding t h e  exc i t a t ion  threshold.  

Let us  examine this phenomenon f o r  t h e  example 
of a f r i c t i o n  damper. Figure 3.32 shows t h e  de
pendence of t h e  work A absorbed during one osc i l 
l a to ry  period by f r i c t i o n  dampers (curve a) and 
l i n e a r  (curve b) dampers on t h e  blade v ibra t ion  am
p l i tude  z o  (a t  constant v ib ra t ion  frequency). For 
t h e  f r i c t i o n  damper, t h e  graph A (so)  i s  represented 
by a s t r a i g h t  l i ne ,  whereas f o r  t h e  l i n e a r  damper 

Fig .3.32 Work Absorbed it forms a parabola. A s  r e s u l t  of calculat ing t h e  
p e r  Osc i l la tory  Period. ground resonance, l e t  t h e  value k y q  of t h e  required 
as a Function of Ampli- damping of t h e  blade be determined f o r  t h e  case of 
tude,  f o r  a Damper wi th  a l i n e a r  damper; then, t h e  curve a i n  Fig.3.32 cor-
Dry F r i c t ion  and a responds t o  this value of k,, whereas t h e  curve b 
Damper with Linear Char- corresponds t o  t h e  available damping of t h e  f r i c t i o n  

a c t e r i s t i c .  damper ac tua l ly  lashed-up t o  the  hel icopter .  

Let t hese  curves i n t e r s e c t  a t  a c e r t a i n  poin t  c y  
corresponding t o  t h e  amplitude s$-. Then, during blade v ibra t ions  with an  ampli
tude s o  < tz, t h e  damping provided by t h e  f r i c t i o n  damper w i l l  be g rea t e r  than  
required, whereas during blade v ibra t ions  with a n  amplitude z o  > 58, t h e  damping 
w i l l  be inadequate. The v ib ra t ion  amplitude 5: a l s o  represents  t he  exc i t a t ion  
threshold.  The value of 5: can be determined from eq.(3.15): 

Thus, i f  t h e  he l icopter  suffers some per turba t ion  (shock) which s e t s  up ,&&
vibra t ions  (both of t h e  hel icopter  and of t h e  blade) then, i f  t h e  blade vibra
t i o n  anpl i tude i s  less than  sg, t h e  motion will be stable and t h e  vibrat ions 
w i l l  d i e  out.  Lf t h e  per turba t ion  i s  s u f f i c i e n t l y  grea t  ( zo  > S$), then  increas
ing  hel icopter  v ibra t ions  w i l l  occur. 

The presence of a n  exc i t a t ion  threshold f o r  hel icopters  with blade dampers 
of stepped cha rac t e r i s t i c s  i s  a ser ious shortcoming. 

There are quite a Pew cases known where a hel icopter  t h a t  has been i n  
se rv i ce  f o r  a long t i m e  underwent ground resonance as t h e  r e s u l t  of some severe 
shock, usual ly  as a result of a rough landing wi th  only one wheel of t h e  main 
landing gear making contact w5th t h e  grourd. 



T h i s  main shortcoming of nonlinear dampers can be completely eliminated only 
by using dampers t h a t  provide considerable damping at  low blade v ibra t ion  f r e 
quencies (ground resonance) and s l i g h t  damping a t  a v ibra t ion  frequency equal t o  

t h e  r o t o r  r p m  (and higher).. I n  pa r t i cu la r ,  
C such a damper can be l inear .  Figure 3.33 shows 

t h e  diagram of a l i n e a r  damper of this type. 

&..hh, \..-
P 	 The damper cons is t s  of an  e l a s t i c  element of 

s t i f f n e s s  c and of t h e  damper proper with a co
e f f i c i e n t  k, connected i n  series. 

Fig.3.33 Diagram of Element 

i n  which t h e  E la s t i c  Element The cha rac t e r i s t i c s  k and c of this damper 

and Damper are Connected i n  can be se lec ted  such t h a t ,  a f t e r  ensuring ade-


Series .  	 quate damping a t  ground resonance, t he re  are 
small bending moments on t h e  blade i n  forward 
f l i g h t  of t h e  he l icopter  ( s ee  Sect.6). For t h e  

calculat ion,  such an  element can be replaced by some equivalent element of stiff
ness c,, and a damping coe f f i c i en t  k,, determined by means of t h e  formulas 

1 

These formulas are obtained i n  t h e  same manner as eqs.(2.33) and (2.34.). 

4 .  E f f e c t f  Flaapi-m Motion of Rotor on Ground Resonance 

As a l ready s ta ted ,  t h e  conanonly used blade dampers a r e  nonlinear. The main 
feature of any nonlinear damper i s  tha t ,  i f  t h e  motion of t he  blade consis ts  of 
two harmonic components, t h e  damping of one of these  componerrts will depend on 
the  amplitude and frequency of t h e  other  harmonic component, whereas a l i n e a r  
damper absorbs t h e  energy of each of t h e  harmonic components regardless  of t h e  
magnitude of t h e  other .  

T h i s  feature of nonlinear dampers explains t h e  following important phenome
non which has long been noted i n  hel icopter  tests: When a he l icopter  is  oper
a t ing  on t h e  ground, ground resonance may be caused by smooth de f l ec t ion  of t h e  
cyc l ic  p i t c h  con t ro l  s t i c k  from the  neu t r a l  pos i t ion .  If t h e  s t i c k  i s  then  re
turned rap id ly  t o  the  neu t r a l  posi t ion,  t h e  v ibra t ions  die out.  T h i s  phenomenon 
i s  u t i l i z e d  i n  experimental tests of hel icopters  f o r  ground resonance. The /295
phenomenon i s  analogous t o  t h e  e f f e c t  of f lapping on t h e  occurrence of f l u t t e r .  
Let us examine t h e  mechanism of this phenomenon f o r  t he  case of a f r i c t i o n  damper 
( see Fig -3.31, b) . 

Let us  first a t t ack  t h e  fo l lav ing  abs t r ac t  problem: ht some body A s l i d e  
wi th  a ve loc i ty  V along some p l a t e  B ( see  Fig.3.34) which i s  executing harmonic 
vibra t ions  i n  a horizontal  d i r e c t i o n  according t o  the  l a w  y = yo s i n  w t .  
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The body A i s  forced aga ins t  t h e  v ibra t ing  p l a t e  B by a c e r t a i n  normal 
fo rce  N. We wi l l  assume that t h e  f r i c t i o n  between t h e  surface of t h e  body A and 
t h e  p l a t e  B corresponds t o  t h e  i d e a l  l a w  of d ry  f r i c t i o n ,  %.e., t h e  force  of 
f r i c t i o n  i s  constant i n  magnitude and e q a l  t o  Po = pN where p i s  t h e  coef f ic ien t  
of s l i d i n g  f r i c t i o n .  

B y=yo s i n  w t  

Fig .3.34 Diagram of Body Motion 
along a P l a t e  Vibrating i n  a 

Horizontal Direction. 

Fig.3.35 Law of T i m e  Rate of Change 
i n  Relative Velocity and Force of 
F r i c t ion  during Uniform Motion of 
t h e  Body along a Vibrating P la te .  

The d i r e c t i o n  of t h e  f r i c t i o n  force  depends upon t h e  d i r ec t ion  of t h e  rela
t i v e  ve loc i ty  of t h e  body A i n  conparison wi th  t h e  p l a t e  B. 

Let us assume t h e  f r i c t i o n  force  P applied t o  t h e  p l a t e  as pos i t i ve  when 
d i rec ted  opposite t o  t h e  absolute ve loc i ty  of t h e  body A, i.e., t o  t h e  r igh t .  
The displacement y of t h e  p l a t e  B W i l l  be considered as pos i t i ve  when directed 
t o  t h e  l e f t .  Then t h e  l a w  of f r i c t i o n  can be wr i t t en  as 

P= 
I”O-p0 at v > g ;a t  v<y. 

For t h e  r e l a t i v e  ve loc i ty  of motion of t h e  p l a t e ,  we have t h e  expression 

vre1. -=v-y =v -05’0 cos wt. 

Figure 3.35 gives  t h e  graph of this dependence. The r e l a t i v e  ve loc i ty  as a 
funct ion of t i m e  i s  depicted by a cosine curve sh i f t ed  by a n  amount V along t h e  
ordinate.  

The graph i d i c a t e s  t ha t ,  a t  V < wy,, during one o s c i l l a t o r y  period T t h e  
t i m e  i n t e r v a l  (T  - 2T1) during which V r e l  i s  pos i t i ve  i s  g rea t e r  than  t h e  time 
interval  2T1 during which Vre l  is negative. Below this graph, we show a cor
responding graph of t h e  time dependence of t h e  f r i c t i o n  fo rce  P. During one os
c i l l a t o r y  period, t h e  f r i c t i o n  force  f o r  a c e r t a i n  time i n t e r v a l  2T1 i s  d i rec ted  
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t o  t h e  l e f t  (negat ive) ,  w h i l e  during t h e  t i m e  i n t e r v a l  (T  - 2T,) it i s  directed 
t o  t h e  r igh t ,  opposite t o  t h e  d i r e c t i o n  of motion. 

Thus, during motion of t h e  body A (see Fig.3.34) along a v ibra t ing  p l a t e  B, 
t h e  f r i c t i o n  fo rce  pe r iod ica l ly  va r i e s  i t s  d i r e c t i o n  only i f  V < wy,. In t h i s  
case, t h e  f r i c t i o n  force  f o r  t h e  g rea t e r  p a r t  of time i s  d i rec ted  opposite t o  
t h e  motion so  that, on t h e  average, t h e  f r i c t i o n  o f fe r s  res i s tance  t o  t h e  motion 
of t h e  body A. 

For a uniform motion of t h e  body A t o  t h e  l e f t ,  we must apply t o  it a /296
time-variant fo rce  which, at each i n s t a n t  of time, would balance t h e  f r i c t i o n  
force.  Let  us ca lcu la te  t h e  average value Pa, of this force during t h e  period, 
understanding by this a constant force  which, during one o s c i l l a t o r y  period, does 
t h e  same work i n  absolute  displacement of t h e  body A as t h e  a c t u a l  force  of f r i c 
t i on .  If t h e  mass of t h e  body A i s  i n f i n i t e l y  g rea t  and i f  v ibra t ions  of t h e  
body A can be neglected and i f ,  i n  addi t ion,  i t s  motion on t h e  v ibra t ing  p l a t e  
can be assumed as uniform, then  t h e  force  P,, W i l l  represent t he  a c t u a l  force 
needed f o r  a uniform motion *of t h e  body A. 

The work done by t h e  average force  pe r  o s c i l l a t o r y  period of t h e  p l a t e  w i l l  
then  be equal t o  

A,, =Pa, VT. 

The work done by t h e  f r i c t i o n  force  during one period W i l l  be equal t o  

Equating these  two values of work A*, and A,,, we obtain t h e  following ex
press ion  f o r  t h e  average motive force:  

Pay=P, [1-4'1.T 
T 

To determine the  value of we note that 
1 


COSoT,=-	V . 
WYO 

Hence, taking i n t o  account t h a t  T = -,	2n we ob ta in  
w 

Consew e n t  ly, 

Pa, =Po 1 2 cos-1 - . 
[ a ( o",,)I 
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The obtained expression holds i f  and only i f  V < wyo. A t  V > wy,, t h e  f r i c 
t i o n  fo rce  will not, change e i t h e r  magnitude o r  sign, remaining equal t o  Po. Tak
i n g  i n t o  account t h e  aforesaid and introducing t h e  dimensionless average force  
I 


Pa, = ,we obta in  t h e  following expression f o r  t h e  latter: 

PO 


f igu re  3.36 gives t h e  graphs of t h e  dependence of Fa, on t h e  dimensionless 
-

ve loc i ty  V = -.V 
WYO 

A t  a low r e l a t i v e  ve loc i ty  of t h e  p l a t e ,  we can use a s y l i f i e d  l i n e a r  
dependence-F,,(V) which i s  obtained if,i n  t h e  expansion of cos- V i n  a power 
series i n  V, we limit ourselves  t o  t h e  f i rs t  two terms. I n  this case, we have 

Thus, during slow motion of a body over a r ap id ly  v ibra t ing  p l a t e ,  t h e  
average force  of f r i c t i o n  can be considered approximately proport ional  t o  t h e  

/297 
first power of t h e  ve loc i ty  

where t h e  propor t iona l i ty  f a c t o r  i s  

The above statements i nd ica t e  t h a t ,  wader t h e  examined conditions, d ry  f r i c 
t i o n  i s  i n  a sense ec@valent t o  l i n e a r  viscous f r i c t i o n ,  t h e  equivalent damping 
coef f ic ien t  being inverse ly  proport ional  t o  t h e  v ib ra t ion  frequency and amplitude 
of t h e  p l a t e .  T h i s  important f a c t  was first noted by Heinrich (Ref.41) and 
checked experimentally by A.A.Krasovskiy (Ref .a). 

It i s  obvious t h a t ,  during slow harmonic v ibra t ions  of t h e  body A over a 
rap id ly  v ibra t ing  p l a t e  B, it is  a l s o  poss ib le  t o  ap roximately ca lcu la te  t h e  
damping of these  vibrat ions,  making use of eqs.(3.19 P and (3.20). 

Thus, i f  i n  an  element with dry f r i c t i o n  t h e  r e l a t i v e  motion of t h e  rubbing 
surfaces  represents  t h e  sum of two harmonic vibrat ions,  one low-frequency and 
t h e  o ther  high-frequency, then  t h e  dampi of t h e  low-frequency vibrat ions can 
be calculated approximately by using eqsT3.19) and (3.20), understanding by w 
and yo t h e  frequency and amplitude, respect ively,  of t h e  o ther  (high-frequency) 
harmonic component. 



Let us now r e t u r n  t o  an  examination of blade v ibra t ions  of a hel icopter  
equipped wi th  a f r i c t i o n  damper lashed t o  t h e  drag hinge. Upon def lec t ion  of t h e  
p i t c h  s t i c k  during operat ion of t h e  he l icopter  on t h e  ground, blade flapping 
r e l a t i v e  t o  t h e  f lapping hinges takes  place.  A s  i s  known, t h e  blade flapping 
angle i3 wi l l  then  vary i n  t i m e  according t o  t h e  harmonic law: 

F=a, --a, cos wt- 6 ,  sin ut, 

where 
a. = coning angle;  

al and bl = f lapping coef f ic ien ts .  

' V  

1.0 

0.5 

0 1.0 pL
@Yo 

Fig  .3.36 Relative Aver
age F r i c t ion  Force as a 
Function of t h e  Dimension
less Velocity of t h e  Body 
over  a Vibrating P l a t e .  

t h e  blade a t  ground resonance 
formula 

where 

During blade flapping, Coriol is  forces  arise 
which cause blade v ibra t ions  r e l a t i v e  t o  t h e  drag 
hinge. The amplitude of t h e  first harmonic of 
blade v ibra t ion  r e l a t i v e  t o  t h e  drag hinge can be 
determined from t h e  well-known formula (Ref .48) 

a0 
E l  =- 1-v2, (3-21) 

AS already explained i n  Sections 1and 3, 
during ground resonance ( i n  t h e  case pbo = 0) t h e  
blades v ib ra t e  with a frequency v o w  (v, M 0.25), 
i.e., wi th  a frequency about four  t i m e s  lower than  
t h e  frequency of forced blade vibrat ions caused /298
by f lapping.  Therefore, i n  conformity with the  
foregoing statements, t h e  damping moment ac t ing  on 
can be calculated approximately by means of t h e  

M = k e g  E ,  

k q =; 2 -.M o  
W E 1  

The quant i ty  M, represents  t h e  t igMening moment of t h e  f r i c t i o n  damper 
(see Fig.3 31,b) . 

Thus, forced v ibra t ions  i n  t h e  plane of r o t a t i o n  of a blade wi th  a f r i c t i o n  
damper, caused by f lapping of t h e  blade i n  t h e  t h r u s t  plane,  lead t o  an e f f e c t  
equivalent t o  t h e  in t roduct ion  of a l i n e a r  d q e r  i n  t h e  drag hinge whose damp
i n g  coef f ic ien t  [eq.(3.23)1 i s  inverse ly  propor t iona l  t o  t h e  amplitude of t h e  
forced blade v ibra t ions  r e l a t i v e  t o  t h e  drag hinge. Therefore, a l l  statements 
on t h e  exc i t a t ion  threshold of a he l icopter  wi th  f r i c t i o n  dampers (Subsect.3) 
hold only when t h e r e  i s  no blade flapping. T h i s  usual ly  occurs when the  r o t o r  is 
operat ing a t  low rpm. Consequently, t h e  exc i t a t ion  threshold must be estimated 
f o r  ground resonance i n  terms of t h e  first overtone. Equation (3.23) should be 
used f o r  estimating ground resonance i n  t h e  presence of r o t o r  flapping ( a t  t h e  
operat ing r o t o r  r p m ) .  This i s  espec ia l ly  important when ca lcu la t ing  ground reso
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nance of a he l icopter  during t h e  ground run, which w i l l  be taken up i n  Section 4. 

Section 4. Ground Resonance of a A e l i c o p t e r  d u r i r x  G r o 4  Run 

In present ing methods of ca l cu la t ion  f o r  natural lateral v ibra t ions  of a 
hel icopter  on t h e  ground (Sect.2), it was assumed that the re  was no Wobbling of 
t h e  pneumatic t i r e  on t h e  ground surface.  

When a t i r e  wobbles i t s  la teral  s t i f f n e s s  diminishes, w h i l e  t h e  v e r t i c a l  
s t i f f n e s s  remains unchanged. A decrease i n  lateral  s t i f f n e s s  of t h e  t i r e  during 
such rocking and a c e r t a i n  add i t iona l  damping during la teral  displacements of 
t h e  wobbling t i r e  can be determined on t h e  basis of the  ex i s t ing  theory of shimmy 
of castor ing wheels* A method of such a ca l cu la t ion  i s  given i n  this Section. 

Any decrease i n  la teral  s t i f f n e s s  of t h e  t i r e  on wobbling (decrease i n  t h e  
quantity c:’, see Fig.3.17) leads t o  a decrease i n  t h e  natural v ib ra t ion  fre
quencies of t h e  first and second overtones and thus  t o  a reduction of t h e  bound
aries of t h e  corresponding unstable  range. A s  ind ica ted  above (Sect.2, Sub 
sect.7),  f o r  a s ingle-rotor  hel icopter  t h e  i n s t a b i l i t y  zone, corresponding t o  
t h e  second v ib ra t ion  overtone, i s  above t h e  operat ing rpm of t h e  ro tor ,  and t h e  
margin with respect  t o  r o t o r  ro t a t ions  i s  sometimes no more than  30%. A reduc
t i o n  of t h e  unstable range during t i r e  wobbling may be of t h e  order of 20 - 30%. 
Therefore, it might happen t h a t  a helicopter,  which is  stable when operating i n  
s i t u ,  becomes unstable-during t h e  ground run. h this case, we can speak of a 
c r i t i c a l  ground speed of t h e  hel icopter  a t  which motion becomes unstable.  

1. St i f fnes s  and D a m i n e :  of a Wobblilw Tire  

Let us  examine a t i r e  uniformly rolling along t h e  ground (Fig.3.37). Let 
t h e  wheel execute la teral  v ibra t ions  i n  obedience t o  a harmonic law,  such t h a t  
t h e  axis of r o t a t i o n  of t h e  wheel remains a t  a l l  times p a r a l l e l  t o  its i n i t i a l  
pos i t i on  and t h e  dis tance from t h e  ~s t o  t h e  ground remains constant.  

We w i l l  s e l e c t  a s t a t iona ry  rectangular  coordinate system zOs lying on 
t h e  ground surface,  wi th  t h e  Oz-axis being p a r a l l e l  t o  t h e  wheel axis .  Let t h e

/299 
la teral  displacement z of t h e  diametral  plane of t h e  wheel vary i n  time i n  ac
cordance with t h e  harmonic law”: 

where 
zo = vibra t ion  amplitude; 
w = angular v ib ra t ion  frequency. 

Let us then  determine t h e  la teral  force P, exerted on t h e  t i r e  by t h e  ground 
during i ts  motion. 

% We have i n  mind t h a t  t h e  a c t u a l  displacement i s  t h e  real  p a r t  of t h e  indi
cated complex expression. The use of complex expressions i n  deriving basic  for
m u l a s  permits an  appreciable s impl i f ica t ion  of t h e  calculat ions.  
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Let h be t h e  lateral deformation of t h e  t ire,  i.e., t h e  d is tance  between 
t h e  diametral wheel plane and t h e  poin t  of t h e  t i r e  which forms t h e  center  of 
t h e  contact area before lateral deformation. Then, t h e  lateral  force  P, w i l l  be 

Diametral p lane  
of t i r e  

Fig.3.37 Planview of Contact 
Surface and Line of T i r e  

Wobbling. 
cp - Angular deformation of 
t i r e ;  A - Latera l  deformation 

of t i r e  (lItiIt11). 

t i o n a l  methods. 

e q a l  t o  

P,= cFA, 

where c:” is  t h e  lateral  s t i f f n e s s  of t h e  t i r e  
i n  t h e  absence of wobbling. 

Furthermore, l e t  s be t h e  pa th  of t h e  
t i r e  reckoned from t h e  l i n e  of wobbling and cp 
t h e  angular deformation of t h e  t i r e ,  i.e., 
t h e  angle between t h e  l i n e  of i n t e r sec t ion  of 
t h e  diametral  wheel plane with t h e  ground 
surface and t h e  tangent t o  t h e  mater ia l  l i n e  
belonging t o  t h e  t i r e  surface and represent ing 
t h e  l i n e  of i n t e r s e c t i o n  of t h e  diametral  
wheel plane wi th  t h e  undeformed t i r e  surface.  

The quant i t ies  z ,  A ,  and y are re l a t ed  by 
t h e  so-called conditions of wobbling which, i n  
conformity with M.V.KeldyshTs m o t h e s i s  
(Ref.lS), have t h e  form 

d z_- d h  
d s  I (4.3) 

Here, CY and fi are c e r t a i n  constants for 
a given t i re ,  which can be found by conven-

Changing t o  der iva t ives  with respect t o  time t and taking i n t o  account t h a t  
s = V t  (where V is  t h e  ve loc i ty  of t h e  t i r e  i n  t h e  d i r ec t ion  of t he  Os-axis), 
we ob ta in  

d 2  d h  

d t  
(4.4) 

Put t ing 

and (4.5) 
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and taking i n t o  account eq.(4.1), we ob ta in  from eqs.(4.4) t h e  following ex
pressions f o r  determining t h e  constants h o  and cpo: 

vyo+ido=iozo; 
(io+pv)yo -UVA, =.o. 

Hence, 

Subs t i tu t ing  t h e  found value of A, i n t o  t h e  f irst  equation of t he  system 
(4.5) and then  i n t o  eq.(4.2), we obta in  t h e  following expression for t h e  force  P, 
exerted on t h e  t i r e  by t h e  ground: 

where 

We w i l l  designate t h e  complex quant i ty  

t h e  la teral  complex dynamic t i r e  s t i f f n e s s  i n  t h e  presence of lateral  harmonic 
vibrat ions of t he  wheel. 

The modulus of t h e  complex dynamic s t i f f n e s s  represents  t he  r a t i o  of t h e  
amplitude Po of t h e  lateral force  t o  t h e  v ibra t ion  amplitude zo of t h e  diametral  
plane of t h e  wheel. The argument of t h e  c o q l e x  quant i ty  D(w) represents  t h e  
v ib ra t ion  phase of t h e  force  P, wi th  respect t o  v ibra t ions  z of t h e  wheel. 

Furthermore, l e t  us e x a d n e  some l i n e a r  e l a s t i c  element with damping (see 
F’ig.3.22). The force  P ac t ing  on this element and i t s  deformation s ( s t roke  of 
t h e  element) are connected by t h e  r e l a t i o n  [eq.(2.25)1 

dS
P=CS +k -. 
d t  

Let us introduce t h e  concept of complex dynamic s t i f f n e s s  of such an  ele
ment and e s t ab l i sh  i t s  connect ivi ty  wi th  t h e  coe f f i c i en t s  c and k of i t s  stiff
ness and damping. 

Let t h e  displacement s of t he  e l a s t i c  element vary i n  time according t o  t h e  
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harm0ni.c l a w  s = sOeiwt. Then t h e  force  ac t ing  on this element w i l l  vary a l s o  
by t h e  harmonic law: 

P =(c +iwk) sOeiwt 

o r  
P =Poeiot, 

where 
Po=(C +iok)  so. 

We designate  t h e  quant i ty  

t h e  co lex dynamic s t i f f n e s s  of.  an e l a s t i c  element with damping. A s  shown by 
eq . (4 .3 ,  t h e  real p a r t  of t h e  complex quant i ty  D(w) represents  t he  s t i f f n e s s  co
e f f i c i e n t  c of a spring, w h i l e  t h e  imaginary p a r t  represents  t h e  damping coef- /301 
f i c i e n t  k of t h e  element mult ipl ied by w. 

To ca lcu la te  t h e  natural vibrat ions of a hel icopter  on t h e  ground i n  con
formity wi th  t h e  scheme depicted i n  Fig.3.16, t h e  cha rac t e r i s t i c s  of e l a s t i c i t y  
and damping of t h e  elements c: and c: must be properly chosen. 

It i s  obvious that, t o  ca lcu la te  v ibra t ions  of a hel icopter  during ground 
run, it i s  su f f i c i en t  t o  s e l e c t  t h e  hor izonta l  e l a s t i c  elements (cz" i n  Fig.3.17) 
such that t h e i r  complex dynamic s t i f f n e s s  w i l l  be equal  t o  t h e  complex la teral  
s t i f f n e s s  of t h e  t i r e  i n  wobbling. The coe f f i c i en t s  of s t i f f n e s s  and d a q i n g  of 
t h e  thus se lec ted  11equivalent~le l a s t i c  element can be determined, respect ively,  
as t h e  r e a l  and imaginary p a r t s  of t he  complex quant i ty  D(w) which i s  e q r e s s e d  
by eq*(4*8)*  

Separating t h e  real and imaginary p a r t s  i n  eq.(4.8), we obta in  

(5)(!?E) 

The r e su l t an t  formulas are comparatively complex and require knowledge of 
t h e  t i r e  constants  CY and 8 .  

The formulas f o r  determining ceq and k,, can be g rea t ly  s implif ied i f  we 
replace M.V.Keldysh's conditions of wobbling by t h e  so-called 11tiPtlI hypothesis, 
according t o  which t h e  lateral deformation of t h e  t i r e  X (IItilt11) i s  connected 
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with  t h e  angular deformation of t h e  
t i r e  cp by t h e  simple r e l a t i o n  

A-rlcp, ( 4  12) 

where 7 = -	B i s  t h e  so-called 
CY 

l 1 t i l t I I  coef f ic ien t .  

As shown i n  a paper by M.V. 
Keldysh (Ref  .15), this coef f ic ien t  
i s  approximately equal t o  t h e  radi
us r of t h e  undeformed t i r e  

0 IO 20 

ii, 

0.2 (r being t h e  dis tance between t h e  
t i r e  axis and t h e  ground i n  t h e  a b  

O.1 sence of compression). 

0 10 20 30 Vkmlhr I n  this hypothesis, t h e  first 
condition of t h e  system (4.4) 
y i e lds  

Fig.3.38 R e l a t i v e  La te ra l  S t i f fnes s  and 
Lateral Damping of Tire as a Function of 

Helicopter Ground Speed 1.).sec 

we obta in  

On separat ing t h e  real  and /_303
imaginary p a r t s  i n  this expression, 
we obta in  t h e  following expressions 

Fig.3.39 Relative Ia teral  S t i f fnes s  f o r  t h e  s t i f f n e s s  and damping co
and Latera l  Damping of Tire as a Func- e f f i c i e n t s  of a n  equivalent e l a s t i c  
t i o n  of Dimensionless Helicopter Ground element : 

Speed. 
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The simp1 f ied formulas (4.15) and (4.16) are more conver-ent f o r  p r a c t i c a l
ca lcu la t ions  and do not require knowledge of t h e  t i r e  constants CY and .fi. The 
accuracy of t h e  approximate formulas i s  f u l l y  s u f f i c i e n t  f o r  p r a c t i c a l  purposes. 
T h i s  i s  demonstrated by t h e  comparison graphs i n  Fig.3.38, which were obtained 
from calculat ions of t h e  main landing gear wheels of t h e  M i - 1  hel icopter  (w = 

-- 18 1 corresponds t o  t h e  frequency of t h e  second overtone of v ibra t ions) ,
sec 

using Keldyshts theory and t h e  tilt theory. 

Thus, i n  ca lcu la t ions  of natural he l icopter  v ibra t ions  during ground run it 
i s  expedient t o  use eqs.(4.15) and (4.16). I n  this case, t h e  quantity w i n  
these  equations must be subs t i tu ted  by t h e  frequency p of t h e  l a t e r a l  he l icopter  
v ibra t ions .  Figure 3.39 presents  graphs of t h e  dependence of t h e  dimensionless 

C 
= ceq and damping (-) on t h e  dimensionless re la la te ra l  s t i f f n e s s  (e) 

t i v e  ve loc i ty  -V = -v -- -.V A s  we see  from t h e  graph, t h e  lateral s t i f f n e s s  
PTI P r  

of the  t i r e  l a rge ly  depends on t h e  he l icopter  speed. A t  7 = 3 (which, f o r  t h e  

t i r e  of t h e  M i - 1  he l icopter  a t  p = 18 A i s  about 50 km/hr), t h e  la teral  t i r e  
sec 

s t i f f n e s s  i s  by a f a c t o r  of 10 less than  t h a t  of a s t a t iona ry  t i re .  

2. Calculation of Ground Resonance and Results 

The ca lcu la t ion  of ground resonance during ground run can be performed i n  
t h e  conventional manner (Sect .2) , except that t h e  values of l a t e r a l  t i r e  s t i f f 
ness cZn, when ca lcu la t ing  the  natural vibrat ions,  should be replaced by t h e  
values  of ceq derived from eq.(4.15); when determining t h e  coe f f i c i en t s  of damp
ing  of t h e  na tu ra l  v ibra t ions  (Sect.2, Subsect.&), t h e  add i t iona l  damping of t h e  
horizontal  e l a s t i c  elements (see Fig.3.17) should be taken i n t o  account i n  con
formity e . t h  eq.(d+..l6). I n  this case, t h e  values of w i n  eqs.(4.15) and (4.16) 
must be subs t i tu ted  by t h e  values of t h e  frequency p of t h e  corresponding vibra
t i o n  overtone of t h e  hel icopter .  Such a ca lcu la t ion  method i s  completely ju s t i 
f i e d  since,  at t h e  boundaries of t h e  i n s t a b i l i t y  zones, there  are pure ly  har
monic (undamped) vibrat ions,  and eqs.(4.15) and (4.16) are derived p rec i se ly  f o r  
t h e  case of harmonic la teral  t i r e  Vibrations.  The purpose of ca lcu la t ing  ground 
resonance is  t o  f i n d  these  boundaries of t h e  unstable range. 

When using t h e  formula 
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i n  t h e  ca lcu la t ion  of na tu ra l  he l icopter  v ib ra t ion  frequencies,  .a d i f f i c u l t y  i s  
encountered connected with t h e  f a c t  that, t o  f i d  t h e  natural v ibra t ion  fre
quency p t h e  value of cog m u s t  be known which, i n  turn,  depends upon p .  There
fore ,  t h e  ca lcu la t ion  of n a t u r a l  v ibra t ions  (determination of p)  should be car
r i e d  out by assigning d i f f e r e n t  values t o  ceq i n  t h e  i n t e r v a l  0 C ceq < c:', 
and then, af ter  determining p, der iving t h e  corresponding value of t h e  ground 
run speed from eq.(4.17). Here, f o r  determining this speed we have t h e  formula 

Based on such a calculat ion,  it i s  poss ib le  t o  construct t h e  graph of t h e  
dependence of t h e  i n s t a b i l i t y  

1 1 I I 
0 10 20 30 40 VkmJhr 

Fig .3.4O Lower Instabil i ty 
Zone Boundary as a Function 
of Ground Run, f o r  t h e  M i - 1  

Helicopter. 
ncr - C r i t i c a l  revolut ions 
corresponding t o  onset of 
self-exci ted vibrat ions;  
&: - Revolutions correspond
i n g  t o  the  i n s t a b i l i t y  zone 

center .  

zone boundaries on t h e  ground run speed V. Here, 
F'ig.3.40 gives t h e  r e s u l t s  of a ca lcu la t ion  of 
tGs type-for t h e  M i - 1  hel icopter .  The graph 
shows t h e  lower boundary of t h e  i n s t a b i l i t y  zone 
corresponding t o  t h e  second Yibration overtone 
as a func t ion  of t h e  ground run  speed V. 

A s  indicated by t h e  graph, t he  c r i t i c a l  
revolut ions %r of t h e  r o t o r  corresponding t o  
t h e  onset of ground resonance appreciably de
crease wi th  a n  increase i n  hel icopter  speed. If 
f o r  a s t a t iona ry  parked hel icopter  t h e  rpm margin 
i s  36%, this margin W i l l  decrease t o  8%a t  a 
ground run  speed of 60 km/hr. 

It i s  important t o  note t h a t ,  upon a n  irr
crease i n  speed V, t h e  graph of n,, approaches 
some asymptote. T h i s  has t h e  following phys ica l  
meaning: 

Upon an  increase  i n  V, t h e  lateral stiff
ness of t h e  t i r e  determined by the  quant i ty  C,, 
[eq.(4.17) 1 decreases without bounds, approack  
ing  zero. I n  this case, t h e  natural. v ibra t ion  
frequencies of t h e  first and secorad overtones 
decrease, with t h e  frequency p of t h e  first 
overtone approaching zero and t h e  frequency of 
t h e  second overtone tending t o  t h e  value 
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The quant i ty  po represents  t h e  natural la teral  v ib ra t ion  frequency of t h e  
hel icopter  i n  t h e  absence of la teral  t i r e  s t i f f n e s s .  

The v ib ra t ion  mode of t h e  hel icopter  corresponding t o  this frequency repre
sents  t h e  r o t a t i o n  of t h e  he l icopter  body about t h e  p r i n c i p a l  longi tudina l  &s 
of i n e r t i a .  The corresponding v ib ra t ion  node (see Sect .2, Subsect .3) coincides 
with t h e  center  of g rav i ty  of t h e  hel icopter .  

A s i t u a t i o n  of this type might occur f o r  a hel icopter  standing s t i l l  o r  
moving over a smooth surface of ice ,  where it can be assumed that the re  i s  no 
f r i c t i o n  between t i r e  and ground (here,  a l s o  c tn  = 0). 

T h i s  r e s u l t s  i n  the  p o s s i b i l i t y  of a s implif ied (est imate)  ca lcu la t ion  of 
ground resonance d u r i  t h e  ground run, when t h e  natural v ib ra t ion  frequency &
is  determined from eq.Y4.19). Here, f o r  t h e  m a s s  of t h e  equivalent e l a s t i c  base 
(Sect.2, Subsect.6) we have t h e  formula 

Iin =J. 
112 

For t h e  damping coef f ic ien t  of t h e  hel icopter  we have 

where H i s  t h e  d is tance  from t h e  ground surface t o  t h e  center  of g rav i ty  of t h e  
hel icopter .  

The quant i ty  k,, i s  deterrrrined by means of t h e  formula 

i v \  

The quant i ty  k: i s  t h e  damping coe f f i c i en t  of t h e  v e r t i c a l  e l a s t i c  elements 
(see fig.3.16), which depends on t h e  damping p rope r t i e s  of t h e  shock s t r u t s  of 
t h e  landing gear  and i s  determined i n  t h e  same manner as that used i n  Section 2, 
Subsection 5. 

Such a n  approximate ca l cu la t ion  f o r  a hel icopter  having a n  unstable range 
located above t h e  operating rpm produces a small e r r o r  " i n  t h e  sa fe ty  factor11* 

-3 .  	-Ground Resonance on Breakiw Contact of t h e  Tires 
wi th  t h e  Ground 

A l l  above methods of ca lcu la t ing  ground resonance presumed l i n e a r i t y  of t h e  
t i r e  cha rac t e r i s t i c s .  However, i n  r e a l i t y  t h e  t i r e  cha rac t e r i s t i c  (even approx
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imately)  can be considered l i n e a r  only in s i t u a t i o n s  h which t h e  t i r e ,  d u r  
i ng  i t s  deformation, remains i n  contact wi th  t h e  ground surface.  I n  general, 
t h e  cha rac t e r i s t i c  curve of t h e  t i r e  has a s lope as shown i n  Fig.3.41. 

Lf P, i s  t h e  force  exerted by t h e  ground on 
t h e  t i r e  and s,  i s  t p e  corresponding displacement, 
t h e  cha rac t e r i s t i c  of t h e  t i r e  has t h e  form 

Lf t h e  inves t iga t ion  covers only small vibra
t i o n s  of a he l icopter  near a pos i t i on  of equilib-

I -4 As L- r i u m  corresponding t o  t h e  given ro to r  t h r u s t  T a t  
which P, = Po and s, = so ,  so that t h e  po in t  of 

Fig .3 .l+l Nonlinear De- t h e  state of t h e  t i r e  during v ibra t ions  comes t o  
pendence of t h e  Force l i e  on a c e r t a i n  segment AB wholly wi th in  t h e  
Exerted by t h e  Ground on l i n e a r  po r t ion  of t h e  cha rac t e r i s t i c ,  t hen  a l l  cal
t h e  Tire  on t h e  Ver t i ca l  cu la t ion  methods based on l i n e a r i t y  of t h e  t i r e  
Displacement of t h e  Wheel cha rac t e r i s t i c  are va l id  ( f o r  such small vibra-

Axis. t i o n s )  

However, at  l a rge  v ib ra t ion  amplitudes it may 
happen that t h e  poin t  on t h e  diagram depict ing t h e  state of t h e  t i r e  i s  beyond 
t h e  limits of l i n e a r i t y  of t h e  cha rac t e r i s t i c .  Obviously, this w i l l  be t h e  case 
whenever t h e  amplitude of displacement A s  i s  g rea t e r  t han  t h e  amplitude of s t a t i c  
compression so.  The extent of s t a t i c  compression so,  j u s t  as t h e  force  Po, /306
depends on t h e  r o t o r  t h r u s t  and decreases with increasing r o t o r  t h r u s t  T, ap
proaching t h e  magnitude of t h e  hel icopter  weight G. If T < G, t h e  t i r e  i s  forced 
against  t h e  ground; however, t h e  hel icopter  v ib ra t ion  amplitude a t  which t h e  
t i res  begin t o  break contact with t h e  ground is smaller t h e  c loser  t h e  quantity T 
approaches t h e  value T = G. Therefore, breaking contact of t h e  t i r e s  on takeoff 
and landing i s  most r ead i ly  achieved when t h e  r o t o r  t h r u s t  i s  l e s s  than  t h e  
hel icopter  weight but s t i l l  s u f f i c i e n t l y  high. 

Calculation of hel icopter  v ibra t ions  on breaking contact with t h e  ground i s  
r a the r  complicated. However, without ac tua l ly  performing such calculat ions,  
c e r t a i n  valuable but qua l i t a t ive  conclusions can be drawn. Actually, during v i 
bra t ions  on breaking contact of t h e  tires, the  he l icopter  represents  a nonlinear 
o sc i l l a to ry  system wi th  backlash. It i s  known t h a t  t h e  natural v ibra t ion  fre
guency of a system wi th  backlash depends on t h e  v ibra t ion  amplitude and on t h e  
magnitude of backlash; t h e  g rea t e r  t h e  backlash (a t  a given amplitude), t h e  
smaller t h e  frequency of na tu ra l  vibrat ions.  T h i s  i s  phys ica l ly  understandable, 
s ince t h e  presence of backlash is equivalent t o  a decrease i n  t h e  average (during 
one osc i l l a to ry  period) s t i f f n e s s  of t h e  e l a s t i c  element. 

Consequently, during he l icopter  v ibra t ions  on breaking contact wi th  the  
grourd t h e  natural v ib ra t ion  frequencies decrease, accompanied by a reduct ion i n  
t h e  extent of t h e  unstable range. Therefore, i f  t h e  i n s t a b i l i t y  zone correspond
i n g  t o  t h e  second v ib ra t ion  overtone i s  higher t han  t h e  operating rpm of t h e  
ro tor ,  then  t h e  rpm margin up t o  t h e  lower boundary of t h e  i n s t a b i l i t y  zone de
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creases  during v ibra t ions  on l i f t -off ,  and it may happen t h a t ,  a t  a s u f f i c i e n t l y  
la rge  v ibra t ion  amplitude, t h e  lower boundary of t h e  i n s t a b i l i t y  zone "descends11 
t o  t h e  operating r p m .  

Thus, a hel icopter  which, i n  t h e  presence of small vibrat ions,  has an  i
s t a b i l i t y  zone located above t h e  operating r p m  w i l l .  be stable only a t  s m a l l  vi
b r a t i o n  amplitudes not exceeding a c e r t a i n  c r i t i c a l  amplitude a"', which can be 
designated as t h e  exc i t a t ion  threshold a t  vibrat ions on Lift-off.  

It is obvious from the  above statements that t h e  magnitude of t h e  exci ta
t i o n  threshold i s  smaller, t h e  weaker t h e  forces  forcing t h e  t i r e  against  t h e  
ground, i.e.,  t h e  more c lose ly  t h e  r o t o r  t h r u s t  approaches t h e  hel icopter  weight. 
Thus, t h e  most dangerous s i t u a t i o n  occurs a t  t h e  i n s t a n t  of l i f t -o f f  of t h e  heli
copter and inmediately after landing. Consequently, on occurrence of v ibra t ions  
during takeoff o r  landing t h e  r o t o r  t h r u s t  m u s t  be reduced immediately. T h i s  
causes t h e  shock s t r u t s  t o  operate,  i nh ib i t i ng  v ibra t ion  of bouncing. 

It i s  important t o  note t h a t  vibrat ions on l i f t - o f f  a r e  dangerous only i f  
t h e  unstable range i s  above t h e  operating rpm of t h e  ro to r .  From this Viewpoint, 
t h e  landing gear configurat ion proposed by t h e  B r i s t o l  Company (see Eg.3.18) i s  
of i n t e r e s t .  A s  indicated above (Sect.2, Subsect.2), it i s  poss ib le  i n  this 
landing gear configuration t o  cause t h e  f l e x u r a l  center  of t h e  shock absorber 
system t o  coincide with t h e  center  of grav i ty  of t he  hel icopter  by choosing the  
s t i f f n e s s  of a spec ia l  spr ing c S p  i f  t h e  landing cha rac t e r i s t i c s  of t he  gear are 
otherwise sa t i s fac tory .  Here t h e  la teral  forward v ibra t ions  of t h e  hel icopter  
and t h e  angular vibrat ions about t he  p r i n c i p a l  longi tudinal  axLs of i n e r t i a  of 
t h e  fuselage become independent. 

Calculations show that i n  this case t h e  frequency of l a t e r a l  forward vibra
t i o n s  i s  approximately t h e  same (somewhat lower) as t h e  frequency of t h e  first 
v ibra t ion  overtone of a hel icopter  with a landing gear  of conventional configura
t ion ,  whereas t h e  angular Vibration frequency may be appreciably reduced i n  com
par i son  with the  frequency of t h e  second overtone f o r  conventional landing gears  
( i n  t M s  case, it can even be made equal t o  t h e  frequency of t h e  f i r s t  overtone). 

Thus, t h e  use of a landing gear of t h e  "Bristolll type permits obtaining 
a r a the r  low frequency of t h e  second v ib ra t ion  overtone so t h a t  t h e  correspond-

/397 
i n g  unstable range will come t o  l i e  below t h e  ro to r  operating rpm. Ground reso
nance on breaking contact wi th  t h e  ground cannot occur i n  such a hel icopter .  

Sect ion 5. @ox&Resonance of Helicopters of Other Configurations 

1. General Coments 

As indicated above (Sect .2, Subsect .1), a ca lcu la t ion  of na tu ra l  v ibra t ions  
of a hel icopter  on t h e  ground must be based on the  problem of v ibra t ions  of a 
s o l i d  body (disregarding fuselage e l a s t i c i t y )  on an  e l a s t i c  base. A s o l i d  body 
on a n  e l a s t i c  base has six degrees of freedom. Accordingly t h e r e  are six natu
r a l  v ib ra t ion  overtones f o r  such a system, each corresponding t o  a c e r t a i n  vibra
t i o n  frequency and mode. For a s ingle-rotor  hel icopter  with a s lender  fuselage,  
we were able t o  consider only la teral  v ibra t ions  and t o  disregard yawing osc i l 
l a t i o n s  (Sect .2, Subsect .I). 
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For a he l icopter  f o r  which t h e  moments of i n e r t i a  of t h e  fuselage r e l a t i v e  
t o  the  three p r i n c i p a l  axes of i n e r t i a  are magnitudes of t h e  same order, such a 
s impl i f ica t ion  i s  impermissible. However, i f  t h e r e  i s  a plane of symmetry of 
t h e  fuselage, then  t h e  longi tudina l  and lateral  v ibra t ions  can be considered as 
independent. I n  this case, t h e  ca lcu la t ion  of lateral  vibrat ions must take  
three degrees of freedom i n t o  consideration: 

1)lateral  displacement ; 
2) angle of roll;
3) angle of yaw. 

A ca lcu la t ion  of v ibra t ions  i n  t h e  plane of symmetry ( longi tudina l  vibra
t i o n s )  must a l s o  allow f o r  three degrees of freedom: 

1)longi tudina l  displacement ; 
2) v e r t i c a l  displacement;
3 )  angle of p i t ch .  

From t h e  viewpoint of ground resonance, both la teral  and longi tudinal  vi
bra t ions  are dangerous. 

Below, we w i l l  give methods of ca,lculating t h e  natural v ibra t ions  of a hel i 
copter which t ake  i n t o  account a l l  of t h e  above-indicated degrees of freedom. 

It should be noted t h a t  these  methods are appl icable  a l s o  t o  a s ingle-rotor  
hel icopter  and permit obtaining r e s u l t s  more accurate  than  t h e  r e s u l t s  of a n  ap
proximate ca lcu la t ion  by t he  method presented i n  Section 2. 

We w i l l  a l s o  descr ibe a method of ca lcu la t ing  ground resonance i n  air, 
caused by e l a s t i c i t y  of t h e  fuselage.  

2. 	 Calculation of Lateral Natural Vibrations wi th  Consideration 
of Three Degrees of Freedom 

Figure 3.42 shows a hel icopter  on a n  e l a s t i c  landing gear.  Let  us choose a 
rectangular  f ixed  coordinate system cxyz wi th  i t s  o r i g i n  a t  t h e  center  of gravi
t y  c of t h e  hel icopter .  The cx-axis i s  d i rec ted  forward ( i n  t h e  plane of sym
metry of t h e  fuselage)  p a r a l l e l  t o  t h e  surface of t h e  ground, t h e  cy-axis i s  
d i rec ted  upward, and t h e  cz-axis i s  d i rec ted  t o  t h e  r igh t ,  viewed i n  d i r e c t i o n  
of t h e  cx-axis. ht z be t h e  displacement of t h e  center  of grav i ty  of t h e  heli
copter i n  d i r e c t i o n  of t h e  cz-axis, and l e t  cp, and cpy be t h e  angles of r o t a t i o n  
of t h e  fuselage relative t o  t h e  cx- and cy-axes (cp,  being t h e  angle of roll and 
c p y  t he  angle of yaw). 

The equations of lateral v ibra t ions  of t he  he l icopter  can be wr i t t en  i n  
t h e  form 
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where 
m = mass of t h e  hel icopter ;

I, and I, = moments of i n e r t i a  of t h e  fuselage r e l a t i v e  t o  t h e  cx- and 
cy-axes ; 

I,, = corresponding cen t r i fuga l  moment of i n e r t i a ;
M, and My = moments of ex terna l  forces  ac t ing  on t h e  fuselage r e l a t i v e  t o  

t h e  cx- and cy-axes; 
Z = pro jec t ion  of t he  ex te rna l  forces  ac t ing  on t h e  fuselage a t  

t h e  cz-axis. 

Fig.3.42 Scheme of Helicopter on an  E las t i c  
Landing Gear. 

Let  us first study v ibra t ions  i n  t h e  absence of damping. I n  this case, t h e  
quant i t ies  I$,My and Z i n  t h e  presence of small natural hel icopter  v ibra t ions  
r e l a t i v e  t o  the  pos i t i on  of equilibrium can be l i n e a r l y  expressed i n  terms of 
the  displacements z, cp,, and c p y .  W e  can then  write t h e  expressions f o r  displace
ments of t h e  flexural centers  of shock absorption ( c . f l )  i n  t he  cross  sec t ions  
1-1 and 11-11 of t h e  fuselage (Fig.3.42) corresponding t o  t h e  f o r e  and af t  land
ing  gear i n  terms of t h e  quant i t ies  z ,  cp,, cp,: 

1)fore  landing gear: 

21=Z--(Pzlll-qwl; 

2) af t  landing gear: 
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where 
1, and 1, = dis tances  of t h e  planes of t h e  f o r e  and af t  landing gears  

from t h e  center  of grav i ty  c ;  
e, and e2 = distances  from t h e  cx-axis t o  t h e  flexural centers  of t h e  

f o r e  and af t  landing gears. 

Knowing t h e  displacement of t h e  flexural center  of %he fuselage cross sec
t i o n  z i n  t h e  plane of t h e  given landing gear  and t h e  r o t a t i o n  of this cross  
sec t ion  r e l a t i v e  t o  t h e  flexural center  (which f o r  both cross  sec t ions  w i l l  be /308
equal  t o  cp, ) ,  we can determine t h e  e l a s t i c  forces  and moments act ing on t h e  fuse
lage i n  this cross  sec t ion  i n  t h e  same manner as before (Sect.2, Subsect.2) f o r  
a plane body on a f l e x i b l e  support. Determining then  t h e  quant i t ies  M,., My, 
and Z, we obta in  t h e  following expressions: 

M X 
- -c e l y y  +C,Z +Gz; 

mu= -c.?Y yg -C e l Y x  +c,z; (5.2) 
z= -c,z f C,'?, $-c l yy ,  

where t h e  corresponding s t i f f n e s s  coef f ic ien ts  are determined by t h e  formulas 

The quant i t ie  czl ,  c z 2 ,  ccpl, and ccp2 represent  t he  coe f f i c i en t s  of l a t e r a l  

and angular s t i f f n e s s  of t h e  f o r e  and a f t  landing gears .  

The first equation of t h e  system (5.2) a l s o  contains t h e  t e r m  Gz represent
ing  t h e  moment of t h e  force  of t h e  hel icopter  weight G r e l a t i v e  t o  the  cx-axis, 
generated during t h e  la teral  displacement 2. 

Subs t i tu t ing  eqs.( 5.2) i n t o  eqs.(5.1), we f i n a l l y  obtain t h e  following equa
t i o n s  of small l a t e r a l  he l icopter  vibrat ions:  

Seeking the  so lu t ion  of this system i n  the  form 
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z =.zocos p t ;  
'px =$9; cos p i ;  

ysr=y' Y cos p t ,  

where zo, cp:, cp: ,  and p a r e  constants,  we a r r i v e  at  t h e  following system of 
l i n e a r  a lgebraic  equations f o r  determining these  constants:  

Equating t o  zero t h e  determinant of this system 

and performing simple transformations, we obta in  the  following cha rac t e r i s t i c  
equation f o r  determining the  na tu ra l  l a t e r a l  v ibra t ion  frequencies p of t h e  hel i 
copter:  

A p 6f Bp4+Cp2+D=0, 
(5.6)

where 

, h,hx =-e 	 'Ixy= I X  a r e  dimensionless coef f ic ien ts .  
1, I Y  

The p a r t i a l  frequencies pz ,  pyx, pYy and the  quantities p z y ,  P ; ~ ,  e tc .  are 
obtained by means of t h e  formulas 



Gp i = - .
1, 

Equation (5.6) i s  a n  equation of t he  t h i r d  power wi th  respect  t o  t h e  quan
t i t y  p2. It can be demonstrated t h a t  i t s  roots p: ( k  = l, 2, 3) are always real 
and pos i t ive .  Therefore, one of t h e  poss ib le  methods of f inding t h e  na tu ra l  
v ibra t ion  frequencies pk i s  t h e  graphic method i n  which we construct t h e  graph 
of t h e  le f t - s ide  of this equation, which i s  regarded as a function of t h e  quan
t i t y  p.  The po in t s  of i n t e r sec t ion  of this graph wi th  t h e  abscissa  give t h e  
values of t h e  natural frequencies ( f ig  .3.43). 

Let us number t h e  natural v ib ra t ion  frequencies of t h e  system i n  increasing 
order: p1 < pz < p3. Let us c a l l  t h e  quantities pl, p2, p j ,  t he  frequencies of 
t h e  first, second, and t h i r d  overtones of t h e  he l icopter  natural lateral vibra
t ions .  Each na tu ra l  v ibra t ion  frequency corresponds t o  a c e r t a i n  v ib ra t ion  mode 
characterized by a c e r t a i n  co r re l a t ion  of t h e  amplitudes zo ,  cpz, cp; ,  which can 
be found f o r  a given pk (k  = 1, 2, 3) from eqs.(5.5) i f  we subs t i t u t e  t h e r e  pk 
f o r  t h e  quantity p .  T h i s  w i l l  yield t h e  expression 

where'k = 1, 2, 3. 

It is easy t o  show t h a t  t h e  v ibra t ion  mode of a given overtone i s  char
ac te r ized  by a c e r t a i n  s t r a i g h t  l i n e  lying i n  t h e  plane of symmetry of t h e  fuse

lage xcy and represent ing t h e  locus of t he  po in t s  
(belonging t o  t h e  fuselage)  remaining s t a t iona ry  dur
ing  v ibra t ions  of this overtone. 

I n  f ac t ,  t he  displacement z,, of a c e r t a i n  fuse
lage poin t  A lying i n  t h e  plane xcy and having t h e  
coordinates x and y ( see  F'ig.3.42) can obviously be 
determined by t h e  formula 

ZA = +~ x y - ~ u % .  
Fig .3 4.3 Character of 
t h e  Graph A = A ( p )  f o r  I n  t h e  presence of v ibra t ions  of t h e  k-th over-
Determination of t h e  tone, we have 
Natural Vibration F're- z=zo cos pkt;  
quencies of a Heli
copter  on a n  E las t i c  yx =7; cos p J ;  

Landing Gear. '?sr =y; cos PRt. 
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Hence, 

Therefore, t h e  condi t ion 

represents  t h e  equation of t h e  locus of t h e  po in t s  i n  t h e  plane xcy, whose vi
b r a t i o n  amplitudes are equal t o  
However, this i s  an  equation of 

-e 


Th 

zero during Vibrations of t h e  k-th overtone. 
some s t r a i g h t  l i n e .  

Thus, t h e  v ib ra t ion  mode of 
t h e  k-th overtone can be charac
t e r i zed  by t h e  pos i t i on  of some 
s t r a i g h t  l i n e  i n  the  plane xcy. 
T h i s  s t r a i g h t  l i n e  w i l l  be desig
nated here as t h e  l i n e  of t h e  
nodes of t he  k-th overtone of 
la teral  vibrat ions.  The equation 
of t h e  nodal line [eq.(T.lO)l i s  
e a s i l y  derived by means of eq.( 5.9)
for a given value of pk  . 

The r e s u l t s  of natural lateral  
r i b r a t i o n  analyses of a hel icopter  
a r e  conveniently represented as a 
sketch giving a s ide  view of t h e  

f i g  .3 .& Charac ter i s t ic  Arrangement of he l icopter  and t h e  nodal l i n e s  of 
t h e  Nodal Lines of Vibrations of t h e  a l l  three v ibra t ion  overtones, with 

first, Second, and Third Overtones. an  ind ica t ion  of t h e  correspond
ing  frequencies (Fig .3 .&). 

The approxbnate ca lcu la t ion  method f o r  natural la teral  vibrat ions given i n  

Section 2 and based on t h e  a s s m p t i o n  of independence of yawing vibrat ions,  /312 

can be obtained as a p a r t i c u l a r  case of t h e  equations derived here. 

If t h e  cx- and cy-axes are t h e  p r i n c i p a l  axes of i n e r t i a  (I,, = 0)  and i f  
t h e  conditions 

are s a t i s f i e d ,  t hen  eqs .( 5.4.) are resolved i n t o  two indepeden t  systems of equa
t i o n s  : 

'XyX=I(G -ce)  z-cQxpx; 

mz=-czz+ceyx; I 
i (5.10') 
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--C,c?,. (5.10“) 

Equation (5.10”) determines t h e  independent yawing vibrat ions,  w h i l e  t h e  
system of equations (5.10’) determines t h e  lateral v ibra t ions  corresponding t o  
t h e  phys ica l  p i c t u r e  presented i n  Sect ion 2 ( i n  this case, two of t h e  nodal 
l i n e s  are p a r a l l e l  t o  t h e  cx-axis, and t h e  t h i r d  coincides wi th  t h e  cy-axis). 

For a real  hel icopter ,  t h e  conditions ct  = c,t = 0 and I,, = 0 are never 
accurately s a t i s f i e d .  However, f o r  he l icopters  with a n  elongated fuselage,  i f  
t h e  angle a between t h e  p r i n c i p a l  a x i s  of i n e r t i a  cxo and t h e  cx-axis i s  low 
(see Fig.3.42) and t h e  mment of i n e r t i a  I, i s  s m a l l  i n  comparison with t h e  two 
o thers  (I, and Iz), t h e  r e s u l t s  of t h e  llexactll and approximate calculat ions may 
agree wi th  a n  accuracy suf f ic ien t  f o r  p r a c t i c a l  purposes 

To determine t h e  damping coeff ic ients  of natural vibrat ions,  one can use an  
approximate method analogous t o  that presented i n  Sect ion 2 (Subsect.4) f o r  a 
system with two degrees of freedom. For each na tu ra l  v ib ra t ion  overtone, we 
then  determine t h e  damping coeff ic ient  on t h e  assumption that i n  t h e  presence of 
damping t h e  v ibra t ions  of this overtone represent  a l s o  angular vibrat ions about 
t h e  nodal l i n e  of this overtone. I n  t h i s  case, j u s t  as Sefore (Sect .2, Sub-
sec t  .4), t h e  equation of natural angular v ibra t ions  of t h e  he l icopter  about t h e  
nodal l i n e  can be w r i t t e n  i n  t h e  form 

where 
I, = moment of i n e r t i a  of t h e  he l icopter  r e l a t i v e  t o  t h e  nodal 

l i n e  of t h e  k-th overtone; 
ccR(= PgIk = angular s t i f f n e s s  of t h e  shock absorber system during r o t a t i o n  

r e l a t i v e  t o  t h e  noda l l ine  of t h e  k-th overtone; 

k v k  
= corresponding damping coe f f i c i en t .  

The moment of i n e r t i a  of t h e  hel icopter  r e l a t i v e  t o  the  nodal l i n e  can be 
determined by means of t h e  formula: 

I,=mh,2+ / , c o s 2 y R +  Ibrsin*yk$/,sin Zy,, (5.12) 

where 
hk = distance from t h e  center  of g rav i ty  of t h e  hel icopter  t o  t h e  nodal 

l i ne ;  
Y k  = angle made by t h e  nodal l i n e  wi th  t h e  cx-axis (Fig.3 .&). 

The quant i t ies  hk and yk are determined from t h e  formulas 
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The coe f f i c i en t  of angular damping kv, is  determined from t h e  expression 

k,, =2ki,di, +2kZ,r1,2,j - 2 (klIayf ki,a;) cos2 ykr 
(5 015) 

where 
d is tances  between t h e  nodal l i n e s  (F’ig.3.45) and t h e  
l i n e s  connecting t h e  poin t  of contact with t h e  ground 
of t h e  t i res  of t h e  f o r e  and af t  landing gears;  
wheel t r acks  of t h e  f o r e  and a f t  landing gears  
( f i g  03 0 1 6 )  ;
damping coe f f i c i en t s  of t h e  l a te ra l  and v e r t i c a l  
spr ings (see Fig.3.16) of t h e  f o r e  and a f t  landing 
gear, having t h e  same meaning as i n  Section 2 (Sub-
sec t  .IC). 

After determining t h e  quant i ty

’i n kV,, we can der ive  t h e  dimension
less coe f f i c i en t  of damping of t h e  
k-th overtone : 

- k,a h = - ! - .  (5.16)
2 z k p k  

3. 	C a l s l a t i o n  of Natural Helicopter 
Vibrations i n  the  Plane of 
S;v”et-ry ( tudina l  Vibrations) 

Fig .3.45 For Basic Correlat ions during kt us t u r n  t o  fig.3.46. The
Vibrations of a Helicopter R e l a t i v e  t o  problem of he l icopter  v ibra t ions  i n
t h e  Nodal Wne of t h e  k-th Vibration t h e  plane of symmetry reduces t oOvertone. an inves t iga t ion  of o sc i l l a t ions  of 

a clamped plane e l a s t i c  so l id  body 
i n  i t s  own plane (xOy). The v e r t i c a l  spr ings with a s t i f f n e s s  coef f ic ien t  cy l  
and c y 2  simulate t h e  v e r t i c a l  r i g i d i t y  of t h e  fo re  and af t  landing gears, w h i l e  
t h e  hor izonta l  spr ings cX1 and cx2  simulate t h e  f o r e  and a f t  landing gears i n  
t h e  d i r e c t i o n  of t h e  Ox-ads. If t h e  tires of t h e  landing gears a re  not braked, 
then  cX1 a& c x 2  = 0. I n  t h e  case of braked tires, t h e  e l a s t i c i t y  of t h e  land
i n g  gear i n  t h e  d i r e c t i o n  of t h e  Ox-axis i s  composed of t h e  e l a s t i c i t y  of t h e  
t i r e  and t h e  e l a s t i c i t y  of t h e  t i r e  suspension system ( f o r  example, f l e x u r a l  
e l a s t i c i t y  of t h e  landing gear s t r u t s ,  etc.) .  For approximate calculat ions,  t he  
longi tudina l  s t i f f n e s s  of one t i r e  cZn can be taken as equal t o  cZn 1.5 c;.. 

Iet t h e  poin t  M (F’ig.3.46) wi th  t h e  coordinates e, and e y  represent t h e  
flexural center  of t h e  shock absorber system at longi tudina l  v ibra t ions .  The 
quant i ty  ey is  t h e  d is tance  of t h e  center  of grav i ty  of t h e  hel icopter  from t h e  
ground surface,  w h i l e  t h e  quant i ty  e, i s  ,determined from t h e  expression 
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Let x and y represent  displacements of t h e  center  of grav i ty  of t h e  h e x - /'Jl,4 
copter  i n  t h e  d i r e c t i o n  of t h e  Ox- and Cy-axes, and le t  cpz be t h e  angle of rota
t i o n  of t h e  fuselage r e l a t i v e  t o  t h e  02-&so Then, t h e  equations of small v i 
bra t ions  of t h e  he l icopter  i n  t h e  plane xOy i n  t h e  absence of damping have t h e  
f om 

where 

Let us introduce t h e  following notat ions : 

ro=c, e; +cYe: +c,; 1 

Le t  us a l s o  s u b s t i t u t e  cpz by t h e  new variable 

S=@*. 


Equations (5.18) can then  be wr i t t en  i n  t h e  form 

x=-p;x +p;e,s;-

Y =-p2Yy -p2,e,s; 

s =-p;s +p;<x -P2;Y X Y .  

Seeking t h e  so lu t ion  of this system of equations i n  the  form 

x=xo cos pt;  y =yo cos pt;  s =so cos p t ,  (5.23) 

we arrive a t  t h e  following system of l i n e a r  homogeneous algebraic  equations f o r  
determining t h e  quant i t ies  x,, yo, and so: 

(5.24) 



Equating t h e  determinant of this system t o  zero /315 

we obta in  t h e  fo l l a J ing  cha rac t e r i s t i c  equation f o r  determining t h e  na tu ra l  Vi
bra t ion  frequencies p : 

p6+ up4+bp2 +c =0, (5.25) 

where 

T h i s  ecpation has th ree  real  roo t s  p ”  which can be found graphical ly  by 
constructing t h e  graph of t h e  func t ion  A = = similar t o  

-X 

Fig.3.G Scheme of Helicopter on a n  
E l a s t i c  Landing Gear, f o r  Calculating 
Vibrations i n  the  Plane of Symmetry. 

A(p) p6 + ap4 + bp” + c, 
t h a t  ind ica ted  i n  Section 5 (Sub
sect.2) for eq.(5.6) ( s ee  fig.3.43). 
Let us then arrange t h e  roots  of 
t h e  eq.( 5.25) i n  ascending order  
p1 < pa < p3 and designate by t he  
quant i t ies  p l ,  pa, and p3 the  fre
quencies of t h e  first,  second, and 
t h i r d  natural v ibra t ion  overtones 
of t h e  he l icopter  i n  t h e  plane of 
symmetry, or longi tudinal  vibra
t ions .  To each longi tudina l  vibra
t i o n  overtone the re  corresponds i ts  
own v ib ra t ion  mode of t h e  hel i 
copter,  which is conveniently char
ac te r ized  by t h e  pos i t i on  of t h e  
corresponding v ibra t ion  node 0 k 
(here  k = 1, 2, 3 )  i n  t h e  plane B y ,  

i.e., t h e  fuselage po in t s  that remain s t a t iona ry  during v ibra t ions  of this over
tone.  The coordinates of t h e  v ib ra t ion  node xk and yk can be found i n  t h e  fo l 
lowing manner: The v ib ra t ion  amplitude a, and ay  of any fuselage poin t  wi th  t h e  
coordinates xk a d  yk in d i rec t ions  of t h e  Ox- and Oy-axes are determined by t h e  
obvious formulas 

where cpo = sop is t h e  angular v ib ra t ion  amplitude of t h e  hel icopter .  
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The coordinates xk and yk are determined from t h e  conditions a, = 0 and 
a y  = 0, such that 

X O 
The values of t h e  r a t i o  -Yo and - can be found f rorn the  first two equa-
S O  S O  

t i o n s  of t h e  system ( 5 . a ) )  i f  t h e  v ib ra t ion  frequency p i s  known. For vibra
t i o n s  of t h e  k-th overtone, we ob ta in  

P:.Y 

(:)&=mi 

Hence, we ob ta in  t h e  following formulas f o r  determining t h e  coordinates /316
of t h e  v ib ra t ion  node: 

We w i l l  give two p o s s i b i l i t i e s  f o r  a s implif ied ca lcu la t ion  of na tu ra l  heli
copter v ibra t ions  i n  t h e  plane of symnetry. 

When t h e  flexural center  of shock absorpt ion M (see Fig.3.46) l ies  on t h e  
Oy-axis (e, = 0), t h e  equations of motion (5.B) are s implif ied and take t h e  
form 

my =-cYy; 

Equation (5.28) descr ibes  v e r t i c a l  forward v ibra t ions  of t h e  helicopter,  
which a r e  not of i n t e r e s t  from t h e  Viewpoint of ground resonance. 

Equations (5  .a)express longi tudina l  Vibrations of t h e  hel icopter ,  which 
i n  this case can be regarded as a system wi th  two degrees of freedom x and cpz. 
Such a system i s  mechanically equivalent t o  t h e  system discussed i n  Section 2 
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(Subsect .3) and depicted i n  Fig.3.16. Therefore, i n  ca lcu la t ing  t h e  na tu ra l  
frequencies of a hel icopter ,  it i s  here poss ib le  (neglecting the  moment due t o  
t h e  force  of t h e  weight G )  t o  use t h e  graphs i n  Figs.3.19 and 3.20 as w e l l  as 
eqsa(2.22), (2.23), and (2.241, put t ing  the re  

x=  I,. 
me; ’ 

YkThe quant i ty  gk = -W i l l  represent t h e  ;.elative d is tance  between t h e  vi
e Y  

b r a t i o n  node of t h e  k-th overtone (which here comes t o  l i e  on t h e  Oy-axis) ard 
t h e  center  of grav i ty  of t h e  hel icopter .  

For a rea l  hel icopter ,  t h e  quant i ty  e, i s  general ly  not equal t o  zero, but 
usual ly  i s  small i n  coqparison wi th  t h e  quant i ty  1 + 1,. In most cases, an ap
proximate ca lcu la t ion  i n  which we set e, = 0 w i l l  give natural v ib ra t ion  values 
c lose t o  those obtained by an  exact ca lcu la t ion  and can be successful ly  used as 
a preliminary ca lcu la t ion  whenever one wishes t o  obta in  r e s u l t s  quickly, with
out  t h e  need f o r  g rea t e r  accuracy. 

When ca lcu la t ions  of longi tudina l  Vibrations are car r ied  out i n  t h e  pres
ence of unbraked t i res  ( c ,  = 0) ,  t h e  equations of motion (5.18) again are re
solved i n t o  two independent systems : 

mx=O; 

I n  this case, we can assume x = 0 during v ibra t ions  s ince  there  i s  no /317
projec t ion  of t h e  ex te rna l  fo rces  onto t h e  Ox-axis. One of t h e  natural fre
quencies of t h e  system i s  equal  t o  zero and corresponds t o  uniform motion of t he  
center  of g rav i ty  of t h e  he l icopter  along t h e  Ox-axis. The two o ther  na tu ra l  
v ibra t ion  frequencies,  as i n  t h e  preceding case, can be found from t h e  graphs i n  
Figs.3.19 and 3.20 o r  from eqs.(2.22), (2.23), and ( 2 . a )  i n  which we must pu t  

xkThe values of ak = - represent  t h e  r e l a t i v e  dis tances  between t h e  center  
e, 

of g rav i ty  of t h e  he l icopter  and t h e  v ibra t ion  nodes which, i n  this case, Lie on 
t h e  Ox-axis. 
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Final ly ,  when the re  i s  no t i r e  braking but e, = 0, t h e  simplest formulas 
f o r  na tu ra l  frequencies i n  the  plane of symmetry are obtained: 

To determine t h e  damping coe f f i c i en t s  of natural longi tudinal  v ibra t ions  
we can again use a n  approximate method based on t h e  assumption tha t ,  i n  t h e  
presence of damping forces ,  t h e  v ibra t ions  of t h e  given overtone are angular vi
bra t ions  r e l a t i v e  t o  t h e n o d a l l i n e  of t h e  given overtone which, i n  this case, 
represents  a s t r a i g h t  l i n e  p a r a l l e l  t o  t h e  02-axis and in t e r sec t ing  t h e  plane xOy 
a t  a poin t  with the  coordinates xk and Yk [see eqs.(5.27)1. The equation of vi
bra t ions  of this overtone can be r ewr i t t en  i n  t h e  form of es.( 5.11), except t h a t  
t h e  quant i ty  I, is found from the  formula 

I n  determining t h e  damping coef f ic ien t  kq k  t he re  i s  no need t o  allow f o r  
damping of t h e  longi tudina l  e l a s t i c  elemerks cX1 and c x 2  ( see  Fig.3.46) so  t h a t  

only damping of t h e  v e r t i c a l  e l a s t i c  elements wi th  s t i f f n e s s e s  c; and c; of 
1 2 

t h e  fore  and af t  landing gears  m u s t  be considered (see Fig.3.16). 

The corresponding damping coe f f i c i en t s  k:l and ki2 a r e  determined as indi
cated i n  Section 2 (Subsects .4 and 5). 

By ca lcu la t ing  t h e  moment from t h e  damping forces  r e l a t i v e  t o  t h e  nodal 
l i ne ,  w e  obtain t h e  following expression f o r  determining t h e  quantity kq: 

The dimensionless damping coef f ic ien t  ?ik of t h e  given v ib ra t ion  overtone i s  
de te d  ned by t h e  formula 

4. 	Reduction- of t h e  Problem t o  Calculation o f  a Rotor m 
on a n  E las t i c  Base 

After determining t h e  natural v ib ra t ion  frequencies a& modes of t h e  heli
copter  on an  e l a s t i c  landing gear, t h e  ca l cu la t ion  of ground resonance can be 
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reduced t o  t h e  ca lcu la t ion  of a r o t o r  on a flexible support, as presented i n  
Section 1. 

The method of ca lcu la t ion  based on reducing t h e  problem t o  a r o t o r  on a 
f l e x i b l e  support i s  an  approximate method and analogous t o  that given i n  Sec
t i o n  2 (Subsect.6) f o r  a s ingle-rotor  hel icopter .  

The essence of t h e  approximate method i s  as follows: A separate  calcula
t i o n  of ground resonance i s  performed f o r  each natural v ibra t ion  overtone; here, 
t h e  hel icopter  fuselage i s  regarded as a so l id  body wi th  one degree of freedom, 
namely r o t a t i o n  about t h e  nodal l i n e  of t h e  given overtone. O f  course, such a n  
approximate method holds only f o r  t h e  case i n  which t h e  n a t u r a l  v ibra t ion  fre
quencies of d i f f e r e n t  overtones are suf f ic ie r r t ly  llfarll from each other .  

When the re  a r e  two Ifclose11 natural v ibra t ion  frequencies,  c e r t a i n  correc
t i o n s  must be introduced i n t o  t h e  calculat ion.  The method of re f in ing  t h e  cal
cu la t ion  Will be presented below. 

Thus, f o r  ca lcu la t ing  ground resonance, t he  he l icopter  v ibra t ions  wi th  re
spect  t o  each overtone are separa te ly  considered as angular v ibra t ions  of t h e  
fuselage about some f ixed s t r a i g h t  Line: nodal Line of t h e  given overtone. 

It can be demonstrated t h a t ,  wi th  such a. s implif icat ion,  t he  equations of 
motion of t h e  system reduce t o  a system of equations analogous t o  t h e  system
(1.16) (Sect.1). In this case, a l l  formulas of Section 1remain i n  force  and 
we can use t h e  graphs for determining t h e  i n s t a b i l i t y  f r i n g e  ( see  Figs.3.3 t o  
3.12); however, here t h e  quantity Tto i s  t o  mean a dimensionless dampi coef
f i c i e n t  ?ik of t h e  given v ib ra t ion  overtone determinable from eqs.(5.U? o r  (5.36) 
(Sect.5, Subsects.2 and 3), w h i l e  t h e  quantity E i s  t o  mean t h e  quantity ek cal
culated f o r  t h e  given overtone by t h e  formula 

i - 1  

where 
i = 1, 2, ..., s; 
s = 	number of ro tors ,  wi th  each of t h e  quant i t ies  Eik determined by t h e  

formula 

Here, 
Ik = moment of i n e r t i a  of t h e  fuselage (with t h e  r o t o r  masses concen

t r a t e d  a t  t h e  center)  r e l a t i v e  t o  t h e  nodal l i n e  of t h e  k-th over
tone [see e q ~ ~ ( 5 . 1 2 )and (5.3411; 

t, = distance between t h e  c e d e r  of t h e  given i - t h  r o t o r  and t h e  nodal 
l i n e  of t h e  k-th overtone i f  la teral  v ibra t ions  are considered, o r  
t h e  d is tance  between t h e  nodal l i n e  of t h e  k-th overtone arid t h e  
plane of r o t a t i o n  of t h e  given r o t o r  i f  longi tudina l  v ibra t ions  of 
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t h e  he l icopter  are considered; 
n = number of blades of a given ro to r ;  

SVah and IVeh s t a t i c  moment and moment of i n e r t i a  of t h e  r o t o r  blade= 
relative t o  t h e  drag ( v e r t i c a l )  hinge. 

The r o t o r s  can be d i f f e ren t ;  however, t h e  above method i s  va l id  only i f  a l l  
r o t o r s  have i d e n t i c a l  angular v e l o c i t i e s  of r o t a t i o n  and i d e n t i c a l  values of t h e  
parameter vo [see eq.( 1.9) I. 

A s  indicated above, t h e  approximate ca l cu la t ion  method presented here a 
holds only i f  t h e  v ib ra t ion  frequencies of d i f f e r e n t  overtones are s u f f i c i e n t l y  
Iffar apart".  It can be demonstrated t h a t ,  i f  t h e r e  are two close natural lat
e r a l  ( o r  longi tudinal)  v ib ra t ion  frequencies - f o r  example, pn and p m  - then  t h e  
ca lcu la t ion  of t h e  boundaries of t h e  ins tab i l i ty  zones can be performed f o r  one 
overtone - f o r  example, pm - but i s  ref ined by subst i tut i r lg  a c e r t a i n  quantity geq 
f o r  n, ( f o r  a given overtone, where neq< Gm), which i s  determined by t h e  formula 

T h i s  formula i s  derived f o r  t h e  case of pn = p m yi.e., when t h e  natural v i 
b r a t i o n  frequencies of t h e  two overtones i n  question coincide exactly.  If p n  #
# pm, then  eq.(5.39) y ie lds  an  understated value of Tieq. 

If the re  are two close natural v ibra t ion  frequencies pn and pm,  wi th  one of 
them - f o r  example, p n  - being t h e  frequency of t h e  n - th  overtone of la teral  
v ibra t ions  and t h e  other,  pm,  being t h e  frequency of t h e  m-th overtone of longi
tud ina l  vibrat ions,  then, general ly  speaking, a. r o t o r  on a f l e x i b l e  support with 
two degrees of freedom must be considered (see Sect.1, Subsect.4). I n  this 
case, it i s  poss ib le  t o  a p p r o a t e l y  estimate (wi th in  t h e  sa fe ty  f ac to r )  t h e  
required damping by eq.(1.52), f o r  a r o t o r  on an  i so t rop ic  flexible s q p o r t ,  sub
s t i t u t i n g  i n t o  it t h e  q a n t i t i e s  noand 8 f o r  t h a t  of t h e  two examined over--
tones  f o r  which t h e  value of t h e  r a t i o  -	n, i s  smaller. 

'k 

It should be noted t h a t  such a ca lcu la t ion  i s  required only i n  t h e  r a the r  
r a r e  case i n  which, f o r  both exarnined overtones, not only t h e  values of t h e  fre- 
quencies p n  and p m  but a l s o  t h e  values of -nIl and -nm are close. If t h e  quan- C I l  e m  

nkt i t y  - f o r  one of t h e  overtones i s  l a rge r  by a f a c t o r  of 2.5 - 3 than  f o r  t h e- 
'k 


other  - f o r  e x a q l e ,  -	nn 
= 3 -nm - then  we can disregard v ibra t ions  of t h e  

E n  'm 

n-th overtone, and examine only v ibra t ions  of t h e  m-th overtone (as independent). 

5 .  	Self-Excited Vibrations i n  Fl ight  of a Helicopter wi th  
an E las t i c  Fuselage 

Self-excited vibrat ions of t h e  ground resonance type are a l s o  poss ib le  i n  
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hel icopter  f l i g h t .  The fuselage of a real he l icopter  i s  an  e l a s t i c  system which 
has i t s  own na tu ra l  v ib ra t ion  frequencies and modes. Lf t h e  v ib ra t ion  mode of 
any overtone of a n  e l a s t i c  fuselage i s  such t h a t  t h e  center  of t h e  r o t o r  (or 
centers  of t h e  r o t o r s )  during v ibra t ions  of this overtone i s  displaced i n  t h e  
plane of r o t a t i o n  of t h e  ro tor ,  t hen  ground resonance is  poss ib le  and t h e  fuse
lage w i l l  execute vibrat ions wi th  the  mode of this overtone. 

The na tu ra l  v ibra t ion  frequencies of a n  e l a s t i c  fuselage are usual ly  high 
i n  comparison wi th  t h e  v ib ra t ion  frequencies of a hel icopter  wi th  shock absorp

t i o n  of t h e  landing gear, and only one o r  
two low natural v ibra t ion  harmonics a r e  

Z dangerous from t h e  viewpoint of t h e  pos
s ib i l i t y  of self-excited vibrat ions.  

I The lower natural v ib ra t ion  frequenci.es 
of t h e  fuselage usual ly  correspond t o  i t s  

I x-----c,  f lexural vibrat ions.
I 

Figure 3.47 shows t h e  v ibra t ion  
mode of t h e  first p a r t i a l  of bending of t h e

/320 
fuselage of a Mi-& he l icopter  i n  t h e  hori
zonta l  plane.  The v ibra t ion  mode i s  given 
as a curve of t h e  e l a s t i c  l i n e  u = u(x)
(u being t h e  v ibra t ion  amplitude of t h e  
poin t  wi th  t h e  coordinate x). 

Fig.3.47 Mode of First Vibra

t i o n  Overtone of an  E la s t i c  The natural flexural v ibra t ion  f re - 


Helicopter Fuselage. 	 quencies and modes of a fuselage can be 
found by conventional methods used f o r  elas
t i c  beams of var iable  cross  sec t ion  (see, 

f o r  example, Chapter I1 of this volume) o r  can be determined experimentally ( i f  
a fu l l - sca l e  hel icopter  i s  ava i lab le) .  

If t h e  frequency p o  and mode u(x) of any flexural v ibra t ion  overtone of t h e  
fuselage are known, t h e  ca l cu la t ion  of self-excited vibrat ions with t h e  mode of 
this p a r t i a l  can be reduced t o  t h e  ca lcu la t ion  of a r o t o r  on a n  e l a s t i c  base, 
using t h e  formulas i n  Sect ion 1o r  t h e  graphs i n  Figs.3.3 - 3.12. I n  this case, 
t h e  quant i ty  E should be determined by means of t h e  formula 

E = t l + E , + .  ( 5  -40) 

where s i s  the  number of ro to r s .  

The quant i t ies  e l  ( i  = 1, 2, ..., s) are determined from 
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where 

xi = coordinate of t h e  center  of t h e  i - t h  ro to r ;  
p = l i n e a r  mass of t h e  fuselage (with t h e  i n t e g r a l  taken over t h e  en

t i r e  fuselage length).  

The quant i ty  Ui(x) represents  t h e  v ib ra t ion  amplitude a t  t h e  poin t  with t h e  
coordinate x, re fer red  t o  t h e  v ib ra t ion  amplitude of t h e  center  of t h e  i - t h  
ro to r .  The quant i ty  m e q  i s  the  m a x i "  value of k ine t i c  energy of t h e  fuselage 
during v ibra t ions  with respect  t o  the  mode of t h e  given overtone, with t h e  vi
b r a t i o n  arrrplitude at t h e  center  of t h e  i - t h  r o t o r  being equal t o  unity,  re fe r red  
t o  the  q a n t i t y  p:. 

The quant i ty  noshould then  be equal  t o  t h e  dimensionless coef f ic ien t  of 
damping of t h e  given v ib ra t ion  overtone of t h e  fuselage.  It i s  determined ex
c lus ive ly  by hys te res i s  losses  i n  the  fuselage design and usual ly  amounts t o  
0.02 - 0.05. 

Such a comparatively low value of E, does not permit e l imina t i rg  ground 
resonance i n  f l i g h t  by means of a blade damper, and f l i g h t  s a f e t y  of t h e  hel i 

copter  can be ensured only a t  s u f f i c i e n t  
rpm margins up t o  t h e  lower f r inge  of in
s t a b i l i t y .  Consequently, self-exci ted 
v ibra t ions  i n  the  a i r  are dangerous only 
f o r  he l icopters  wi th  comparatively low 
natural v ib ra t ion  frequencies of t h e  
e l a s t i c  fuselage.  For example, f o r  t h e  
Mi-& he l icopter  t h e  rpm margin up t o  t h e  
lower boundary of i n s t a b i l i t y  correspond
ing  t o  t h e  first v ib ra t ion  overtone of 
t h e  fuselage (see Fig.3.47) i s  28%. 

Ground resonance i n  t h e  air consti
t u t e s  t h e  g rea t e s t  danger f o r  hel icopters  

Fig.3.48 Mode of Lower Vibration of side-by-side configurat ion with a long 
Overtone of a Side-by-Side Heli- e l a s t i c  wing (F'ig.3.48). The danger of 
copter,  Most Dangerous from t h e  self-exci ted v ibra t ions  f o r  such heli-
Viewpoint of Ground Resonance. 	 copters  i s  aggravated by t h e  f a c t  t h a t  

t h e  r o t o r  centers  coincide with t h e  an t i -
nodes of t h e  corresponding v ib ra t ion  har

monic, which y i e lds  comparatively smaU values m,, [eq.( 5.42) 1 and, consequent
ly ,  r e l a t i v e l y  wide i n s t a b i l i t y  zones. 

Sect ion 6. 	 Select ion of Basic Parameters of Landing Gear and Blade 
Dmers  . Design Recommendations 

As indicated by t h e  general  theory of s t a b i l i t y  of a r o t o r  on an  e l a s t i c  
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base, t h e  s t a b i l i t y  margin, general ly  speaking, can be increased by increasing 
t h e  degree of blade v ib ra t ion  damping as w e l l  as t h e  fuse lage 'v ibra t ion  damping, 
i.eo, by increasing t h e  damping capaci ty  of t h e  larding gear. 

However, t h e  p o s s i b i l i t i e s  of increasing these  types of damping are quite 
l imited i n  prac t ice ,  s ince  both t h e  blade damper and t h e  landing gear  have a 
number of other  funct ions not related wi th  ground resonance. 

The blade damper works i n  forward f l i g h t  of t h e  he l icopter  and loads t h e  
blade root  wi th  a var iab le  bending moment which is  g rea t e r  t h e  g rea t e r  t h e  de
gree of it.s damping. The mechanical s t r eng th  of t h e  roo tpor t ions  of t h e  blade 
and hub, and consequently t h e i r  weight, i s  determined mainly by the  presence of 
a damper. 

An extreme increase  of t h e  degree of damping of t h e  landing gear without 
t h e  use of s p e c i a l  devices leads t o  a n  increase i n  shock absorber s t i f f n e s s  and 
hence t o  an increase i n  t h e  dynamic loads during landing of t h e  c r a f t .  

These aspects  of t h e  work of blade dampers and of t h e  landing gear  must be 
considered i n  designing a hel icopter .  It frequent ly  i s  impossible t o  provide a 
s u f f i c i e n t  margin wi th  respect  t o  ground resonance without using s p e c i a l  devices, 
e i t h e r  i n  the  blade damper o r  i n  t h e  landing gear system. 

For hel icopters  of single-rotor and fore-and-aft configuration, ground res& 
nance during t h e  ground run may prove t h e  most dangerous. Therefore, this i s  
conveniently considered t o  be t h e  design case f o r  s e l ec t ing  t h e  parameters of 
blade and landing gear damping. For s implici ty ,  we can consider that t h e  hel i 
copter o s c i l l a t e s  about t h e  hor izonta l  ax is  going through i t s  center  of g rav i ty  
which i s  a s u f f i c i e n t l y  va l id  assumption at high t ax i ing  speed( Sect.4,Subsect .2$. 
A s  shown above, we derived very simple ca lcu la t ion  formulas [eqs.(4-.18)-(4.21)1 
f o r  this case and w e r e  able t o  determine t h e  required cha rac t e r i s t i c s  of land- &2 
ing  gear and blade damper by t h e  simplest  method. However, a f t e r  having se lec ted  
t h e  parameters f o r  landing gear and blade dampers, a complete ca lcu la t ion  of 
ground resonance f o r  a l l  possible  cases i s  required, including ground resonance 
during t h e  ground run, followed by p l o t t i n g  a diagram of sa fe  rpm (see Fig.3.25). 
If necessary, t h e  se lec ted  cha rac t e r i s t i c s  of t h e  landing gear and hub can then  
be corrected.  

~~~1. -Selec t ion  of Blade Da.mer Charac te r i s t ics  

The main cha rac t e r i s t i c  of t h e  work of a blade damper i s  t h e  f a c t  t h a t  t h e  
natural blade frequency ( c h a r a c t e r i s t i c  frequency f o r  ground resonance) i s  al
ways by a f a c t o r  of about 3 - ,?+ lower than  t h e  frequency of forced blade vibra
t i o n s  i n  forward f l i g h t .  

In  f a c t ,  i n  f l i g h t  a blade executes forced Vibrations r e l a t i v e  t o  t h e  f lap
ping and drag hinges wi th  a frequency u) equal  t o  t h e  r o t o r  r p m  whereas t h e  natu
ra l  blade v ib ra t ion  frequency i s  p b  = wow. Usual*,  w o  = 0.25 - 0.3; i n  any 
case, t h e  angular v e l o c i t y  u) of r o t o r  r o t a t i o n  a t  ground resonance cannot be 
g rea t e r  than t h e  angular ve loc i ty  of r o t o r  r o t a t i o n  i n  f l i g h t  
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T h i s  cha rac t e r i s t i c  explains, i n  pa r t i cu la r ,  t h e  unsuitability of using 
danpers with a l i n e a r  cha rac t e r i s t i c  (Sect.3, Subsect.3) i n  View of t h e  f a c t  
t h a t  a l i n e a r  damper, a t  constant v ib ra t ion  amplitude, w i l l  generate a moment 
propor t iona l  t o  t h e  v ib ra t ion  frequency. 

The simplest  dampers producing a moment independent of t h e  v ibra t ion  fre
quency are f r i c t i o n  dampers and hydraulic dampers wi th  stepped cha rac t e r i s t i c ,  
where this cha rac t e r i s t i c  should be as c lose  as poss ib le  t o  t h e  cha rac t e r i s t i c  
of t h e  f r i c t i o n  damper ( see  Fig.3.31,b). A stepped hydraulic damper of this type 
i s  suitable for heavy hel icopters  s ince  it i s  l i g h t e r  i n  weight than  a similar 
f r i c t i o n  damper, t h e  ga in  i n  weight of t h e  damper increasing with an  increase  i n  
i t s  power. 

When using ordinary d a q e r s ,  t h e  moment M, of t h e  damper i s  selected from 
blade s t r eng th  considerations,  w h i l e  i t s  damping coe f f i c i en t  i s  determined from 
eq.(3.23). Here, t h e  damping margin f o r  ground resonance can be ensured on ly  
by proper s e l ec t ion  of the  landing gear cha rac t e r i s t i c s .  When this i s  -0s
sible, s p e c i a l  designs of blade dampers might be needed, which would produce 
la rge  blade damping a t  low v ibra t ion  frequencies ( c h a r a c t e r i s t i c  f o r  ground reso
nance) and small blade damping a t  v ib ra t ion  frequencies corresponding t o  hel i 
copter  f l i g h t .  One of t h e  simplest types of such a damper i s  one connected i n  
series wi th  a n  e l a s t i c  element (see F'ig.3.33). Figure 3.49 shows one of t h e  
poss ib le  design versions of such a damper. Let us  designate this type of damper 
a Itspring damper11". 

Fig.3 .49 Damper with Series-Connected E l a s t i c  EXement . 
1 - Elas t i c  elements (rubber);  2 - Casing; 3 - Safety

valve; 4 - Rod; 5 - Adjusting needle. 

To estimate t h e  advantages of a spr ing damper, we Will conpare it with a 
conventional f r i c t i o n  damper. Let t h e  he l icopter  undergo ground resonance dur
ing  t h e  ground run s o  t h a t  t h e  center  of t h e  i n s t a b i l i t y  zone coincides wi th  t h e  
operating rpm of t h e  ro to r .  Furthermore, l e t  t h e  maximum moment i n  f l i g h t ,  
permissible with respect  t o  s t rength  considerations of t h e  blade, be equal t o  M,. 

>L 

" The design of a spr ing blade damper for elirninati.ng ground r6sonance was  pro
posed by engineers 0 .P.Bakhov, L.N.Grodko, I.V.Kurova, and M.A.Leykand (Patent 
No. Ii343.42) 
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Then t h e  equivalent damping coef f ic ien t  with a f r i c t i o n  damper i s  detemnined 
by t h e  following formula (3.23): 

where s i  i s  t h e  amplitude of t h e  first harmonic of blade v ibra t ions  i n  t h e  plane 
of ro ta t ion .  

When using a spr ing damper, t h e  corresponding equivalent damping coeffi
c ien t  i s  detemnined from eq.(3.17) 

where p b  is  t h e  frequency of blade v ibra t ions  a t  ground resonance, which can be 
considered equal  t o  the  product vow.  

Pb=VQO.  

The moment produced by t h e  spr ing damper i n  f l i g h t  can be determined by 
means of t h e  formula 

which, i n  the  presence of harmonic blade v ibra t ions  wi th  a frequency w, gives 
t h e  following value of t h e  amplitude of t he  moment M [see eqs.(3.17)1: 

Iet us now pose t h e  following question: If we s e l e c t  t h e  values of c and k 
f o r  a spr ing damper such t h a t  it produces i n  f l i g h t  t h e  same moment M, as t h e  
f r i c t i o n  damper, t hen  w h a t  i s  t h e  mx3" value of k:tr ing obtainable by varying 
t h e  quant i t ies  c and k?  Here, we w i l l  consider t h a t  t h e  amplitude of blade vi
bra t ions  with respect  t o  t h e  first harmonic i n  f l i g h t  and during t h e  ground 
run of t h e  hel icopter  i s  t h e  same. 

The r e l a t i v e  increase  i n  damping when using a spr ing damper i s  conveniently 
characterized by the  quant i ty  .a& 
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Subs t i tu t ing  i n  this formula p b  = vow and taking i n t o  account t h e  condi t ion 
M = M,, we ob ta in  

where t h e  dimensionless quant i ty  i s  

Thus, t h e  r e l a t i v e  advantage gained-from using t h e  spr ing damper depends 
exclusively upon se l ec t ing  t h e  value of k. 	 Figure 3.50 ives a graph of t h e  de

pendence $(E7 f o r  t h e  case vo = 
= 0.25. A s  we see from this graph, 
a n  increase  i n  k causes t h e  quan
t i t y  $ t o  increase  first and then  t o  
decrease, a t t a in ing  a $ = 
-- $,,, a t  a c e r t a i n  value k = kopt
which we will c a l l  optimal. 

Equating t o  zero t h e  der iva t ive  

-d$ we  f i n d
dk ’ 

‘U 

Fig.3.50 Dependence Jr = f ( k )  f o r  
VO = 0.25. 

-
A t  vo = 0.2.5, we ob ta in  kept = 3.74, = 3.24. 

Thus, t h e  use of a spr ing damper permits increasing t h e  damping a t  ground 
resonance by a f a c t o r  of more than  3, w h i l e  keeping t h e  moment loading t h e  blade 
i n  f l i g h t  constant 

However, this does not exhaust t h e  advantage of a spr ing damper as com
pared t o  a customary damper. I n  fac t ,  a spr ing damper gives  1lelasticityt1 i n  t h e  
drag hinge ( c , ~ ) ,  and t h e  presence of such e l a s t i c i t y ,  as i s  showi.1 i n  Section 1, 
Subsection 2, reduces t h e  extent  of t h e  necessary damping [see eq.(l.31) and 
t h e  graph i n  Fig.3.131. 

Calculations show t h a t  with considerat ion of a l l  above statements, t h e  
damping margin at ground resomnce can be increased by a f a c t o r  of 5 - 6 w h i l e  
keeping unchanged t h e  moment ac t ing  on t h e  blade i n  f l i g h t .  



2. Rotor with In te rb lade  E las t i c  Elements and DamDers 

So fa r  we discussed only the  case where t h e  e l a s t i c  element and damper i n  
t h e  drag hinge a r e  lashed up between t h e  blade and t h e  hub casing so  t h a t  t he  
moment ac t ing  on t h e  blade depends exclusively on the  motion of the  given blade 

and is  independent of t h e  motion of t he  
o ther  blades. Occasionally, hub designs 
with so-called in te rb lade  coupling a r e  
used. The diagram of such a hub i s  shown 
i n  Fig.3.51. Let us assume t h a t  each such 
in te rb lade  element has a c e r t a i n  st iff
ness c and a damping characterized by t h e  
coe f f i c i en t  k, so t h a t  t he  force  P ac t ing  
on such a n  element i s  connected with the  
va r i a t ion  of i t s  length s by the  r e l a t i o n  

(L 
d s< p===cs+k-.
d t  

In  this case; the  moment exerted on a 
given (k-th) blade by the  in te rb lade  ele
ments will depend not only on the  motion of 

Fig.3.51 Diagram of Rotor Hub this blade characterized by the  angle s k ( t )  
wi th  I n t  erblade Coupl ing .  but a l s o  on the  motions of the two adjacent 

blades 5.k--1 ( t )  and < k + i  ( t )  

A t  small vibrat ions of t h e  blades r e l a t i v e  t o  the  drag hinges, t he  moment 
ac t ing  on t h e  k-th blade W i l l  be expressed by t h e  formula 

. .  
M=cO(Ek-Ek- - l )$CO (Ek-Ek+l )$ -kO ( i k - C k - 1 )  k O  ( E k - E k f l ) ,  

whence 

co =ch2; 
k ,  =kh2,  

where h i s  t h e  a r m  of t h e  in te rb lade  element ( see  Fig.3.51). 

Therefore, t h e  equations of motion of blades i n  this case have t h e  follow
ing  form [compare with eq.(1.8)1: 

where 
&.=1,2,3,. . .n. 
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If t h e  r o t o r  s h a f t  vibrates harmonicalQ (326 
x=xo cas p t ,  

w e  can f i n d  t h e  forced v ibra t ions  of t h e  blades. The right-hand s ides  of 
eqs.(6.8) i n  this case have t h e  form 

Equations (6.$) then  permit a so lu t ion  of t h e  form 

Let us ca l cu la t e  t h e  e l a s t i c  moment exerted on t h e  k-th blade by t h e  in t e r -
blade e l a s t i c  elements during blade v ibra t ions  wi th  respect  t o  some one of these 
harmonics - f o r  example, t he  harmonic (p - w )  = p b .  We have 

MeL =ci) (Ek- Ek-1) f cO (kk -Ekfl)  =CO (2Ek -Ek-l -�&+I). 

Moreover, 

tk=bl sin 

where 

Using these  expressions, we obtain 

Taking i n t o  account t h a t  

2n 2nsin (y k - - 2i)=sinykcos --cOsyksin -, 
n n 

we f i n a l l y  obta in  t h e  following expression: 
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n 


n 


I n  t h e  case of ordinary e l a s t i c  elements of angular s t i f f n e s s  ceq located 
between t h e  blade and hub casing, we would have 

Thus, t h e  in te rb lade  e l a s t i c  elements f o r  t h e  given blade are equivalent t o  
one ordinary e l a s t i c  element of s t i f f n e s s  

n 


We can a l s o  e s t ab l i sh  exact ly  t h a t  t he  in te rb lade  dampers f o r  t h e  given 
blade a r e  equivalent t o  one ordinary damper lashed up between the  blade and hub

/327 
casing and having a damping coef f ic ien t  

(6.10)

n 


Consequently, ca lcu la t ion  of ground resonance of a hel icopter  with e l a s t i c  
in te rb lade  coupling and dampers can be car r ied  out by conventional formulas, 
taking t h e  coef f ic ien t  of t h e  damper as equal t o  keg  and t h e  s t i f f n e s s  coeff i 

c i en t  i n  the  drag hinge as equal  t o  ceq . 
TABU3 3.2 Table 3.2 presents  t he  values of t h e  

quant i ty  

2x 
Numberof 


Blades  1 2  I 3 1 4 1 5 I 6 

co ko f o r  r o t o r s  wi th  a d i f f e ren t  number of blades. 

co ko n (6.11) 

One of t h e  shortcomings of a ro to r  wi th  
in te rb lade  dampers l i e s  i n  the  f a c t  that, 

during simultaneously def lec t ions  of the  blades r e l a t i v e  t o  t h e  drag hinges ( a l l  
t o  one s i d e  and by the  same angle) which might occur i n  t r a n s i t i o n  f l i g h t  regimes 
and during run-up of t h e  ro to r ,  such dampers do not operate.  

I n  e d s t i n g  hub designs, this drawback i s  sometimes eliminated by using 
composite designs i n  which t h e  e l a s t i c  elements are made i n  t h e  form of in t e r -
blade couplings w h i l e  t h e  dampers are made separa te ly  f o r  each blade, i.e., a r e  
mounted between blade and hub casing. 
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3. 	Select ion of S t i f fnes s  and D a m i n g  Charac te r i s t ics  
f o r  landing Gears3$ 

After choosing t h e  cha rac t e r i s t i c s  of t h e  blade dampers, the  basic  parame
ters of t h e  landing gear  can be selected.  For hel icopters  of t h e  usual  single-
r o t o r  and fore-and-aft configurations the  wheel t r ack  2a (see fig.3.17) should 
be se lec ted  such t h a t  t h e  natural v ibra t ion  frequency ppn of t h e  hel icopter  dur
ing  t h e  ground run  ( ro t a t ion  about t h e  longi tudina l  axis going through t h e  
center  of grav i ty)  wi th  inoperat ive s t r u t s  (only t h e  t i res  are operative) i s  ap
prodmate ly  20% higher than  t h e  operating r p m  of t h e  ro to r .  T h i s  i s  given by 
t h e  condition (4.19): 

If t h e  landing gear  i s  of t h e  four-wheel type, the  quant i ty  2cP,"a2 i n  t h e  
above formula must be replaced by t h e  quantity cy, = c 

v 1  
= c

y2 [see eq.( 5.3)l. 

Since t h e  t i res  are selected i n  terms of a standing load, t he  quantity c;, 
i n  the  given formula can be considered as known; therefore ,  i t  w i l l  y i e ld  t h e  
corresponding value of a. 

The s t i f f n e s s  of t h e  shock absorbers and t h e i r  damping can be selected by 
assuming t h a t  t h e  center  of t h e  i n s t a b i l i t y  zone during t h e  ground run (during 
v ibra t ions  with operat ive s t r u t s )  coincides with t h e  operating r p m  of t h e  ro tor .  
Such an  approach i ssues  from t h e  following considerations:  If t h e  s t i f f n e s s  1328
of t h e  shock absorbers i s  selected such t h a t  t h e  unstable range during t h e  
ground run i s  g rea t e r  than  t h e  operating rpm,  ground resonance might occur a t  
t h e  i n s t a n t  of becoming airborne ( see  Sect .4, Subsect .3) since,  during v ibra t ions  
of t h e  hel icopter  on l i f t -o f f  of t h e  t i r e s ,  t h e  i n s t a b i l i t y  zone can lldescendll 
t o  t h e  operating r p m .  It i s  usual ly  impossible t o  make the  i n s t a b i l i t y  zone 
lower than  t h e  operating r p m  (with t h e  exception of t h e  landing gear of t h e  
B r i s t o l  system whose design, however, i s  r a the r  complex) s ince  this would re
quire a n  unfeasibly l o w  s t i f f n e s s  of t h e  shock absorbers. On t h e  other  hand, i f  
t h e  i n s t a b i l i t y  zone i s  located d i r e c t l y  a t  t h e  operating r p m  and t h e  damping 
margin i s  su f f i c i en t ,  no ground resonance on breaking contact with t h e  ground 
can occur since,  during l i f t - o f f  of t h e  tires, t h e  i n s t a b i l i t y  zone w i l l  be lower 
than  t h e  operating rpm. This w a s  checked i n  numerous ca lcu la t ions  and program
ming on a n  e lec t ronic  computer of ground resonance on t i r e  l i f t - o f f ,  performed 
by engineer Yu.A.Myagkov. 

For s implici ty ,  l e t  us assume that t h e  landing gear i s  equipped with ve r t i 
c a l  shock absorber s t r u t s  (see Fig.3.17,b). A s  shown i n  Sect ion 2, Subsection 5, 
t h e  maximum damping of t h e  t i re-oleo system obtainable i n  choosing t h e  optimal 

C8. adamping of t h e  shock absorber depends on t h e  r a t i o  -. Making use of 
CYPn 

ac" The method of s e l ec t ing  t h e  landing gear  parameters proposed here was developed 
by engineer Yu.A.Myagkov. 
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eqs.(2.37) and (2.38) and considering that, during t h e  ground run, 

we can obta in  t h e  following formula which determines t h e  maximum poss ib le  coef
f i c i e n t  of available he l icopter  damping during t h e  ground run: 

(6.12) 

where 

T h i s  means t h a t  t h e  maximum poss ib le  damping coeff ic ient  which can be Ob

t a ined  during t h e  ground run  by varying t h e  quant i ty  ks. a depends exclusively on 

t h e  r a t i o  . Therefore, knowing t h e  damping required f o r  t h e  el iminat ion 
cypn 

of ground resonance, it is  easy t o  determine t h e  necessary s t i f f n e s s  of t h e  
shock absorber c a a a. If t h e  blade damping i s  known, t h e  recpired damping no 
can be determined by eq.( 1.31) 

where ?fn i s  the  damping coef f ic ien t  of t h e  blade iib r e fe r r ed  t o  the  na tu ra l  vi
b ra t ion  frequency ppn  of t h e  hel icopter  during t h e  ground run with inoperat ive 
s t r u t s  (using only t h e  t i r e s ) :  

F'' i s  t h e  natural v ib ra t ion  frequency of a hel icopter  wi th  operative s t r u t s  a 
a t  optimal damping, r e fe r r ed  t o  t h e  quantity ppn :  

It i s  required t o  provide a damping margin of 



Using eqs.(6.12), (6.&), and (6.16), we ob ta in  

T h i s  re la t ionship  can be r ewr i t t en  i n  t h e  fol
lowing manner: 

where 

After se l ec t ing  t h e  blade and t i r e  character
i s t i c s  and designating t h e  necessary d 
margin 1, t h e  left-hand s i d e  of eq.(6.18Ti%i s  known. 
Knowing t h e  quantitycu, it is easy t o  f i d  t h e  quan
t i t y  u from eq.(6.19) and then  t h e  necessary stiff
ness ce. * of t h e  shock absorber. For convenience 

Fig.3.52 Graph of t h e  of determining 3.1, Fig.3.52 gives  t h e  graph of t h e  
Dependence of t h e  Coef- dependence CY(.). 

f i c i e n t  CY on N. 
To s e l e c t  t h e  s t i f f n e s s  c S e a  by t h e  indicated 

method. we can t ake  TI = 1 s ince  t h e  l~k inemat i c~~dam
ing  of t h e  t i r e  during t h e  ground A n  i s  disregarded i n  t h e  formulas [see 
eq . (k .Z)I .  The a c t u a l  damping margin 1with  considerat ion of this add i t iona l  
damping should be a t  least 1.5 - 2%. 

After t h e  s t i f f n e s s  of t h e  shock absorber i s  found, i t s  optimal damping co
e f f i c i e n t  can be determined by eq.(2.36), namely 

where 

Since, i n  r e a l i t y ,  t h e  cha rac t e r i s t i c  of t h e  shock absorber damping i s  gen
e r a l l y  nonlinear (Sect.3, Subsect.l),  we must understand by t h e  quantity k:!: 
t h e  damping coef f ic ien t  of a n  equivalent l i n e a r  shock absorber. 

’’ It should be reca l led  here t h a t  t h e  case without kinematic danping is obtained 
during v ibra t ions  of a hel icopter  on i ce ,  when t h e r e  i s  no f r i c t i o n  between t i r e  
and ground (see Sect.4, Subsect.2). 



One of t h e  basic  d i f f i c u l t i e s  i n  designing a landing gear is  t h e  complex
i t y  of providing t h e  necessary damping of t h e  shock s t r u t .  If t h e  s i z e  of t h e  

o r i f i c e s  through which t h e  b
drau l i c  f l u i d  passes  when the  
shock absorber i s  operative i s  
se lec ted  from t h e  condition of 
ground resonance, then, as a 
ru le ,  t h e  work of t h e  shock at+ 
sorber  during landing w i l l  be 
unsa t i s fac tory  ( t h e  forces  Will 
be too  great  when making contact 
with t h e  ground). If this s i z e  
i s  se lec ted  from t h e  conditions 

“ t r n ; t a n t  of v a l v e  opening 	 of landing, then  we ob ta in  too  
small a damping during hel icopter  
l a t e r a l  vibrat ions,  which is  
completely i n s u f f i c i e n t  f o r  
avoiding ground resonance. 

T h i s  d i f f i c u l t y  can be over
come by two methods (Ref .B): 

I .  1)increase i n  damping
S 	 on t h e  backstroke of 

t h e  shock absorber; 
2) i n s t a l l a t i o n  of spe-

Value  opens o n l y  on land ing  a, t  the c i a l  valves i n  t h e
i n s t a n t  of maximum o v e r l o a d  

O r i j i c e s  f o r  damping of 
ground resonance 

Fig.3.53 Shock S t r u t  wi th  Valve. 

design of t h e  shock 
absorber. 

The first of t hese  methods 
i s  the  simplest  and involves t h e  
following: The s i z e  of t h e  or i 
f i c e s  through which t h e  hydraulic 
f l u i d  i s  forced during t h e  for
ward s t roke  of the  shock absorber 
(compression) i s  se lec ted  from 
t h e  landing conditions,  w h i l e  
t h e  s i z e  of t h e  o r i f i c e s  through 

which t h e  hydraulic f l u i d  passes  during t h e  r e t u r n  s t roke  of t h e  shock absorber 
(extension) i s  se lec ted  from t h e  ground resonance conditions.  T h i s  i s  poss ib le  
because of t h e  f a c t  that, during he l icopter  vibrat ions,  one of t he  shock s t r u t s  
( r i g h t  or l e f t )  executes a backstroke a t  each in s t an t  of t i m e .  Therefore, m 
general ly  speaking, t h e  necessary damping coef f ic ien t  of t h e  hel icopter  a t  ground 
resonance can be secured only by damping i n  t h e  backstroke of t h e  shock ab
sorbers.  

However, damping i n  t h e  backstroke can be increased only within c e r t a i n  
limit’s. An extreme increase  of damping i n  t h e  backstroke (very small o r i f i c e s )  
leads t o  a very slow Ifemergencell of t h e  shock absorber s t r u t s  from a compressed 
state after touchdown. Therefore, i n  heavy ro l l ed  landing on rough ground when 
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t h e  first touchdown my be followed by f u r t h e r  impacts, such a method of increas
i n g  t h e  danqsing might be unacceptable. 

The second method does not have this shortcoming and involves t h e  follow
ing: A s p e c i a l  spr ing valve i s  placed i n  t h e  shock absorber, which opens only 
when t h e  compressive fo rce  i n  t h e  shock absorber exceeds (a t  touchdown) a c e r t a i n  
c r i t i c a l  value P",'., . A t  P,. '., < Pip'.,, those o r i f i c e s  whose s i z e  had been se
lec ted  from conditions of ground resonance w i l l  be operat ive w h i l e  a t  Pa.a > 
> Pfi"."'., t he  o r i f i c e s  of l a rge r  diameter whose s i z e  had been based on conditions 
of l imi t ing  t h e  landing overload become operat ive.  Figure 3.53 shows a design 
scheme and a diagram of dynamic compression of such a shock absorber. 

Another important f a c t o r  t o  be allowed f o r  i n  designing a landing gear i s  
t h e  inev i t ab le  presence i n  any shock absorber of p re s t r e s s ing  forces  (Sect.2,
Subsect.7), i.e., forces  i n  whose presence t h e  shock absorber begins t o  operate. 
For a he l icopter  landing gear, it i s  des i rab le  t o  have t h e  smallest poss ib le  pre
loading forces  Po since,  a t  high r o t o r  t h rus t ,  t h e  forces  P on t h e  landing gear  
decrease and since,  a t  P < Po, t h e  shock absorbers do not operate.  I n  this case, 
ground resonance may develop wi th  inoperat ive shock absorbers on e l a s t i c  t i res  
which a r e  v i r t u a l l y  without damping. For he l icopter  landing gears, t h e  s t r u t  
cha rac t e r i s t i c s  must be chosen such t h a t  t h e  p re s t r e s s ing  force  w i l l  not be more 
than  10% of t h e  standing load on t h e  shock absorber a t  zero r o t o r  t h r u s t .  



CHAPTER I V  

THEDRETICAL PRINCIPLES OF CALCULATING BEARIES 
OF MAIN HELICOPTER COMFONENTS 

The serv ice  l i f e  of t h e  main Components of a he l icopter  depends i n  many re
spec ts  upon t h e  performance of t h e i r  bearing assemblies, which means t h a t  con
s iderable  a t t e n t i o n  must be pa id  t o  problems of t h e  theory of calculat ing an t i -
f r i c t i o n  bearings i n  hel icopter  engineering. 

A s  known, the  l i f e  expectancy of general-purpose a n t i f r i c t i o n  bearings 
may vary wi th in  wide limits owing t o  various f a c t o r s  of a metal lurgical  and tech
nological  nature.  I n  this respect ,  t he  necessary r e l i a b i l i t y  of bearing assem
bl ies  i n  general  machine construct ion is achieved by introducing suitable sa fe ty  
f ac to r s ,  i.e., some overestimate of design loads. It is  log ica l  that, i n  this 
case, t h e  requirement f o r  accuracy of ca lcu la t ion  of bearings can be reduced s u b  
s t a n t i a l l y .  O f  course, f o r  a i r c r a f t  components, where an increase i n  r e l i a b i l i t y  
should be a t ta ined  by improving t h e  design without increasing the  s i z e  and weight 
of t h e  bearing assemblies, such a procedure i s  unacceptable. T h i s  i s  a l l  t h e  
more so s ince  a i r c r a f t  bearings are manufactured from high-quality materials, 
have high precis ion,  and are subjected t o  very s t r i c t  inspec t ion  i n  production, 
as r e s u l t  of which t h e  d ispers ion  of t h e i r  se rv ice  l i f e  i s  noticeably reduced. 
Ai rcraf t  bearings, including those used i n  hel icopters ,  should be calculated as 
accurately as poss ib le  wi th  considerat ion of t h e  p e c u l i a r i t i e s  of t h e i r  loading 
and service.  

I n  recent years,  thanks t o  s tud ie s  by Soviet and fore ign  researchers,  con
s iderable  advances have been made i n  p r a c t i c a l  ca l cu la t ion  methods f o r  a n t i f r i c 
t i o n  bearings; nevertheless,  these a r e  by no m e a n s  always s u f f i c i e n t l y  accurate.  
T h i s  i s  espec ia l ly  t r u e  of bearings working under complex combinations of ex
ternal loads and v ibra t ions  wi th  small amplitudes; t hese  are t h e  cases of 
g rea t e s t  i n t e r e s t  f o r  hel icopter  engineering. The lack of reliable ca lcu la t ion  
methods f o r  a n t i f r i c t i o n  bearings working under t h e  above-indicated conditions,  
handicaps t h e  design of reducing gears, p i t c h  controls ,  and hubs of t h e  main and 
t a i l  ro to r s  of hel icopters .  We can c i t e  many examples where these  v i t a l l y  im
por tan t  components f a i l e d  prematurely due t o  t h e  failure of improperly se lec ted  
bearings.  

In  this Chapter, we w i l l  attempt t o  report t h e  r e s u l t s  of t h e o r e t i c a l  and 
experimental inves t iga t ions  which had t h e  purpose of r e f in ing  t h e  ca lcu la t ion  
methods f o r  bearings of he l icopter  components. A s  shown i n  p r a c t i c a l  use, t h e  
methods of ca l cu la t ion  given below permit a f u l l e r  u t i l i z a t i o n  of t h e  load-carry
ing  capacity of t h e  bearings. Such methods, i n  designing bearing assemblies, 
have frequent ly  made it poss ib le  t o  c rea te  su f f i c i en t ly  compact and l i g h t  s t ruc
t u r e s  capable of operating r e l i a b l y  f o r  pro t rac ted  per iods of t i m e  a t  relative
l y  high loads. 
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Section 1. 	 Equations of S t a t i c  EafLlibrium of Radial  and Radial-Thrust 
B a l l  Bearims under Combined h a d  

The r e l a t i o n s  used i n  t h e  ca lcu la t ion  of bearings are based on r e s u l t s  of 
inves t iga t ions  of ,  t h e  d i s t r i b u t i o n  of external loads over t h e  r o l l i n g  bodies. 

We will construct equations from which we can der ive  t h e  pressure on t h e  
balls i n  t h e  general  case of load
ing  of r a d i a l  and radial- thrust  
ba l l  bearings.  

kt a single-row ba l l  bearing, 
af ter  landing, have a r a d i a l  p l ay  
2 A  on t h e  shaft and i n  t h e  housing 
at a n  establ ished operating temper
ature regime of t h e  assembly. 

Iet us take  a rectangular  co
ordinate  system xyz with i t s  o r ig in  
at t h e  center  0 of t h e  outer race. 
The x-axis is  d i rec ted  along t h e  
axis of r o t a t i o n  of this race ( see  

Fig.4.1 Scheme of Displacements of In- Fig .4 .1). 
ner Race of Bearing under a n  Arbi t rary 

W e r n a l  Load. Upon applying a n  arbitrary ex
t e r n a l  load t o  t h e  bearing, t h e  
center  of t h e  inner  race i s  sh i f t ed  

t o  a poin t  0' with coordinates s, t, and u, w h i l e  i t s  axis of r o t a t i o n  x' i s  de
f l ec t ed  r e l a t i v e  t o  the  x-axis through some angle -S whose pro jec t ions  onto t h e  
planes xOy and XOZ are equal  t o  9, and Sz ,  respec t ive ly  (Fig.4.l). 

Let  us assume t h a t  t h e  ba l l  whose center  Ob, l i es  i n  the  plane P1 which, 
together  with t h e  plane xOz, makes t h e  angle $ is  acted upon by normal forces  P,) 
i d e n t i c a l  i n  magnitude and d i rec ted  along a common s t r a i g h t  l i n e  passing through 
t h e  centers  Ooutand 0,, of t h e  cross sec t ions  of t h e  raceways of t h e  outer  and 
inner  races  and t h e  poin t  Ob, (Fig.4.2). A s  i s  comon i n  the  theory of an t i -
f r i c t i o n  bearings, we w i l l  disregard any displacement of t h e  center  of t h e  con
t a c t  area of t h e  b a l l  wi th  t h e  inner race  from t h e  plane P1 as w e l l  as t h e  tan
g e n t i a l  forces  arising a t  t h e  po in t s  of contact of t h e  ball wi th  t h e  races. 

According t o  t h e  well-known Her t z  formula, we have 

Here, 6,) i s  t h e  convergence of t h e  raceways of t h e  races  i n  t h e  d i r ec t ion  O o u t O i n  
due t o  e l a s t i c  deforma.tions a t  t h e  contact zones. 

For ba l l  bearings with t h e  usual i n t e r n a l  geometry, we can put .La4 
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where 
v =  	f a c t o r  depending on t h e  r e l a t i o n  between t h e  r a d i i  

routand Tin of t h e  raceways of t h e  outer  and inner  
races  and t h e  diameter of t h e  b a l l  d b a ;  
d i s tance  between t h e  po in t s  Oout and O,, at t h e  mo
meri t  of contact of t h e  ba l l  wi th  t h e  races  (when 64 = 
= 0 ) .  

If t h e  diameter d,, i s  expressed i n  mill imeters and t h e  forces  i n  kilo
grams, t hen  a t  a modulus of e l a s t i c i t y  E 	= 2.08 x 10"kg/cm2, of t he  material of 

t h e  races  and ba lk ,  t h e  coe f f i c i en t  B, 
i s  ecpal t o  62. 

The f a c t o r  v has values indicated 
i n  Table 4.1. 

TABI.E L.l 

- rocos (i) 

It follows from t h e  conditions of 
s t a t i c  equilibrium of t h e  bearing ele-

Fig.4.2 Polygon of Forces Act- m e n t s  that t h e  external forces  and mo
ing on t h e  Ball. ments applied t o  t h e  inne r  race can be 

w r i t t e n  as ( see  Fig.4.2) 

A = P,  sin Fc; 

R, =-4
P, cos pc sin 9: 

Y,=PP, cos p,+cos (J; 
A& 


M,=r, 2 P, sin Pc cos $; 

M,=ro r]P,  sin &,sin 9. 
I 

Here, 
Q = angle of contact between ba l l  and races;  
ro = 	rad ius  a t  which t h e  centers  of t h e  balls are located. The s i g n C  

extends over a l l  loaded balls. 

Let  us assume that t h e  races  have a p e r f e c t l y  regular  geometric shape which 
does not change when a load is  applied.  In  this case, t o  determine t h e  conver
gence of t h e  raceways 6~ and t h e  angle of contact 89 we can use t h e  formulas 



Having e q r e s s e d ,  i n  eqs.(l.b) and (1.5), a l l  l i n e a r  quant i t ies  i n  f rac
t i o n s  of t h e  d is tance  g, we can rewrite them i n  t h e  form 

- * where Po  = cos i s  t h e  so-called i n i t i a l  angle of contact (angle of co% 
g 

t a c t  i n  purely axial displacement of t he  races  due t o  t h e  operating r a d i a l  
p l ay  2a). 

In eqs.(l.6) and (l.”), t h e  terms Fl and F2 denote t h e  quant i t ies  a1- PO 

g 
r0and a,----. 
g 

It should be borne i n  mind t h a t  t h e  operat ive axial p lay  of t h e  bearing so 
i s  connected with the  angle B O  by t h e  following r e l a t ion :  

2so=2gsin Bo 

or ,  changing t o  relative quant i t ies ,  

The r e l a t i v e  quant i t ies  are denoted everywhere by t h e  same l e t t e r s  as t h e  
absolute  quant i t ies  but wi th  v i n c d i .  

These equations descr ibe the  conditions of s t a t i c  equilibrium of r a d i a l  and 
radial- thrust  ball bearings under any combinations of external loads. They per
mit f inding a l l  parameters character iz ing t h e  d i s t r i b u t i o n  of forces  between in
d iv idua l  b a l k .  However, it should be remembered that, due t o  the  conplexity of 
t h e  cor re la t ions  between t h e  quant i t ies  ~ J Iand B.J, and t h e  r e l a t i v e  displacement 
of t h e  races,  p r a c t i c a l  appl ica t ion  of these  equations involves a l a rge  calcula
t i o n  volume. I n  engineering calculat ions these  are usual ly  replaced by various 
approximate cor re la t ions .  One of t h e  most convenient var ian ts  of such correla
t ions ,  with a s u f f i c i e n t l y  high accuracy, i s  described below. 

An ana lys i s  of t h e  operating conditions of bearing assemblies of various 
types shows tha t ,  i n  most cases, t h e  r e su l t an t  r a d i a l  force  R = (R; + R,”)”” and 
t h e  r e su l t an t  moment M = M; + M,”)1’2 absorbed by t h e  bearing a c t  i n  o n u n d  t h e  
same plane.  I n  conformity wi th  this, by laying out t h e  plane of t h e  coordinates 
xOz such t h a t  it coincides with t h e  plane of ac t ion  of t h e  ex terna l  loads ap
p l i e d  t o  t h e  bearing, we can write 
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R, =R; 
M,=M; (1 .9 )  

As shown by calculat ions,  t h e  load d i s t r i b u t i o n  depends l i t t l e  on t h e  angu
lar arrangement of t h e  set of balls. Taking this i n t o  account, we can assume 
t h a t  t h e  balls are arranged symmetrically with respect  t o  t h e  plane xOz. Under 
this condition, we have 

-
t = O ;  

(1.10) 


Keeping i n  mind t h e  equa l i t i e s  (l.lO), we then  expand eq.(1.6) i n  a /336-
Maclaurin s e r i e s  i n  t h e  neighborhood of u = 0 and F2 = E = 0. Emi t ing  our
se lves  t o  l i n e a r  terms we obtain,  after easy transformations,  

-
E+=E+ (;COS p +;sin 9) cos +. (1.11) 

In t h e  equal i ty  (l.ll), we have 
-
6 =(3+cos2 p0>”2 -1 (1.12) 

and 

The quant i t ies  and i3 are none other  t han  t h e  relative convergence of t h e  
raceways and t h e  angle of contact i n  t h e  cross  sec t ion  Q = 90’. 

A s  follows from eq.(1.7), 

sin p,+= 

cos p* =-
cos --isin 6 + U c o s  6 i 

Treating t h e  equalities (1.a)i n  t h e  same manner as eq.(1.6.), d iscarding
all nonlinear terms, and making appropriate trsnsformations,  we obtain 
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Having pu t  

we can represent eqs.(l.ll) and (1.15) i n  t h e  form 

The quant i ty  determining t h e  pressure on t h e  ba l l  whose center  lies i n  
t h e  plane xOy can be expressed i n  terms of t h e  angles $ and B o :  

-E=---. cos80 
cos $ 

The lgading zone of t h e  bearing, as i s  known, can be found from t h e  condi
t i o n  t h a t  6 4  = 0 at its boundaries. 

Se t t ing  FQ = 0 i n  the  equal i ty  (1.17), we obta in  t h e  following expression 
establ ished a t  t h e  boundaries of t h e  loading zone: 

The r e l a t i v e  convergence of t h e  raceways of t h e  races  FQ a t t a i n s  a maxi--
mum 6 0  a t  t h e  center  of t h e  loading zone, which 
i s  s i tua t ed  i n  t h e  cross  sec t ion  Q = Q o  = 0, 
if cos p + s i n  f3 = 6h > 0, and i n  t h e  cross  
sec t ion  Q = qD = BO', If ii cos p + S s i n  p = 
= 6A < 0 (Fig.4.3). 

I n  t h e  case Jlo = 0, 0 < $to 5 180' and 
$io = - $ t o ,  and i n  t h e  case 4' = 180°, 180' < 
< Q f o  5 360' and $io = 360' - $2,  

Fig.4.3 Loading Zone of It i s  understandable t h a t  eq.( 1.20) holds 
Bearing. 	 only i f  t h e  parameter h exceeds uni ty  i n  abso

l u t e  magnitude. If 1 hl s 1, then  t h e  loading 
zone w i l l  be 36c0, i.e., a l l  balls w i l l  ca r ry  a 

load i n  t h e  bearing; i n  this case, t he  quant i ty  6 i s  always p o s i t i v e  and t h e  
s ign  of h coincides wi th  the  s ign  of cos Q o .  The la t te r  means that, f o r  bearings 
i n  which a l l  balls are loaded 0 S h 5 1 a t  Qo = 0, and -1 5 h < 0 a t  Qo = 180'. 
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Having taken Q = Qo i n  t h e  equal i ty  (l.l7), we f ind  

-
6, =q1+ A  cos q0). (1.21) 

~y means of eq.(1.2), (1.17), and (LZl), r eca l l i ng  that FQ = A, canwe 
g 


reduce eq.( l . l )  t o  t h e  form 

(1.22) 

Equations (1.19) and (1.21) show that i n  t h e  case X = 03,  i.e., a t  a 180' 
loading zone 6 = 0 so t h a t  f3 = B o  i s  independent of t h e  loading leve l .  

Let us introduce i n t o  t h e  examination t h e  sum 

J k  = z (1 + a1COS +0)3/2 ~ ( 1 $ ~ c o s * ) 3 ' ~ C O S k - ~*, (1.23) 

where 
R= 1, 2, 3. 

Here, as i n '  a l l  preceding equa l i t i e s ,  t he  angle $ can assume only t h e  dis
c r e t e  values t h a t  determine the  angular p o s i t i o n  of t h e  loaded balls. 

Let us next transform eqs.(l .3) by means of t h e  obtained expression. 

After subs t i t u t ing  i n  these  equations P+, s i n  B$,  and cos f+, by t h e i r  values 
from eqs.( 1.22) and (1.18) i n  conformity wi th  t h e  equa l i t i e s  (1.9) and (1.23) 
and taking eq.(1.21) i n t o  account, we ob ta in  

-B@2 cos pJ2X 
rvdg,  
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Equations (1.19) and (1.a)yie ld  t h e  following expression f o r  t h e  angle B :  

The equa l i t i e s  (1.24)and (1.25) cons t i t u t e  r e l a t i o n s  which, i n  engineering 
calculat ions,  can replace t h e  1lexactIl equations of s t a t i c  equilibrium of r a d i a l  
and rad ia l - thrus t  ba l l  bearings.  A s  s h m  by a c t u a l  inves t iga t ions ,  t he  e r r o r  
produced by this s u b s t i t u t i o n  i n  t h e  end results usua l ly  does not exceed a f e w  
percent 

When changing t h e  number of balls, t h e  sums (1.23) vary only s l i g h t l y .  T h i s  
permits expressing them i n  terms of t h e  i n t e g r a l s  

which are a func t ion  of the  product h cos J l o .  Here, k = 1, 2, 3. 

It i s  easy t o  demonstrate that, with t h e  usual  number of balls, we have 

J =cosk--l $o jk. (1.27) 

The values of t h e  i n t e g r a l s  j, are given i n  Table 4.2. 
Table 4.2-

A COS lJl0 iz 1 1  1 2  
~~ ~~~ 

0 1.ooo 0,000 0.500' 1.000 3.33 0.323 0.247 0.210 0.612 
0.1 0.868 0.065 0.435 0.875 5 0.309 0,242 0.207 0.605 
0.2 0.766 0.114 0.385 0.804 10 0,294 0.236 0.203 0.596 
0.3 0.686 0.151 0.346 0.757 20 0.286 0,233 0.201 0.59 
0.4 0,622 0.180 0.316 0.726 f m  0.279 0.229 0.199 0.587 
0.5 0.570 0,202 0.292 0.705 -20 0.271 0.225 0,197 0.583 
0.6 0.528 0,220 0.273 0.690 -10 0.262 0.221 0.194 0.578 
0.7 0,494 0.233 0.258 0.676 -5 0.247 0.212 0.188 0.5G7 
0.8 0.466 0,243 0.246 0.670 -3.33 0.229 0.201 0.18.1 0.558 
0.9 0.443 0.250 0.237 0.663 -2.5 0.211 0.189 0.172 0.543 
1 0.425 0.255 0.231 0.657 -2 0.192 0.175 0.162 0.528 
1.111 0.409 0.257 0.226 0.651 -1.667 0.171 0.159 0.149 0.512 
1.25 0,395 0.258 0.223 0.645 -1.429 0.147 0.140 0.133 0.488 
1.429 0.380 0,258 0.220 0.639 -1.25 0.120 0.116 0.112 0.459 
1.667 0.366 0.256 0.218 0.633 -1,111 0.084 0.083 0.080 0.414 
2 0.352 0.254 0.215 0.626 -1 0.000 O.OO0 0.000 1 0.000 
2.5 0.338 0.251 0.212 0.619 
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Sect ion 2. Calculation o f  Radial and Radial-Thrust B a l l  BeariIws 
-un&r Combined -$ads, f o r  Absence of Misal iament  
of the Races 

1. Pressure on Balls 

If t h e  d is tance  between t h e  bearings i s  la rge  i n  comparison with t h e  dia
metral dimensions of t h e  bearings and i f  a l l  components of t he  bearing assembly 
have a high r i g i d i t y ,  then, i n  ca lcu la t ions  of t he  pressures  on t h e  r o l l i n g  
bodies, we can disregard t h e  misalignment of t h e  races  under load and take i n t o  
account only t h e i r  displacements i n  r a d i a l  and axial d i rec t ions .  

Let us introduce t h e  quant i t ies  To and A i n t o  eq.(1.22) which determines 
t h e  pressures  on t h e  ba lk  i n  r a d i a l  and rad ia l - thrus t  b a l l  bearings. 

Equations (1.a)and (1.25) which connect t hese  quant i t ies  with t h e  ex terna l  
loads applied t o  the  bearing, i n  t h e  absence of misal igment  of t h e  races ,  i .e. ,  
i n  t he  case 8 = 0, can be represented i n  t h e  form 

We will not wr i t e  out t h e  expression f o r  t h e  moment s ince,  at  19 = 0, it 
does not p l ay  an  independent r o l e  and i s  not used i n  t h e  calculat ion.  

We w i l l  assume, f o r  convenience, that t h e  d i r ec t ion  of t he  z-axis  coincides 
with the d i r ec t ion  of t h e  r a d i a l  load R. Under t h i s  condition, t h e  r a d i a l  dis
placement u i s  pos i t ive ,  and hence t h e  angle $o  i s  equal  t o  zero. This f a c t  i s  
taken i n t o  account both i n  eqs.(2.1) and (2.2) and i n  a l l  subsequent r e l a t ions .  

It should be noted that t h e  case @ = 0 is  fundamental i n  the  theory of an t i -
f r i c t i o n  bearings. Usually, when no s p e c i a l  s t i pu la t ions  are made as t o  design 
and cha rac t e r i s t i c s  of loading a bearing assembly, this i s  t h e  case applicable.  
Basic inves t iga t ions  (Refs.22, 23, 29, and 4.2) have been car r ied  out t o  r e f ine  
t h e  ca lcu la t ion  of a n t i f r i c t i o n  bearings working under combined loads. 

The s t a t i c  load capaci ty  of a bear ing i s  characterized by t h e  magnitude of 
maxi" pressure  on the  rolling body. 

According t o  eq.(1.22) t h e  maximum pressure on t h e  b a l l  is  

For prot rac ted  s t a t i c  loads on a nonrotating bearing, t h e  bearing 
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stress omaxon t h e  t r a c k  of t h e  inne r  race  caused by this pressure  should not 
exceed ,!+O,OOO kg/cm2. If t h e  s t a t i c  loads ac t ing  on a nonrotating bearing c rea t e  
g rea t e r  contact stresses, then  not iceable  t r a c e s  of r e s i d u a l  deformations, i n  
t h e  form of depressions made by t h e  ba l l s ,  will appear on t h e  t rack .  

The ind ica ted  permissible  value of omaxi s  se lec ted  from t h e  condi t ion t h a t  
t he  extent  of r e s idua l  deformation (permanent se t )  of t h e  t r ack  i s  not more 
than one micron pe r  centimeter of t h e  ball's diameter. I n  this case, the  smooth
ness of t h e  bearing r o t a t i o n  i s  not dis turbed and t h e  bearing capaci ty  i s  not 
lessened. 

I n  t h e  r e l a t ions  required t o  ca lcu la te  t h e  l i f e  expectancy of bearings, t h e  
quant i ty  

appears, where m i s  t h e  exponent of t h e  load i n  t h e  l i f e  expectancy formulas. 

By means of t h e  equa l i t i e s  (1.22) and (2.3), we reduce t h e  expression (2.4) 
t o  t h e  form 

p,,= mP,. (2.5) 

The coef f ic ien t  w here i s  equal t o  

We note t h a t  t h e  quant i ty  P,, i s  the  constant pressure PJI = const, at which 
the  p robab i l i t y  of f a t igue  failure of t h e  ro t a t ing  race under t h e  given serv ice  
conditions i s  the  same as f o r  t h e  a c t u a l  d i s t r i b u t i o n  of forces  between t h e  
balls. T h i s  j u s t i f i e s  denotins it as t h e  equivalent pressure on t h e  ba l l  f o r  a 
ro t a t ing  race.  

It should be borne i n  mind that, i n  some cases, i t  i s  impossible t o  relate 
t h e  quant i ty  P,, t o  t h e  e n t i r e  length  of t h e  t r a c k  as i s  done i n  eq.(2.4), but 
only t o  t h e  loaded zone $ y o  - $ i o .  

A t  m = 3.33, as i s  adopted i n  Soviet p rac t ice ,  

x (1 + A cos +0)5 (2.7) 
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For p r a c t i c a l  app l i ca t ion  of eqs.(2.6) and (2.7) it must be remembered that, 
f o r  t h e  se lec ted  d i r e c t i o n  of t h e  z-axis, t h e  angle  eo i s  equal t o  zero. The 
angles J I ; ,  and $loi n  eq.(2.7) are taken i n  radians.  The values of t h e  coef
f i c i e n t  w found by this formula are given i n  Table 4.2, together  wi th  t h e  values 
of t h e  i n t e g r a l s  j, . 

The pressures  Po and P,, at t h e  given external loads R and A can be calcu
l a t ed  i n  two ways. 

The first cons is t s  i n  ca lcu la t ing  these  quanki t ies  by megns of eqs.(2.3)
making use 

‘i 

Fig ./+./+Resultant 
of Force Applied 

t o  Bearing. 

and (2.5), of t h e  values of 6, and A obtained 
from a d i r e c t  so lu t ion  of eqs.( 2.1) a d  (2.2). 

Since e q ~ ~ ( 2 . 1 )and (2.2) have a complex s t ruc ture ,  
it i s  l o g i c a l  that this procedure encounters great  d i f f i 
c u l t i e s .  These are s t i l l  large,  even when t h e  problem is 
solved approximately. 

The second way, more acceptable f o r  p r a c t i c a l  use i n  
determining t h e  pressures  Po and P,, i s  based on t h e  fo l 
lowing considerations : 

If t h e  angle of contact of a l l  balls i s  t h e  same & 
p,j = p = const, t hen  

The r e l a t i o n s  (2.8) d i f f e r  from eqs.(2.1) i n  t h a t  they  
do not contain terms allowing f o r  t h e  va r i a t ion  i n  angle 

of contact a s  a func t ion  o f  t h e  pos i t i on  of t h e  b a l l  relative t o  t h e  plane xh. 

For a 180° loading zone, when half of t h e  balls a r e  operat ive i n  t h e  bear
ing, we have A = &m so t h a t  p = Bo, j, = 0.279, j, = 0.229 and w = 0.587. 

For the  given case, eqs.(2.8) y i e ld  

such t h a t  

R .p R -4.37 ___0- z cos pjz z cos p0 ’ 
P -wP0=2.57 R (2.10) 

PQ- 2 cos pfi * 
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10" 20" 

__ . 

0.02 1.000 0,889 1.070 
0.04 1.ooo 0,890 0.966 
0.07 1.000 0.880 0.924 
0.11 1.ooo 0.920 0.880 
0.14 1.ooo 0.926 0.873 
0.21 1.ooo 0.936 0.858 
0.35 1.000 0.948 0.856 
0.53 1.ooo 0.956 0.874 
0.70 1.ooo 0.961 0,862 
1.oo 1.ooo 0.967 0,893 

0.02 1.399 1.171 0.839 

0.04 1.249 1.109 0.642 

0.07 1.184 1.077 0,847 

0.11 1,136 1,046 0,853 

0.14 1.114 1,034 0.860 

0.21 1.066 1.018 0 ,S7C 

0.35 1,056 1.008 0.68s 

0.53 1.038 i.002 0.89s 

0.70 1.028 0.995 0.90E 

1.oo 1.020 0.983 0.912 

0.02 1.628 1.476 1;001 

0.04 1.453 1.338 0.961 

0.07 1.327 1.238 0.961 

0.11 1.252 1.172 0.951 

0.14 1.217 1.140 0.948 

0.21 1.169 1.108 0.941 

0.35 1.108 1.058 0.932 

0.53 1.073 1.027 0.924 

0.70 1.056 1.018 0.926 

1.oo 1.035 1.008 0.915 

30" 

1.210 

1.091 
1.014 

0.958 
0.933 

0.898 
0.858 

0.636 
0.824 

40" 50' 600 70" 

.. 

1.308 1.380 1.422 1.428 

1.146 1.196 1.212 1.192 
1.078 1.116 1.116 1.094 

1.010 1.034 1.030 1,000 

0.974 0.994 0.984 0.952 
0.930 0.938 0.916 0.880 

0.676 0.872 0.850 0.804 

0.842 0.828 0.798 0.750 
0.822, 0.802 0.748 0.718 

~ 

80" 90" 

1.398 1.308 

1.152 1.080 
1,050 0.976 

0.950 0.874 

0.906 0.826 
0,830 0.750 

0.746 0.667 
0.686 0.602 
0.648 0.566 

0.754; 0.6S1 

0.713' 0.636 
0.655 0.579 

0.623 1 0.538 

0.718 0.647 

0.697 0.623 

Bo = 12" 

0.841 

0.831 0.859 


0.816 0.833 

0.603 0.606 

0.602 0.789 

0.610 


0.813 


Bo = 18" 

0.862 0.647 0.809 

0.833; 0.809 0.771 
0.799 

0.772 

0.813 

0.799 
01782 
0.770 
0.761 

0.749 
0.730 

0.717 

0.707 

0.682 

0.781 0.721 

0.734 0.688 

0.804 0.770 

0.789 0.759 
0.785 

0.818 
0,786 
0.781 

0.782 
0.784 
0.789 

0.789 

0.797 
0.806 

0.804 

0.797 
0.780 
0.777 
0.771 

0.763 
0.748 

0.739 

0.736 

0.732 

0.766 0.727.. 0.672 0.597 
0.749 0.707 0.649 0.572 
0.741 0.696 0.637 0.560 
0.719 0.675 0.612 0.534 

0.694 0.646 0.582 0.496 

0.671 0.618 0.554 0.466 

0.661 0.604 0.536 0.455 
0.647 0.590 0.518 0.429 
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T A B U  4.3 (corrtfd) 

-	\ 0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 

I 
0.02 1,914 1.815 1.478 0.872 0.692 0.6G7 0.641 0.594 0.530 0.454 
0.04 1.609 1..528 1.321 0.865 0.692 0.665 0.635 0.587 '0.523 0.447 
0.07 1.483 1.415 1.218 0.858 0.692 0.661 0.629 0.577 0.514 0.440 
0.11 1.389 1.326 1.150 0.850 0.692 0.656 0.621 0.566 0.504 0.431 
0.14 1.336 1.279 1.119 0.847 0.692 0.655 0.618 0.560 0.500 0.424 
0.21 1.249 1,204 1.OG9 0.845 0.692 0.650 0.611 0.551 0.492 0.413 
0.35 1.175 1.125 1.011 0,837 0.693 0.647 0.600 0.544 0.460 0.396 
0.53 1.121 1.078 0.975 0.828 0.696 0.642 0.593 0.535 0.466 0.383 
0.70 1.087 1,051 0.955 0.826 0.698 0.639 0.589 0.527 0.455 0.373 
1.oo 1.051 1,016 0.932 0.819 0.701 0.632 0.580 0.515 0.440 0.358 

Bo =36" 

0.02 2.171 7,051 1.823 1.426 0.795 0.580 0.507 0.455 0.368 0.310 
0.04 1.815 1,756 1.574 1.242 0.777 0.575 0.507 0.453 0.388 0.307 
0.07 1.G29 1.567 1.403 1,132 0.757 0,574 0.514 0.453 0.385 0.304 
0.11 1.496 1.425 1.272 1.052 0.746 0.578 0.514 0.451 0.380 0.299 
0.14 1.445 1.359 1.205 1.011 0.742 0.578 0.514 0.449 0.379-0.2991 
0.21 1.343 1,262 1.144 0.970 0.736 0.578 0.510 0.449 0.3751 0.299 
0.35 1.207 1.156 1.060 0.913 0.724 0.578 0.510 0.445 0.370 0.291 
0.53 1.129 1.086 0.999 0.870 0.714 0.578 0.509 0.444 0.364 0.285 

0.70 1.098 1.053 0.967 0.848 0.707 0.578 0.506 0.440 0.364 0.283 

1.oo 1.053 1.006 0.925 0.821 0.696 0.5781 0.502 0.434 0.356, 0.275 

Values of  the  c o e f f i c i e n t  k 

0.02 1.ooo 0.995 1.297 L.520 1.710' 1.682: 2.0301 2.150 2.230, 2.270 

0.04 1.ooo 0.962 1.150 1.350 1.502 1.655 1.758 1.825 1.870 1.900 

0.07 1,000 0.950 1,055 1.212 1.355 1.475 1.540 1.608 .1.680 1.710 

0.11 1.000 0.968 1.005 1.130 1.232 1.325 1.400 1.452 1.477 1.490 

0.14 1,000 0.966 0.985 1.093 1.190 1.275 1.330 1.375 1.395 1.408 

0.21 1.ooo 0.963 0.952 1.045 1.d20 1.175 1.225 1.260 1,275 1.283 

0.35 1.000 0.970 0.937 0.979 1.041 1.082 1.107 1.122 1.133 1.140 

0.53 1.ooo 0.972 0,934 0.944 0.986 1.015 1.025 1.032 1,030 1.029 

0.70 1.ooo 0.977 0.934 0.928 0.952 0.973 0.976 -0.972 0.968 0.966 

1.oo 1.ooo 0.982 0.935 0.907 0.919 0.926 0.922 0.905 0.896 0.890 

0.02 1,237 1.090 0.929 1.039 1.190' 1.301 1.384 1.438 1.480 1.489 

0.04 1.125 1.OS1 0.919 0.991 1.142 1.235 1.299 1.333 1.369 1.377 

0.07 1.093 1.034 0.913 0.979 1.082 1.159 1.213 1.257 1.270 1.280 

0.11 1.065 1.014 0.913 0.963 1.040 1.100 1.146 1.181 1.188 1.197 



-- TABU3 4.3 ( c o d  td)-

\ 

0" 10" 20" 30" 40" 50" 60" 70" 80" 90"-
zvda,\ - ~~ 1- 1 

0.14 1.053 1,006 0.914 0.951 1.017 1.071 1.111 1'.136 1.149 11152 
0.21 1.037 0.999 0.916 0.921 0.981 1.02: 1.051 1.057 1.082 1.077 
0.35 1.017 0.994 0,923 0,897 0.937 0.95: 0.983 0.986 0.991 0.989 
0.53 1.010 0.988 0.929 0.885 0.911 0.92; 0.931 0.925 0.918 0.917 
0.70 1.006 0.982 0.931 0.883 0.891 0.895 0.892 0.885 0.877 0.869 
1.oo 1.001 0.976 0.933 0,873 0.870 0.864 0.851 0.834 0.626 0.812 

0.02 1.336 1.260 0.972 0.879 0.944 1.003 1.048 1.070 1.091 1.102 
0.04 1.231 1.175 0,962 0.873 0.931 0.979 1.008 1.036 1.056 1.062 
0.07 1.170 1.115 0.952 0.866 0.915 0.957 0.981 0,999 1.017 1.013 
0.11 1.125 1.077 0.941 0.860 0.899 0.933 0.957 0.965 0.973 0.965 
0.14 1.104 1.057 0.937 0.856 0.889 0.920 0.942 0.944 0.951 0.942 
0.21 1.067 1.033 0.932 Q .856 0.872 0.894 0.9OG 0.906 0.913 O.SO6 
0.35 1.041 1.011 0.935 0.856 0.856 0.865 0.865 0.865 0.858 0.856 
0.53 1.024 0.996 0.934 0.856 0.837 0.846 0.836 0.825 0.810 0.808 
0.70 1.013 0.986 0.932 0,856 0.830 0.830 0.818 0.799 0.780 0.780 
1.oo 0* 999 0.974 0.929 0,856 0.819 0.806 0,789 0.770 0.751 0.737 

0.02 1,451 1.411. 1.227 0.863 0.775 0.778 0.782 0.778 0.775 0.767 
0.04 1.285 1.249 1.132 0.863 0.773 0.776 0.773 0.772 0.767 0.759 
0.07 1.215 1.195 1.078 0.859 0.772 0.769 0.764 0.7611' 0.754 I 0.747 
0.11 1.182 1.159 1.034 0.856 0.769 0.762 0.754 0.749' 0.741 0.732 
0.14 1.150 1.120 1,011 0.854 0.768 0.758 0.749 0.7411 0.732 0.722 
0.21 1.096 1.071 0.980 0.850 0.766 0.755 0.741 0.729 0,719 0.705 
0.35 1,043 1.021 0.959 0.847 0.764 0.746 0.728 0.707 0.692 0.678 
0.53 1.016 0.992 0.936 0.841 0.764 0.737 0.714 0.690 0.668 0.652 
0.70 1.005 0.971 0.923 0.836 0.764 0.732 0.705 0.678 0.652 0.634 
1.oo 0.989 0,953 0.905 0.836 0.764 0.728 0.701 0.658 0.6341 0.615 

0.02 1.525 1,480 1.363 1.149 0.566 0.540 0.526 
0.04 1,367 1.333 1.124 1.060 0.%66 0.536 0.525 
0.07 1,269 1,233 1.141 0.990 0.756 0,638 0.600 0.564 0.534 0.521 
0.11 1.195 1,157 1.076 0.942 0.748 0,637 0.599 0.558 0.531' 0.518 
0.14 1,157 1,120 1.045 0.922 0.746 0.638 0.599 0,557 0.527 0.514 
0.21 1.098 1.066 0.996 0.888 0.744 0.639 0.597 0,554 0.520 0.508 
0.35 1.035 1.012 D.946 0.858 0.736 0.639 0.592 0.550 0.511 0.498 
0.53 0.993 0,970 3.910 0.832 0.728 0.639 0.589 0.544 0.502 0.491 
0.70 0.970 0.946 D,890 0.815 0.723 0.639 0.585 0.540 0.500 0.485 

0,945 0.914 3.863 0.798 0.718 0.639 0.582 0.5341 0.4931 0.473 
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Equations (2.10) are known i n  t h e  theory of a n t i f r i c t i o n  bearings as IlSt;*i
beck formuhstt 

For t h e  case -A # 1.217 t a n  Bo t he  pressures  Po and P,, can be repre
sented as R 

P,=4.37 K O F  ' 
z cos i?lo ' 

P =2.57 ~,h'F (2.11)
e% z cos 90 

where F = (R2 + i s  t h e  r e su l t an t  load on t h e  bearing (Fig.4.4). 

T h i s  same form of notat ion can a l s o  be re ta ined  when taking account of t h e  
v a r i a b i l i t y  of t h e  angle B 4 .  

After subs t i t u t ing  t h e  values of Po and P,, from t h e  equa l i t i e s  (2.3) and 
(2.5) i n t o  eq.(2.11), we ob ta in  

(2.12) 

The coe f f i c i en t s  ko and k are unique reduct ion coe f f i c i en t s  re fer red  t o  
t h e  r e su l t an t  load F. It i s  e s s e n t i a l  t h a t  they can be found from eqs.(2.1) and 
(2.2) by d i f f e ren t  i n d i r e c t  methods which preclude t h e  need f o r  d i r e c t  so lu t ion  
of these  equations.  

The values of t h e  coef f ic ien ts  k, and k f o r  bearings with i n i t i a l  angles 
of contact Bo = 0, 12, 18, and 36', obtained from eqs.(2.1) and (2.2) by t h e  
paphoanaly t ic  method (Ref.30), a r e  given i n  Table 4.3. 

Irrtroduction of t h e  tabulated reduct ion coe f f i c i en t s  and k g r e a t l y  
f a c i l i t a t e s  f inding t h e  pressures  Po and P,,, permit t ing t h e  use, f o r  this 
purpose, of r a the r  simple and convenient formulas [eqs.( 2.11)l. 

The coe f f i c i en t s  k, and k are given i n  Table 4.3 as a funct ion of t h e  

quant i ty  , which character izes  t h e  l e v e l  of t h e  load received by t h e  
ZVd? B 

bearing, and of t h e  angle  cy = tan-' -A which determines the  d i r ec t ion  of t h e  
r e su l t an t  I?;. R' 

% I n  ca lcu la t ing  t h e  quant i t ies  and a l s o  as w e n  as A 
zv d i a  Wd2ba zvdza ' 

the  diameter d,, i s  always expressed i n  mil l imeters
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2. Reduced Loads 

Let us denote by Q t h e  r a d i a l  force which, i n  combination with t h e  axial 
force  A = 1.217 t a n  B o &  a t  a constant contact angle between balls and races 
@$ = B o  = const, c rea tes  t h e  same equivalent pressure  P,, as t h e  a c t u a l  combina
t i o n  of ex terna l  loads applied t o  t h e  bearing. 

The force  Q i s  commonly ca l led  t h e  llreduced dynamic load". 

Along with t h e  concept of reduced dynamic load, t h e  concept of "reduced 
s t a t i c  load11 i s  widely used i n  t h e  theory of a n t i f r i c t i o n  bearings. By reduced 
s t a t i c  load we mean t h e  r a d i a l  force Qo which, under t h e  indicated conditions, 
exer t s  a max imum pressure on t h e  b a l l  Po equal t o  t h e  a c t u a l  pressure.  

The replacement of a c t u a l  loads by reduced loads, determined as indicated 
above, permits using da ta  from catalogs and handbooks of r a d i a l l y  loaded bear
ings,  when ca lcu la t ing  bearings operating under combined loads.  

A comparison of t h e  equa l i t i e s  (2.10) and (2.11) shows t h a t  

I n  other  countries,  and recent ly  a l s o  i n  domestic use, a formula of t h e  
following type i s  o f t en  used t o  determine t h e  reduced loads: 

Q=xR+yA. 

Different sources g ive  d i f f e ren t  values of t h e  reduct ion coef f ic ien ts  x and 
y, so  tha t  t h e  reduced loads calculated f o r  one and t h e  same case may d i f f e r  
subs tan t ia l ly .  

Since a l l  ca lcu la t ion  met hods f o r  r a d i a l  and rad ia l - t  hrust  ba l l  bearings 
under combined loads, used i n  prac t ice ,  a r e  based on t h e  same i n i t i a l  equations 
[ eqs . ( l . l )  - (l.?)] and bas i ca l ly  d i f f e r  only by t he  assumptions used f o r  sin
pl i fy ing  t h e i r  solut ion,  one of t h e  p r i n c i p a l  c r i t e r i a  of t h e  qual i ty  of one o r  
another ca lcu la t ion  method i s  t h e  closeness of t h e  reduced loads calculated on 
i t s  basis t o  t h e  "exact'! value of these  loads obtained from t h e  indicated equa
t i o n s .  

Figure 4.5 gives  a comparison of t h e  reduced loads determined by means of 
t h e  coef f ic ien ts  of Table 4.3 with t h e  reduced loads found as the  r e s u l t  of t he  
"exact" so lu t ion  of eqs.( 1.1)t o  (1.7). The same diagram shows the  reduced 
loads calculated by t h e  method of t h e  In t e rna t iona l  Standards Organization (ISW4@
r ecen t ly  adopted i n  o ther  countr ies  and calculated by the  method of M.P.Belyan
chikov (Ref .&) which i s  now being recommended f o r  t h e  ca lcu la t ion  of general-
purpose bearings. 

-~~ 

-x- Draft of recommendations f o r  ca lcu la t ing  dynamic load-carrying capacity of 
b a l l  and r o l l e r  bearings, I s ,  No.278, 1960. 
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A s  we see from Fig.4.5, the  re
duced loads obtained by using t h e  
da t a  of Table 4.3 are c loses t  t o  
t h e i r  Ilexact 11 values . 

Use of t h e  IS0 method, under 
c e r t a i n  conditions w i l l  overestimate 
the  reduced loads by 20 - 30%which 
i s  na tura l ly  impermissible f o r  bear
ing  assemblies of a i r c r a f t  com
ponents. 

Su f f i c i en t ly  accurate .values of 
t he  reduced loads are obtained with 
the  method developed by M.P.Belyan
chikov f o r  ca lcu la t ing  rad ia l - thrus t  
ba l l  bearings with contact angles of 
Bo 2 26'. However, a t  smaller con
t a c t  angles, t h e  accuracy of t he  
method decreases s teeply.  For in
stance,  i n  the  case of contact 
angles of Bo = 12 - 18', the  e r r o r  
i n  the reduced load may go as high 
as 40%. For contact angles l e s s  
than 12', this method i s  general ly  
unacceptable. 

0 0.5 1.0 1.5 Q 0 a2$ 
3. S t a t i s t i c a l  Theory of Eynamic 

Fig.k.5 Comparison of Various Methods Load-Carrying Capacity 
f o r  Calculating Reduced Loads on a 

Bearing. I n  ca lcu la t ions  of l i f e  ex
pectancy we general ly  use the  prin
ciDles of t he  s t a t i s t i c a l  theorv of 

f a t igue  of metals, which assumes t h a t  f a i l u r e  bf t h e  mater ia l  under t h e  effLct 
of a l t e rna t ing  loads i s  a random process of accumulation of f a t igue  cracks having 
various p robab i l i s t i c  cha rac t e r i s t i c s .  Such an  approach t o  the problem of l i f e  
expectancy i s  highly use fu l  f o r  any machine component operating under a l t e rna t 
ing s t r e s ses ,  including a n t i f r i c t i o n s  bearings which f a i l  as a consequence of 
f a t igue  chipping of t he  t r acks  or rolling body. 

S t a t i s t i c a l  representat ions,  underlying modern methods of determining t h e  
serv ice  l i f e  of a n t i f r i c t i o n  bearings, were developed mainly by Weibull (Ref.43) 
and Lundberg and Palmgren (Ref .a).Invest igat ions by Harris ( R e f  .45) and 
o thers  were devoted t o  t h e  development of these  representat ions f o r  small proba
b i l i t i e s  of failure.  

The basic  p r inc ip l e s  of t h e  s t a t i s t i c a l  theory of t h e  dynamic load capacity 
of r o l l e r  bearings can be formulated i n  the  foUaJ ing  manner: 

Let qbe be t h e  p robab i l i t y  t h a t  the  bearing, ro t a t ing  at an  rpm of n, works 
h hours without s igns  of fa t igue .  
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On t h e  basis of t h e  theorem of &thematical s t a t i s t i c s  f o r  t he  product of 
independent events, disregarding t h e  p robab i l i t y  of failure of t h e  r o l l e r  by 
v i r t u e  of i ts  smallness i n  comparison wi th  t h e  p robab i l i t y  of f a i l u r e  of t h e  
t racks,  we can write 

%e= qlvtqrr 1 

( 2 . W  

where qro and qst a r e  t h e  corresponding p r o b a b i l i t i e s  character iz ing t h e  reli
a b i l i t y  of t h e  ro t a t ing  and s t a t iona ry  races .  

Taking i n t o  account t h e  cha rac t e r i s t i c s  of t h e  s t a t e  of stress under t h e  
e f f ec t  of contact loads and t h e  character  of t h e  primary f a t igue  microcracks 
formed i n  r o l l e r  bearings, hndberg and P a b g r e n  introduced t h e  following dis
t r i b u t i o n  determining t h e  p robab i l i t y  FA of t h e  appearance of t r a c e s  of f a t igue  

on & por t ion  of t he  t rack  of length  AL after N r o l l e r s  loaded by a constant 
force P have r o l l e d  along it: 

Here, 
H, = coe f f i c i en t  depending upon ma te r i a l  p roper t ies ,  surface f in i sh ,  and 

p rec i s ion  of manufacture ; 
T~ = m a x i m u m  t angen t i a l  stress ac t ing  i n  areas p a r a l l e l  t o  t he  surface of 

t h e  area of contact s t r a i n ;  
zo = depth a t  which this s t r e s s  arises; 
AV = s t ressed  volume. 

A t  m2 = 0, which might occur when t h e  p robab i l i t y  of failure introduced by 
each element of volume does not depend upon i ts  loca t ion  r e l a t i v e  t o  t h e  surface,  
t h e  d i s t r i b u t i o n  (2.15) changes t o  t h e  customary Weibull d i s t r ibu t ion .  

The s t r e s s  T~ and t h e  depth zo can be expressed, respect ively,  by the  m d 
mum bearing stress o0 a t  the  center  of t h e  area of contact s t r a i n  and t h e  semi-
minor ax is  b of this area:  

(2.16) 


The s t ressed  volume AV, i n  first approximation, can be taken as equal t o  /348 

A V =2az0AL ,  (2.17) 

where a i s  t h e  semimajor ax is  of t h e  area of contact s t r a i n .  

A s  follows from t h e  theory of contact s t r e s s e s  and s t r a i n s ,  f o r  r a d i a l  and 
rad ia l - thrus t  ba l l  bearings, 



I n  t h e  e q u a l i t i e s  (2.18) t h e  following 'notations are adopted: 

The coe f f i c i en t s  H,, aT, and CY,, s t r i c t l y  speaking, are not constants;  how
ever, for a l l  p r a c t i c a l  purposes this can be disregarded s ince t h e  limits wi th in  
which t h e i r  values vary (depending on t h e  r a t i o  b/a) a r e  qui te  negl igible .  

It i s  easy t o  prove t h a t  

where A$ i s  the  c e n t r a l  angle corresponding t o  the  examined por t ion  of t he  t r a c k *  

By means of t he  equa l i t i e s  (2.l-6) - (2.19) we can reduce eq.(2.l5) t o  the  
fo m  

Pm'N' : A ) .-HN,cos& nllc- (2.20)dba 

The number of balls contacting each por t ion  of t h e  t r ack  during h hours of 
work of the bearing w i l l  be 

N=30.~nh( 1  fq). (2.21) 

Subs t i tu t ing  this value i n t o  eq.( 2.x)), we f i n a l l y  obta in  

-H3zl cos $io(nh)' -- (2.22) 

The exponents m and c are expressed i n  terms of t h e  exponents ml, m2, and 
i n  t h e  following manner: 
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According t o  t h e  da t a  of fore ign  bearing manufacturers, which are gen
era l ized  i n  t h e  recommendations of t h e  ISO,m = 3 and c = 1.8 (at  d,, < 25 m).

/'J!& 

The por t ion  of t h e  t r ack  of t h e  s t a t iona ry  race  located a t  t h e  azimuth JI 
when t h e  balk, r o l l  along it, i s  loaded each t i m e  by t h e  same force  P t .  Se t t ing ,
i n  conformity wi th  this, P = P\Ir i n  eq.(2.22), we ob ta in  f o r  this por t ion  

It follows from eq.(2.&) that t h e  p robab i l i t y  q,, , character iz ing t h e  re
l i a b 5 l i t y  of t h e  s t a t iona ry  race as a whole, i s  equal t o  

where 

During a s u f f i c i e n t l y  long time in t e rva l ,  each element of the t rack  of t h e  
ro t a t ing  race w i l l  contact t h e  balls a t  p r a c t i c a l l y  a l l  azimuths. 

Accounting f o r  this f a c t  and considering t h e  hypothesis of l i nea r  swmnation 
of damageability t o  be val id ,  eq.(2.22) w i l l  y i e l d  f o r  each por t ion  of t h e  t r a c k  
of t h e  ro t a t ing  race 

Subsection 1. 

The probabi l i ty  c&,, character iz ing t h e  r e l i a b i l i t y  of t he  e n t i r e  ro t a t ing  
race i n  conformity wi th  eq.(2.26) w i l l  t hen  be 
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The coef f ic ien t  H3, f i gu r ing  i n  t h e  above equa l i t i e s ,  can be represented a s  
t h e  product of a c e r t a i n  constant H, and t h e  quant i ty  

2m,+m,-2 
3 

H ,= (2.28) 

which i s  a funct ion of 7 and 0 ,  i.e., parameters character iz ing t h e  i n t e r i o r  
geometry of t h e  bearing. ' 

Let us assume t h a t  t h e  inner  race  ro t a t e s .  For this, eqs.(2.%), (2.25), 
and (2.27) w i l l  y i e ld  

The ind ices  Ilin11 and IroutIl (eq.0 = equivalent ou ter )  as w e l l  as t h e  .Lis 
upper and lower s igns i n  eqs.(2.18), (2.19), (2.211, and (2.28), per ta in ,  re
spect ively,  t o  t h e  inner and outer  races  of the  bearing. 

A t  7 = 0.2, 0 = 0.52 and h = l e t  

Furthermore, l e t  us introduce t h e  quant i t ies  Co a.nd f, over t h e  formulas 

where 
1 

and 

' .. .. ... . ..... . _-_..... 



Using eqs.(2.30) and (2.3l), we transform eq.(2.29) such t h a t  

Having expressed here P,, i n  terms of t h e  equivalent dynamic load Q, we 
ob ta in  

1 1- -
Q(n/i) = C f q m ,  (2.33) 

where 

c=c,(cos Po)(1- Aj 

I n  l i k e  manner, we can examine the  case where t h e  outer  race  ro t a t e s .  

Combining t h e  formulas of  l i f e  expectancy for r o t a t i o n  of t h e  inner  and 
outer  races  and introducing t h e  coe f f i c i en t s  k, and kt which t ake  i n t o  account 
t h e  e f f ec t  of t h e  type of load and temperature regime of t h e  bearing on t h e  load-
carrying capacity,  we f i n a l l y  have 

Here k, = 1i f  t h e  inner  race ro t a t e s ,  and 

i f  t h e  outer  race ro t a t e s .  

I n  the  spec i f i c  numerical ca lcu la t ions  of r a d i a l  and rad ia l - thrus t  ball /351
bearings on t h e  basis of tabulated coe f f i c i en t s  k, and k, t h e  values of t h e  kine-

Pig.4.6 Kinematic Coefficient k,. 

390 



matic coef f ic ien t  kk  can be determined approximately as a funct ion of the  guan

t i t y  w = 0.587 - from the  graph i n  Fig.4.6.
k0 

I n  other  countr ies ,  ca lcu la t ions  of t h e  coef f ic ien ts  of u t i l i z a t i o n  C, and 
C usual ly  take  t h e  coef f ic ien t  f '  as equal  t o  150 - 200. 

Calculations show that, a t  a given e, t h e  coef f ic ien t  f // depends mainly 
on 7 .  A t  m = 3, C = 1.8, and 1 = 1.11which corresponds t o  t h e  IS0 recommenda
t ions ,  this coe f f i c i en t  has t h e  values ind ica ted  i n  Table 4.4. 

For general-purpose bearings, t h e  l i f e  expectancy h,, a t  which t h e  proba
b i l i t y  of failure i s  equal t o  lo%, i s  considered t o  be the  ra ted  l i f e .  

Since we have a t  q = 0.9 a value of f ,  = 1, it follows t h a t  

Comparing t h e  e q u a l i t i e s  (2.34.) and (2.36), we f ind  

h 

-= f,. (2.37)
h1o 

It follows from eqs.(2.37) and (2.31) t h a t  t h e  average l i f e  expectancy of 
r o l l e r  bearings i s  determined from t h e  expression 

where I? i s  the  gama funct ion of t h e  argument (1 + +). 
The r a t i o  of t h e  median l i f e  expectancy hS0, corresponding t o  t h e  re l iabi l 

i t y  q = 0.5, t o  t h e  ra ted  l i f e  hlo will then  be 

Equations (2.38) and (2.39) show t h a t  t h e  main parameters character iz ing 
t h e  dispers ion of t h e  l i f e  expectancy of r o l l e r  bearings i s  t h e  exponent 1 .  

h50In most cases, t h e  r a t i o  -varies wi th in  limits from 4.08 t o  5 .  A t  
hl0 
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- -bo = 4.O$, 1 = 1.34 and -= 4.95. A t  -h50 - 5, 1 = 1.1'7 and -ha, = 6.5. 
hl0 hl0 h10 h10 

A s  experimental inves t iga t ions  indicate ,  these  re la t ionships  s a t i s f a c t o r i l y  
descr ibe t h e  d ispers ion  of l i f e  expectancy at q,, 2 0.9. Noticeable deviat ions 
are observed i n  t h e  region of small p r o b a b i l i t i e s  of f a i l u r e .  These devia
t i o n s  can be taken i n t o  account if, f o r  this region, eq.(2.3?) i s  replaced by 

/352 
t h e  following: 

Here, ho i s  some threshold of l i f e  expectancy, p r i o r  t o  which the  p robab i l i t y  of 
failure i s  equal t o  zero. 

Since we have f ,  w C ~ O ( I- qbe) l l ' t  a t  qbe < 0.9, eq.(2.40) can f i n a l l y  be 
w i t t e n  i n  t h e  form 

h0According t o  Harris' da t a  (Ref.45), t h e  r a t i o  f o r  b a l l  bearings i s  
h 10 

0.045. T h i s  means that, t o  ensure 100%r e l i a b i l i t y ,  a ra ted  l i f e  margin of 
t h e  order of 22 is  required which corresponds t o  a load margin of 2.8. 

The basic  p r inc ip l e s  of t h e  s t a t i c  theory of dynamic load capaci ty  of radial 
and rad ia l - thrus t  ba l l  bearings have been presented above. The corresponding 
s t a t i c  theor ies  of dynamic load capaci ty  can be developed i n  a s imi l a r  fashion 
f o r  bearings of other  types 

The main r e s u l t s  of s t a t i c  representat ions of t h e  l i f e  expectancy of r o l l e r  
bearings have been applied both i n  fore ign  and domestic prac t ice .  However, it 
should be borne i n  mind here t h a t  some of t he  fundamental r e l a t ions  used i n  pre
par ing our own catalogs and manuals have a form d i f f e r i n g  from that i n  other  
countries.  le, our coef f ic ien ts  of u t i l i z a t i o n  Co and C are not calcu
l a t ed  from eqs.(2.30 and (2.33) but are taken as equal  t oFor 

For general-purpose bearings, f = 65. We r e c a l l  t h a t ,  i n  Soviet p rac t ice ,  
t h e  exponent m is  considered as equal  t o  3.33. 

The l i f e  expectancy of two-row bearings as w e l l  as of r o l l e r  bearings con
s i s t i n g  of several i d e n t i c a l  bearings which can be regarded as one multirow bear
ing, i s  determined by the  expression 
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1 

0.39 K , , K ~ Zcos P0egj C( t ~ h , , ) ~ =  

The equivalent pressure enter ing here i s  

where P,,, and k, s are t h e  equivalent load and kinematic coef f ic ien t  f o r  t h e  

j - th  bearings. 

Equations (2.43) and (2.44.) follow d i r e c t l y  from t h e  r e l a t ions  given above 
f o r  ind iv idua l  bearings. 

If a l l  bearings are loaded iden t i ca l ly ,  then  

A s  shown by a n  ana lys i s  of t he  values of t h e  coe f f i c i en t s  f Ni n  Table 4 . 4 , m  
t h e  performance of r o l l e r  bearings l a rge ly  depends upon ll. I n  eqs.(2.42) this 
important f a c t  i s  not taken i n t o  account, which i s  t h e i r  e s s e n t i a l  shortcoming. 

A s  i s  known, f o r  high-precision a i r c r a f t  bearings manufactured from part icu
l a r l y  high-grade m e t a l ,  t h e  coe f f i c i en t s  of u t i l i z a t i o n  have much l a rge r  values 
than  those obtained from eq.(2.42) f o r  f = 65. 

Therefore, using t h e  da t a  of machinery catalogs and handbooks f o r  calcula
t i o n s  of a i r c r a f t  s t ruc tures ,  it can be expected t h a t ,  i n  r e a l i t y ,  t h e  ra ted  
l i f e  h,, w i l l  not correspond t o  t h e  10%probabi l i ty  of f a i l u r e  but w i l l  be ap
preciably smaller i n  value. With this approach t o  a determination of t he  serv ice  
l i f e  of bearing assemblies of a i r c r a f t  components, this l i f e  expectancy i s  o f t en  
iden t i f i ed  wi th  the  required lifetime. I n  prac t ice ,  this i s  achieved by replac
ing  h,, i n  eqs.(2.36) and (2.43) by h, understanding by h t h e  l i f e  expectancy a t  
which t h e  l e v e l  of r e l i a b i l i t y  of bearings f o r  a i r c r a f t  components i s  ensured. 

4.. Effect  of-Axial Load on Bearing Performance 

Let us discuss  t h e  manner i n  which an  axial load a f f e c t s  t h e  performance of 
r a d i a l  and radial- thrust  bal l  bearings. 

Figures 4.7 and 4.8 show t y p i c a l  graphs of t h e  r e l a t i o n  2 = f(*) f o r  
R 

-R = const, p lo t t ed  from da ta  of ca lcu la t ions  performed i n  compiling t h e  
md2ba 

tables of t h e  coe f f i c i en t s  k, and k. 
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As we see from these  graphs, for each load level t h e r e  i s  a range of values 

of -	A i n  which 3 < 1. Its boundaries are given i n  Table 4.5.
R R 

TABLlI 4.5 

R I Values of A/R a t  Different Contact h g l e s  Bo 
deg. 

zvdk I O 1 1 2 1 1 8 

0.02 0-0.15 0.26-0.38 0.39-0.56 0.56-0.82 0.84-1.20 
0.11 0-0.28 0.25-0.45 0.37-0.60 0.55-0.84 0.76-1.21 
0.35 0-0.37 0.22-0.47 0.35-0.63 0.47-0.85 0.38-1.21 
1.00 0-0.43 0.04-0.49 0.00-0.65 0.00-0.86 0.00-1.22 

A t  values of -	A as indicated i n  Table 4.5, t h e  axial load not only w i l l
R 

not reduce t h e  load capaci ty  of t h e  bearing but even increase it somewhat. It 
i s  t r u e  that this increase i s  ins igni f icant ,  s ince  t h e  poss ib le  decrease of t h e  
reduced dynamic load i s  seve ra l  percent.  

In radial- thrust  bal l  bearings, t h e  balk are acted upon by Coriol is  forces  
which tend t o  make them r o t a t e  about axes perpendicular t o  t h e  contact surfaces.  
F r i c t ion  forces  a r i s i n g  a t  t h e  po in t s  of contact wi th  t h e  races  prevent such 
11spinningf1 of t h e  balls. If the re  i s  an unloaded zone i n  t h e  bearing, then  
this zone contains no f r i c t i o n  forces  that would prevent rlspinning" of t h e  b a l k ,  
and t h e  b a l k  begin t o  s l i d e  r e l a t i v e  t o  t h e  raceways of t h e  races;  a t  high 
rates of ro ta t ion ,  t h i s  w i l l  lead t o  overheating and rapid wear of t h e  bearings. 
It i s  l o g i c a l  t ha t ,  i n  designing high-speed bearing assemblies with radial- thrust  
ba l l  bearings, it i s  always necessary t o  have a l l  b a l k  share  the  load. I n  
prac t ice ,  this i s  achieved e i t h e r  by i n s t a l l i n g  t h e  bearings a t  suitable contact 
angles o r  with some aux i l i a ry  axial load produced by preloading. 

The magnitude of t h e  loading zone depends on t h e  co r re l a t ion  between axial 
and r a d i a l  loads applied t o  t h e  bearing. The g rea t e r  t h e  r a t i o  A/R, t h e  la rger  
this zone. A s  indicated earlier, a t  Q o  = 0 t h e  loading zone i s  360' i f  0 5 h < 1. 
The value h = 0 corresponds t o  t h e  case of axial loading of t h e  bearing i n  which 
the  pressures  on t h e  b a l k  are iden t i ca l .  The value A = 1determines the  mini
mum magnitude of t h e  r a t i o  A/R at which a l l  balls are loaded. T h i s ,  i n  par t icu
lar, follows from eq.(1.22) which shows that, i n  the  case q 0  = 0 and h = 1, t h e  
force absorbed by t h e  b a l l  located at  t h e  azimuth Q o  = 180' vanishes. 

Taking i n t o  account t h a t ,  at  h = 1, we have j, = 0.425, j, = 0.225, and 
j, = 0.231, we f i n d  from eqs.(2.1) and (2.2) that 
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Fig.4.7 Graphs of t h e  

Relation 3 = f(+) a t
R 

Certain Constant Values 

of and@,  = o 
zvd:,

0 0.2 0.4 0.6 0 . g ~A 

Fig.4.8 Graphs of t he  Relation 

Constant Values of 
R 

= f(+) a t  C e r t a i n  

and B o  = 36'. 
zvd2ba 

0 0.2 0.4 0 0.2 0.4 0.6 0.8 A 
o*8 & 2vdL 

Fig.4.9 Dependence of t h e  Ratio 

(L) on Load Level. 
\ R ~ = 1  

Fig.4.10 Dependence of t h e  Ratio 

(A) on Load Level. 
R \=I 
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-- 
sin2 PO +To+

A - 1.666 
R,, -1) cos Po 

where t h e  r a d i a l  load R i s  determined by t h e  expression 

w h i l e  t he  r a t i o  is 

' =0.5025 2 +%o 

- sinzpo +so+" 52-- * 

4
1 + 0.905- 60 -_ 

2+30 cos2 po 

A s  we see  from t h e  equa l i t i e s  (2.46), (2.47), and (2.481, t h e  values of 

and (+) X = 1  
depend on t h e  in i t ia l  contact angle as w e l l  as on t h e  level 

o f  t h e  load received by the  bearing. 

For t h e  most f requent ly  encountered i n i t i a l  contact angles Bo = 0, 12, l8,
26, and 3 6 O ,  we p lo t t ed  i n  figs.4.9 and 4.10 on t h e  basis of eqs.(2.46), (2.47), 

and (2.48) curves determining the  values 
A and as a funct ion of 

R 
zvdi, 

For s m a l l  loads, 

With a n  increase i n  load, t h e  quant i t ies  
A will a l so  in- /356 

crease.  For instance,  f o r  t h e  angle Bo = 23' at = 1, we have 
zvd;, 

A s  shown above, i n  the  case of a constant contact angle between b a l k  and 
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races  f o r  a loading zone of 180' and a parameter h = *m, t he  r a t i o  A = 
= 1.217 t a n  B o .  R 

The values of t h e  r a t i o  A with considerat ion of t h e  va r i a t ion  i n  C O ~ 
( ~ ) l =m 

t a c t  angle as a function of t h e  pos i t i on  of t h e  b a l l  r e l a t i v e  t o  t h e  plane XOZ 
can be found from the  curves i n  Fig.4.U. Figure 4.12 shows curves by means of 

which t h e  corresponding values of t h e  r a t i o  (2)can be determined. ' R x=m 

Fig.4.11 Dependence of t h e  Ratio Fig.4.12 Dependence of t h e  Ratio 

<+)\= m 
on the  b a d  Level. on t h e  b a d  Level. 

(+)I=, 


The graphs i n  Figs.4.11 and 4.12 are constructed by means of t he  formulas 

which follow from eqs.(2.1) and from t h e  equa l i t i e s  (2.12) and (2.13). 

These da ta  permit estimating t h e  e f fec t  of t h e  axial load on t h e  load ca
p a c i t y  of r a d i a l  and radial- thrust  ba l l  bearings. With t h e i r  a id ,  one can estab

ll i s h  the  optimal ~ apreloading with which the  bearings should be mounted i n  
t h e  assembly and s e l e c t  t h e  most r a t i o n a l  values of t h e  i n i t i a l  contact.  angle Bo 
f o r  d i f f e ren t  combinations of radial and axial loads. 

5 .  Approximate -Solutions of Equations (2.1) and (2.21 

It should be reca l led  t h a t  t h e  angle Bo is  determined by t h e  r a d i a l  c lear
ance 20. present i n  the  bearing a f t e r  f i t t i n g  t o  the  shaft and i n  t h e  housing a t  
an establ ished operating temperature of t h e  component, and a l s o  by t h e  a c t u a l  ,&.i'J 
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dis tance  g between t h e  centers  0, and 0, of t h e  cross  sec t ions  of t h e  raceways 
of t h e  races  [see Fig.4.2 and eq.(1.7)1. 

Because of t h e  e f f e c t  of sha f t - f i t t i ng  tolerances,  nonuniformity of heating 
of ind iv idua l  elements of t h e  assembly, and poss ib le  d i f fe rence  i n  t h e  values 
of t h e  coe f f i c i en t s  of l i n e a r  expansion of t h e  sha f t  and housing, t h e  clearance 
2A may d i f f e r  subs t an t i a l ly  from t h e  ini t ia l  r a d i a l  clearance i n  a self-contained 
bearing. Deviations of t h e  radii of t h e  raceways and bal l  diameter may have a 
noticeable e f f e c t  on t h e  magnitude of t h e  d is tance  g. I n  t h i s  connection, when 
ca lcu la t ing  highly loaded r a d i a l  and radial- thrust  b d l  bearings t h e  angle B o  
cannot always be replaced by t h e  ra ted  i n i t i a l  contact angle ind ica ted  i n  a 
catalog. T h i s  f a c t  must not be disregarded i n  designing vi ta l  bearing assem
bl ies  of hel icopter  u n i t s  and of o ther  a i r c r a f t .  

The values of t h e  coef f ic ien t  ko and k f o r  r a d i a l  and radial- thrust  b a l l  
bearings with i n i t i a l  contact angles B o  d i f f e r i n g  from standard can be obtained 
by in t e rpo la t ion  of t h e  d a t a  presented i n  Table 4.3. A t  t h e  same time, a number 
of cases exist i n  which it i s  more convenient not t o  r e so r t  t o  this method but 
t o  solve t h e  problems i _ n  the  ca lcu la t ion  of such bearings by a d i r e c t  determina
t i o n  of t h e  quant i t ies  6, and h from eqs.(2.1) and (2.2), using t h e  following 
approximate methods. 

A , i.e'., i f  a l l  bearings share t h e  load, t h e  i n t e g r a l s  can
R 

be found from t h e  expressions 

The right-hand s ides  of t h e  equa l i t i e s  (2.50) represent  t h e  first terms of 
power s e r i e s  i n  which t h e  products j k ( l+ have been expanded f o r  $, = 0 
and 0 I h 5 1. I n  v i e w  of t h e  rapid convergence of these  series i n  the  indi
cated region, t h e  terms containing t h e  parameter h i n  a power higher than t h e  
t h i r d  are discarded here. 

Solving eqs.(2.1) and (2.2) with considerat ion of t h e  equa l i t i e s  (2.5O), 
successive approximations w i l l  yield t h e  working formulas 
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where 

The coe f f i c i en t s  D1, D,, 

D --.-4 R 
‘ - 3  A 

3 
1 4 - D i  

A=D2 16 
1 ’ (2.52)

l - - D i32 

-
A=- A 

Bo rvdg, ’ 

D, are correspondingly equal t o  /358 

( s in2  Bo + 2D,)’I2-_ 

C O S Z B O  1+ D, (2-53) 

1
1--DO2

32 
3 

16 

If -	A 
2 (L) , t h e  formula f o r  t h e  e m u m  pressure on t h e  balls can be

R R / x = 1  
represented i n  t h e  fo rm 

It follows from eqs.(2.3) and (2.51) t h a t  t h e  coe f f i c i en t  cAA’ i n  eq.(2.54) 
can be equated t o  

It is  obvious tha t ,  i n  t he  examined case, t he  reduced loads Q o  and Q can be 
expressed i n  t h e  following manner: 
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A comparison of t h e  e q u a l i t i e s  (2.56) and (2.13) y ie lds ,  f o r  t h e  given case, 

~,,=0.229Gh~)cos &sin a; 

K =0.390w2hA)cos i3, sin a. 
(2.57) 

If t h e  r a d i a l  load i s  R = 0 then, i n  conformity' wi th  t h e  e q u a l i t i e s  (2.53), 
we have D, = 0 and D, = 1. Subs t i tu t ing  these  values i n t o  eq.(2.55), we obtain 
t h e  following f o r  t h e  case of pure ly  axial loading: 

Figure 4.13 gives  graphs of t h e  dependence g;)26)(A), obtained from= 
the  i n i t i a l  equations of s t a t i c  equilibrium of r a d i a l  and rad ia l - thrus t  ba l l  

1bearings without s' l i f y i n g  assumptions. There, t h e  s i g n  ~ 1 denotes t h e  values 
of t h e  coe f f i c i e r l t 3 ; )  calculated by eq.( 2.58) , furnishing graphic proof of its 
completely s a t i s f a c t o r y  accuracy. 

The described method of determining t h e  quant i t ies  To and h can be used 
only when the re  are no unloaded balk i n  t h e  bearing. 

Now l e t  t h e  loading zone be l e s s  than  360'. 
For a loading zone less than  360°, the quan
t i t y  h can vary wi th in  limits from t o  1and 
from -a t o  some negative value h+ corresponding 
t o  t h e  case where t h e  bearing absorbs a purely 
r a d i a l  load. I n  t h e  absence of an axial load, 
t h e  center  of t h e  contact area llslidestl t o  t h e  
middle of t h e  raceway and t h e  angle B vanishes. 
If, i n  eq . ( l . l9 ) ,  t h e  angle B is equated t o  
zero and at  r a d i a l  loading of t h e  bearing, we 
obviously have 

0 0.01 0.02 0.03 0.04 2 
&=cos Po- 1. (2.59) 

Fig.4.13 _Gra hs _of t h e  De
( A )  (A). Let us introduce t h e  notat ionspendence k:;' = k00 

(2.60) 

The values of E as a funct ion of h are given i n  Table 4.6. 
-

A t  6 = cos B o  - 1and B = 0, t h e  second equation of t h e  system (2.1) can be 

4.00 

1 .... 
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represented as 

where 

We r e c a l l  that, i n  conformity with the-accepted d i r ec t ion  of t h e  z-axis, 
t h e  angle B o  = 0 and thus  h cos J l o  = h and h 0  = 6(1 + A ) .  

TAUWE 4..6 
-

1-
h El  E2 E3 E4 E4 

. .  

1 1.244 1.125 1.666 0,600 -0.1 -0,304 2.670 1.185 -8.441 
0.9 1.173 1.149 1.594 0.697 -0.2 -0.704 3.126 1,164 - 4 , 2 9 6  
0.8 1.097 1.187 1,532 0.816 -0.3 -1.248 3.146 1.139 -2.927 
0.7 1.017 1,242 1,476 0.968 -0.4 -2.021 4.597 1.115 -2.243 
0.6 0.930 1.317 1.430 1,166 -0.5 -3.191 5,899 1,093 -1,829 
0.5 0.831 1,409 1.386 1.443 -0.6 -5.111 7.998 1.075 -1.550 
0.4 0.717 1.522 1.346 1.857 -0.7 -8.663 11.74 1.051 -1.360 
0.3 0.586 1.662 1,309 2.546 -0.8 -16.91 20.23 1.032 -1.210 
0.2 0,429 1.836 1,277 3.915 -0.9 -47.49 52.48 1.015 -1.094 
0.1 0.238 2.055 1,247 8,021 -1 --w 03 1 --I 
0 0 2.321 1,217 00 

It follows from the equa l i ty  (2.62) that 1,: should s a t i s f y  t h e  condi t ion 

ATo solve eqs.(2.1) and (2.2) i n  t h e  case of -
R 

< (-R ~ X = I
,we proceed i n  

t h e  fol lowirg manner: A s s u m i n g  -the parameter A as known, i t e r a t i o n  of t h e  second-
equat ion of t h e  system (2.1) w i l l  fu rn i sh  t h e  quant i ty  6 = 60 . Replacing

1 + h  
t h e  tr igonometric funct ions of t h e  angle f3 by t h e  corresponding values from 
eq.(2.2), we take  t h e  following as an approximate value of 6 :  



where 

It should be borne i n  mind tha t ,  s ince  eq.(2.63) i s  approz&mte, t h e  value 
of 6 determined from this expression f o r  A = Will d i f f e r  somewhat from t h e  
value corresponding t o  eq.( 2.59). 

i;wthermore, f ram eqs .( 2.1) we have 

Prescribing A ,  we t hen  use eqs.(2.63) and (2.65) f o r  p l o t t i n g  t h e  graph of 

t h e  dependence -A = F(h)  (Fig.k.l&). From this graph, knowing t h e  r a t i o  -,A 
R R 

we f ind  t h e  value of h which cons t i t u t e s  an approximate so lu t ion  of eqs.(2.1) 
and (2.2), Using t h e  obtained value of h ,  we ca l cu la t e  by eq.(2.63) t h e  a c t u a l  
value of 6 and then  f ind  z0 from it. 

A s  shown by numerical calculat ions,  t h e  accuracy of eqs.(2.63) and (2.65), 
j u s t  as of eqs.(2.51) and (2.52), i s  completely s u f f i c i e n t  f o r  engineering ap
p l i ca t ions .  The deviat ions of  t h e  values of so and h calculated by t h e  indi
cated formulas from the  corresponding IIexactII values determined by eqs .( 2.1) and 
(2.2) f o r  i n i t i a l  contact angles of Bo 2 4.5' a r e  usual ly  no more than  3 - 4%. 

On t h e  basis of eq.(2.63), we can wr i t e  

(2.66) 

Recalling that E, = 
1 and E = ,we f ind  t h e  following /361

A (1+ ~ ) j g ' ~  B,md2,* 
f o r  the  case -< (A): 

R R / x = 1  

Here, 

4.02 




A comparison of t h e  equalities (2.l-l) and 
(2.67) readi ly  shows that t h e  coeff ic ient  ko i n  

R*'H 1 this case can be expressed as-

l~,=0.229~,jR)COS a. 

Accordingly, 

0 1 -I -r ~ = 0 . 3 9 0 . ~ ~ 6 " )cos a. 
A e  A A 

Fig .4 . a  Auxiliary Graph 

f o r  Approximate Solution 6. Relative Displacements of Races 

of Eqs.(2.1) f o r  a Load

ing  Zone less than 360'. For ce r t a in  ul t ra-precis ion high-speed bearing 


asseniblies, a proper determination of the  r e l a t i v e  
displacements of the  bearing races under load i s  

of importance. When combined loads are absorbed by r a d i a l  and radial- thrust  
b a l l  bearings, this problem is  solved i n  the  fOllOwbg manner: 

Equations (1.13) and ( l . l 6 ) ,  i n  t he  absence of mutual misalignment of t h e  

races  (F = t~ 3 = 0), ind ica te  t h a t  
g 

On t h e  basis of eq.(1.19), we f ind  

A A . Under this condition, disregarding the  quantity x2-R * 
owing t o  i t s  smallness i n  the  equal i t i es  (2.42), t h e  following expr_ssions_ are 
obtained from eqs.'(2.51) and (2.52) f o r  t h e  r e l a t i v e  displacements s and u: 
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It i s  easy t o  def ine  t h e  va r i a t ion  i n  t h e  displacements s and wi th  any && 
change i n  t h e  r a t i o s  of r a d i a l  and axial loads on t h e  example of a 36207 bear

ing, f o r  which t h e c u r v e s u  = �2 -\ a d  ;=s' 
\ md?, 

) are p lo t t ed  by means 
md?, ) 

of eqs.(2.71) i n  Fig.4.15 f o r  a constant value of t h e  axial load f A -
\ zvd2ba 

= 0.53). For comparison, t he  s ign  IlxII i nd ica t e s  t h e  exact values of displace

ments s and ;calculated by eqss.(1.3), (1.6), and (1.7) f o r  t h e  cases X = 0 and 
h = 1, which determine t h e  limits of a p p l i c a b i l i t y  of eqs.(2.71). 

A s  follows from the  presented data,  t h e  equation of moments does not en te r  
i n t o  the  system of equations by means of which we inves t iga t e  t h e  d i s t r i b u t i o n  

of t h e  load i n  r a d i a l  and radial- thrust  
ball bearings operating without misalign
ment of t he  races.  Therefore, t h e  assump
t i o n  of t h e  e f f e c t  of t h e  r a d i a l  force  
and moment i n  one plane,  which was used 
i n  der iving eqs .(1.&) , introduces no 
add i t iona l  l imi t a t ions  t h a t  would narrow 
the  range of a p p l i c a b i l i t y  of t h e  afore
mentioned method of ca lcu la t ing  such 
bearings.  

R
D 0.1 02 0.3 o,c 0.5 0.6 0.7 z 

Zvdba U n t i l  now, we had assumed t h e  r a d i a l  
and &a1 loads ac t ing  on t h e  bearing as 

Fig.4.15 Curves of u = u:'md:, 
R 

i 
'\ given. 

and a t  a Constant The r a d i a l  loads on bearings are 
= :( 

zvd:, found from t h e  equations of equilibrium 
Value of t he  Axial Load. of t he  sha f t  t o  which they are f i t t e d .  

A t  l a rge  d is tances  between t h e  indi
vidual  supports, a determination of such loads is  not d i f f i c u l t  since,  i n  this 
case, they  depend l i t t l e  on t h e  moments absorbed by t h e  bearings so  t h a t  these  
can be disregarded i n  t h e  ca lcu la t ion .  

Often, considerable d i f f i c u l t i e s  are encountered i n  c a l c u h t i n g  ax ia l  loads.  
S t r i c t l y  speaking, t h e  axial load can be considered as known only i n  the  case i n  
which t h e  bearing i n  question absorbs the  e n t i r e  &a1 fo rce  applied t o  t h e  
shaf t ,  as takes  p lace  i n  bearing assemblies wi th  one bearing f ixed  i n  an  axial 
d i rec t ion .  

O f  course, i f  t h e  equations of equilibrium of t h e  sha f t  are not su f f i c i en t  
f o r  f inding t h e  loads ac t ing  on i t s  supports, it i s  impossible t o  make a separa te  
ca lcu la t ion  of bearings mounted on separate  supports.  I n  such cases, t h e  pres
sures on the  balls can be determined only by solving t h e  equations of equilibrium 
of t h e  shaf t  simultaneously wi th  t h e  equations of s t a t i c  equilibrium of a l l  bear
ings f i t t e d  t o  this sha f t .  



Sect ion 3 .  	Certain Problems i n  Calculating Radial-Thrust B a l l  
B e a s x s  with Consideration of Misalignment of 

1. Basic Rela t ionshbs  

In a number of he l icopter  units, narrowly spaced radial- thrust  b a l l  bear
ings  absorb combined loads i n  which t h e  moment plays. an  appreciable i f  not t he  
main ro le .  It i s  understandable t h a t ,  i n  determining t h e  parameters character

i z i n g  t h e  performance of such bearings, it i s  imper
missible  t o  disregard t h e  misaUgnment of t h e  races  as 
had been done i n  t h e  preceding Section; t h i s  g rea t ly  
complicates t h e i r  calculat ion.  

-! The absence of reliable methods f o r  ca lcu la t ing  
radial- thrust  b a l l  bearings receiving appreciable mo
ments a t  c lose spacing of t h e  supports i n t e r f e r e s  with 
t h e  design of numerous bearing assemblies, i n  par t icu
lar t h e  assembly of t he  p i t c h  con t ro l  swashplate which 
i s  one of t h e  most s t ressed  and v i t a l  elements of a1 helicopter .  

kt us examine c e r t a i n  problems i n  t h e  calcula
t i o n  of radial- thrust  ba l l  bearings,  wi th  considera
t i o n  of misalignment of t h e i r  races  under load. The 
r e s u l t s  obtained i n  s o l v i n g  these  problems y ie ld  an
s w e r s  t o  t h e  basic  questions a r i s i n g  i n  t h e  designing 
of bearing assembxes f o r  he l icopter  un i t s  which have 
t o  absorb l a rge  moments.Fig .4.% Diagram of 

Loading of Two Ball 
Bearings by Radial  kt the  bearing assembly, consis t ing of two 
and M a l  Forces and 	 radial- thrust  ba l l  bearings, absorb a combined load i n  

t h e  form of a r a d i a l  force  R applied i n  t h e  middle be-Moment. 
tween t h e  supports, an  axial  force  A, and a moment M 
(Fig.4.U).

and t h e  same plane.  
It i s  assumed t h a t  t h e  force  R and t h e  

moment M a c t  i n  one 

L e t  us ass ign  t h e  index 1t o  t h a t  bearing of a given assembly for which t h e  
pressures  on t h e  balls caused by t h e  ac t ion  of the  force  R and t h e  moment M are 
cumulative. A l l  quant i t ies  per ta in ing  t o  t h i s  bearing Will be wr i t t en  with this 
index. The index 2 i s  given t o  t h e  second bearing i n  this assembly and t o  a l l  
quan t i t i e s  per ta in ing  t o  it. 

Let us d i r e c t  t h e  axes of t h e  coordinates f o r  t h e  bearings 1and 2 as shown 
i n  Fig.4.16. It i s  obvious that, i n  t h e  coordinate system xlylzl, t h e  force  R 
and t h e  moment M always have pos i t i ve  values whereas t h e  axial force  A can be 
e i t h e r  p o s i t i v e  or negative 

The conditions of equilibrium of the  shaft t o  which t h e  bearings are mounted 
reduce t o  t h e  following system of equations: 
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- - -  

where L is  t h e  d is tance  between supports. 

Since t h e  moments M, and M, at  smitll d is tances  between t h e  supports are not 

only cammensurable wi th  the  moments R, -L and % -L but  may even appreciably
2 2 

\ 

u,=u${c;  

i2=sinBo+Z P->; (3.2) 
- 
u2= -u+c;. I 

3$ All r e l a t i v e  quant i t ies ,  as before, are expressed i n  f r ac t ions  of t h e  dis tance 
g = rout+ rin -



I n  bearing assemblies of t h e  type i n  question, we general ly  use radial-
th rus t  ba l l  besrings with l a rge  in i t ia l  contact angles, f o r  which t h e  r e l a t i v e  -displac_ements 61 and x2 r a r e l y  exceed 0.25 s i n 2  Bo.  For t h e  indicated values of 
6, ‘and S2, t h e  e q u a l i t i e s  (3.3) can be replaced by t h e  following approxk”ae re
lations : 

For the  se lec ted  d i r ec t ion  of t h e  axes of t h e  coordinates, t he  angle J l o  de
termining t h e  pos i t i on  of t h e  most loaded ba l l  i n  t h e  bearing l i s  always equal 
t o  zero. The angle q O 2  character iz ing t h e  pos i t i on  of t h e  most loaded ba l l  i n  
t h e  bearing 2, depending upon t h e  r a t i o  of t h e  r a d i a l  force  R t o  the  moment M, 
may have e i t h e r  a value of zero ( f o r  t h e  preva i l ing  moment) o r  may be equal  t o  
B O o  ( f o r  t h e  preva i l ing  r a d i a l  load) . 

Bearing i n  mind t h e  la t ter  circumstance it becomes poss ib le  by means of 
the  equa l i t i e s  (1.&), (1.25), (1.211, (1.27j, and (3.4),  taking t h e  comments 
made on t h e  order of t h e  quant i t ies  6 ,  and 6 ,  i n t o  account, t o  represent t h e  
forces  and moments taken by t h e  bearings 1 and 2 as follows: 



The f o l l u h n g  notat ions a r e  adopted i n  eqs.(3.5) 

A s  follows from e q ~ ~ ( 3 . 2 )and (1.13), we have 

Since, a t  6 S 0.25 s in2  Bo, we can put  approximately t a n  p = t a n  B + 
-

+ 	 6 the  last expression will y ie ld  
s i n  Bo cos Bo 

j 1+i2=2iprsin Po. 

Using t h e  equal i ty  (1.21), we f i n a l l y  have /366 

The r e l a t ions  (3.5), (3.6), and (3.7) toge ther  wi th  e q ~ ~ ( 3 . 1 )make it pos
s i b l e  t o  determine a l l  parameters character iz ing t he performance of radial- thrust  
ba l l  bearings f o r  c lose ly  spaced supports, when misalignment of t he  races  under 
load cannot be disregarded. A s  shown by numerical calculations, t he  accuracy of 
these  r e l a t i o n s  obtained on t h e  assunption t h a t  t he  quant i t ies  6, and 6, do not 
exceed 0.25 s i n 2  B o  a t  i n i t i a l  contact angles of Bo> 26O, with which we usually 
d e a l  i n  bearing assemblies intended f o r  absorbing la rge  moments, i s  su f f i c i en t .  

We will next analyze t h e  basic  ca lcu la t ion  cases encountered when designing 
bearing assemblies of this type f o r  hel icopter  units. 

. 



2. case-of-~llPuretl Moment 

If a bearing assembly consisting of two iden t i ca l  radial- thrust  b a l l  bear
ings absorbs a IlpurelJ moment (Fig.k.l8), then by v i r tue  of the  iden t i ca l  loads 
on both bearings we must have �2, = R,, A, A,, 2nd M, = M, . It is  logica l  t ha t ,  
i n  this case, J rOz  = J ro l  = 0, A l  = h2, and 6,, = h o 2 .  

c 

Fig.4.18 Diagram of had ing  of Two Fig.4.19 Effect of Preloading on 
B a l l  Bearings by a IIPurell Moment. t he  Loading Zone. 

- -
A s  indicated i n  eq.(3.7), a t  J r O z  = 0, X 1  = A z ,  and 6 0 1  = bo,, we have 

Consequently, under t h e  e f f ec t  of a llpurell moment, 

-
It i s  understandable t h a t  t h e  r a t i o  

6 01- should always be greater
s i n  B O A p r  

than  unity. T h i s  becomes obvious when taking i n t o  account that  the  product 
s i n  BOKp;,, represents t he  r e l a t i v e  convergence of t h e  raceways caused by the  pre-

1367loading, ?.e., the  relative approach of the  raceways present before applying 
an  ex terna l  load t o  the  assembly. 

Equation (3.9) determines the  loading zone as a funct ion of t he  l eve l  of 
the  load and the  preloading. This re la t ion ,  i n  par t icu lar ,  shows tha t ,  t o  have 
a l l  balls share t h e  load, t h e  bearing should be mounted with a r e l a t ive  preload

- Eo 1 
ing  a p r  s i n  B o  
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- 

The e f f e c t  of t h e  preloading on t h e  loading zone is  shown i n  Fig.4.19. 

Frequently, t h e  preload is not given as a relative axial displacement zp,
but  as a corresponding axial load A p r ,  determined by t h e  expression 

Since, under t h e  e f f e c t  of a rlpurell moment, we have R, = R, and A, = A,, 
t h e  first two equations of t he  system (3.1) are i d e n t i c a l l y  s a t i s f i e d .  The 
t h i r d  equation of t h e  system, f o r  t he  case of a I'pure11 moment, can be transformed 
by means of eqs.(3.5), (3.6), and (3.7) in t h e  following manner: 

Using eqs.(2.3), (2.5), (3.9), and (3.111, it i s  easy t o  construct t h e  

from which we cangraphs of t h e  r e l a t ions  	7- and *=F (A),
vdba -Fo(&) vdi, rOzvd& 

f i n d  t h e  max imum and equivalent pressures  on t h e  balls.  The curves shown i n  
Fig.4.20 can serve as a t y p i c a l  example of such graphs. They were obtained on 
t h e  assumption t h a t  Bo = 36', 6 = 0, and Epr s i n  B o  = 0.01. 

Let  us now represent t he  maximum pressure on the  ba l l  Pol i n  t h e  form 

zhM)M 4.  37zAM)M-Po, = 2j21A-_roz s in  PO (1 + c cot pol 2roz s in  PO (1+c cot BO) (3012) 

Acc,ordingly, we pu t  

It is  necessary t o  note t h a t  under t h e  e f f e c t  of t h e  llpure11 moment,P,, = Po, 
and P,, = P,, 1. 

It i s  easy t o  demonstrate t h a t  t h e  coe f f i c i en t  is  

I 



A t  zero preloading when A I  = w according t o  eq.(3.9), we ob ta in  from /368
e q 4 3 . a )  

The values of t h e  coe f f i c i en t  kLM) corresponding t o  eq.(3.15) can be de te r 
mined from the  graphs i n  Fig.4.21. Here, t h e  abscissa  gives t h e  quant i ty  M = 

1 I 1-6 t a n  B o--~ M-. 

ro 

1 i s  taken asThe quant i ty  p = 
zvdta s i n  Bo( 1+ 6 cot  B o )  

a parameter. 
t a n  Bo + 6 

1.2 

Fig.4.20 Values of Po 1 and 
vd2,Ea 

M 

as a Function of 

Fig.4.21 Values of t h e  Coef
f i c i e n t  kb''as a Function of 
t he  Parameters p and M. 

Vd2ba rozvdta  
f o r  B o  = 36'. 

The gra  hs i n  �5s.4.22 and 4.23 show the  mode of va r i a t ion  i n  t h e  coef
f i c i e n t s  kiMP and k(MFas a funct ion of preloading when Bo = 36' and 6 = 0. The 
curves 3.ndicate t h a t  t h e  preloading should be se lec ted  such that t h e  parameter hl  
l i e s  wi th in  t h e  limits of 1t o  1.25. A t  such a se l ec t ion  tif t h e  preloading, t h e  
coef f ic ien t  kAM)and hence t h e  maxi"pressure on t h e  ba l l  drop by 10 - l-2%. I n  
this case, the  coef f ic ien t  k( and, together  with it, t h e  equivalent pressure on 
t h e  ba l l  w i l l  keep approximately t h e  same magnitude as i n  the  case Without pre
loading. Analogous conclusions can be drawn from a study of other  combinations 
of t h e  quant i t ies  B o  and 5 .  

It i s  extremely important t o  estimate t h e  e f f e c t  of preloading on t h e  angu-



l a r  s t i f f n e s s  of t h e  bearing assembly. T h i s  i s  e a s i l y  done by means of t h e  
second equation of t h e  system (3.4) which, f o r  t h e  case of a ~ t p u r e ~ ~moment, can 
be represented i n  t h e  form 

Equation (3.16) shows t h a t  a change from hl  = CD t o  h l  = 1 - 1.25 leads t o  a 
decrease inmisalignment of t he  races  of t h e  bearings by a f a c t o r  of 2.2 t o  2. 

It is  obvious from t h e  aforesaid that, i n  i n s t a l l i n g  rad ia l - thrus t  b a l l  
bearings wi th  an optimal preloading corresponding t o  values of t h e  parameter h l  
from 1t o  1.25, t h e  serv ice  conditions of t h e  bearing assemblies loaded by a 
moment improve noticeably.  

0 0.02 0.04 0.06 0.08 &slnpO 

-Fig.4.22 Values of t h e  Coef
f i c i e n t  kiM) versus Preloading 
f o r  Certain Constant Values 

of M 
r,zvdt, 

Fig.4.23 Values of t h e  Coef
f i c i e n t  k(M)versus Preloading 
f o r  Certain Constant Values 

of M 
r, zvdz, 

The preloading at which t h e  parameter A I  = 1t o  1.25, i n  p r a c t i c a l  calcula
t ions ,  can be coqmted from t h e  approx-te formula 

- (1 .96- 1 . 9 4 ) XA =  
1 + H [(1.96 - 1.94)31]2'3 (3.1-7) 

where 

I n  this case, t h e  quant i t ies  Pol and Pcq I a r e  respec t ive ly  equal t o  

l+ =(0.657 -0.645) Pol. 1 



-- 
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3. Simul&anecus Action ofoment  and M a l  Force /370 

In t h e  presence of simultaneous ac t ion  of moment and &a1 force  (Fig.&.&), 
t h e  loading conditions of t h e  bearings 1 and 2 are d iss imi la r ,  which g rea t ly  
complicates t h e  ca lcu la t ions  f o r  determining t h e  ball pressures .  To f ind  t h e  
quant i t ies  Pol, P e q l ,  Poz,  and P e q 2 ,  a number of aux i l i a ry  graphs must be con
s t ruc ted .  The sequence of p l o t t i n g  such graphs i s  e a s i l y  understood from the  
following example: 

Let t h e  i n i t i a l  contact angle be Bo = 36’. For s impl ic i ty ,  l e t  us assume 
t h a t  t h e  r e l a t i v e  preloading i s  xpr=0 and t h e  r e l a t i v e  base 5 = 0, i.e., l e t  us 
study t h e  case d i r e c t l y  r e l a t e d  t o  ca lcu la t ions  of t he  bearings of t h e  p i t c h  con
t r o l  ,maskplate, f o r  wMch these  assumptions are s u f f i c i e n t l y  va l id .  

I 

Fig.4.a Diagram of h a d i n g  Two Fig.4.25 Typical Graph of T o ,  = 
B a l l  Bea?.-ings by Moment and Axial = 6,,(u, A )  f o r  R = R1 - R, = 0. 

Force. 

-According t o  eqs.(3.5) f o r  a r a d i a l  load of R = R1 = Rz = 0, t h e  quant i t ies-
601, So,, A l ,  and A z  are cor re la ted  by t h e  following r e l a t ions :  

In t h e  equal i ty  (3.19), as i n  a l l  subsequent r e l a t ions ,  we have taken i n t o  
account t h a t  - during t h e  simultaneous ac t ion  of moment and axial force  - we 
have l l r o a  = q O l  = 0, j u s t  as In t h e  case of ac t ion  of a llpurel1 moment. 

From eq.(3.7) a t  zero preloading we obtain 



- - 

&om this follows 

-
602Henceforth, t h e  r a t i o  7w i l l  be denoted everywhere by N. 
6.1 


Making use of- t h e  e q u a l i t i e s  (3.6), (3.191, (3.231, and (3.21), l e t  us p l o t  
t h e  curves go, = F I ~ ~ ( U ,A , )  s a t i s fy ing  the-condition R = R1 - R, = 0 (Fig.4.25). 
In te rsec t ing  t h e  obtained curves by l i n e s  6,, = const, we f ind  t h e  values of N. /371
corresponding t o  t h e  se lec ted  values of 6,, f o r  t h e  given values of h (from m 
t o  0).  Furthermore, taking A ,  as a parameter, we can use eqs.(3.1), [3.5), and 

t h e  preceding e q u a l i t i e s  f o r  ca lcu la t ing  t h e  quan t i t i e s  A M , and 
w2 

zvd?, ’ rozvdta 
t h e  r a t i o s  ’02 - u3/2 ad pe, 2 = %3/2 -. 

Po 1 pe, 1 W 1  

The r e s u l t s  of t he  ca lcu la t ions  a r e  presented graphically,  as i s  done i n  

Figs.4.26 - 4.28. F’igure 4.26, from t h e  given va .hes  of A . and M 
zvd?, romd:a ’ 

permits  determining t h e  quant i t ies  Foland h l ;  when these  are known it becomes 
easy t o  ca lcu la te  t h e  d u m and equivalent pressures  Po and P,, 1. From 

Po 2 pe, 2Figs.4.27 and 4.28, we f i n d  t h e  r a t i o s  -and -and then  ca lcu la te  t h e  
Po 1 pe, 1 

max imum and equivalent pressures  Po, and Pes2.  

The case nPr = 0 and 6 = 0 was--% analyzed above. For a r b i t r a r y  valuesr o z v d b &  
of these  quant i t ies  and a l s o  f o r  

0.7 other  i n i t i a l  contact angles Bo, de
0.6 terminat ion of t h e  pressures  Po l, 
0.5 Peql,  Poz, and P,,, i s  made i n  t h e  
0.4 same manner as i n  t h e  example under 

0.3 study. I .  should be remembered t h a t ,  
i n  t h e  presence of preloading, t h e  

0.2 quant i ty  FOl cannot be l e s s  than  
0.1 s i n  . 

A0 0.2 0.4 0.6 0.8 1.0 1 . 2 -
Z V d h  - We should note t h a t  t h e  case of 

A P r  = 0 and 5 = 0 is  cha rac t e r i s t i c  
Fig.4.26 Dependence of on not only f o r  bearings of t h e  p i t c h  

rOzvdt, con t ro l  but  a l s o  f o r  many large-
A , f o r  Certain Constant Values diameter r o l l e r  bearings used i n  

Z V ~ ?a - r o t a r y  devices of modern machines and 
of 601 and A, .  mechanisms. 



It i s  obvious from t h e  presented material that, f o r  t h e  preva i l ing  moment 
when h l  =- 1, t h e  bearing 2 i s  usual ly  t h e  most loaded, although a t  first glance 
t h e  serv ice  conditions of t h e  bearing 1, toward which t h e  axial load A i s  di
rected,  seem more severe. 

The presented method of c a l c u h t i n g  rad ia l - thrus t  b a n  bearings under t h e  
combined ac t ion  of moment and axial force  requires a l a rge  volume of ca lcu la t ions  
and constructions.  Therefore, i t s  use i s  warranted only i n  s p e c i a l  s tud ie s  hav
ing  t h e  purpose of determining t h e  p e c u l i a r i t i e s  of t h e  load d i s t r i b u t i o n  i n  & 
bearing assemblies wi th  c lose ly  spaced supports, and a l so  f o r  p l o t t i n g  a w d l i a r y  
graphs f o r  ca lcu la t ing  ind iv idua l  standard s t ruc tu res .  If such graphs have not 
been constructed beforehand, t h e  engineering ca lcu la t ions  should use t h e  simpli
f i e d  procedure based on c r i t i c a l  r e l a t ions  obtained f o r  t h e  case of small loads, 
when t h e  forces  a re  d i s t r ibu ted  between t h e  balls i n  t h e  most unfavorable manner. 

0 0.4 0.8 1.2 1.6 2.0 2.4- 1 
A1 

Fig.4.27 Dependence of t h e  

Po,Ratio -on -,1 f o r  Cer-
Po 1 11 

t a i n  Constant values of Zol. 

4 .  Wt Dependences on--Small Loads 

a 0.4 0.8 1.2 1.6 2.0 2.4 1 
a1 

Fig.4..28 Dependence of t h e  

peq 2Ratio -on -,1 f o r  Cer
pe, 1 11 

t a i n  Constant Values of Sol. 

In t h e  presence of small loads, it can be assumed that t h e  contact angles 
of a l l  b a l l s  are approximately i d e n t i c a l  and equal  t o  Bo.  

After discarding i n  eqs.(3.5) a l l  terms-that al&w f o r  t h e  va r i a t ion  i n  con
t a c t  angles and subs t i t u t ing  t h e  quant i t ies  &,, and bo, by t h e  maximum pressures  
on t h e  balls Po, and Poz, which i s  more convenient f o r  small loads, we have 

K ,  =zP,, cos 8, j z l ;  


A,=zP,, sin poj l l ;  

M,=r,zP,,sin~,j,,; ( 3 . 2 2 ) 

R2=zPOzcos Pojz2; 


A,=zP,,sin Poj,,; 

M2=rozPozsin ~ o j 2 2 .  



Subs t i tu t ing  t h e  dependences (3.22) i n t o  eqs .( 3.I), we obta in  

R=zPol cos Po ( j 21-x 3 / 2 j Z zcos qO2); 
A=#,, sin 3 0 ( j ~ l - x 3 ~ 2 j ~ 2 ) ;  
M =rozPolsin Po (1+ C c o t  Bo) ( j Z l+ x 3 / 2 j 2 2  cos qO2), I (30 2 3 )  

-
where, as before, u = T -

- i-)Po, 2/3, 

601 Po, 
Since i n  this case t h e  angle J r o a  need not be equal  t o  zero, t h e  equal i ty  

(3 .7) ,  under considerat ion of this circumstance, Will yield 

Let  us examine t h e  system of equations L222 

It i s  easy t o  demonstrate t h a t  t h e  values of A l ,  A,, and u f o r  zero pre
loading, s a t i s fy ing  equations (3.251, a l s o  s a t i s f y  e q ~ ~ ( 3 . 2 3 )and (3*2&>,if we 
set 

It m u s t  be reca l led  that, i n  t h e  first case, t h e  angle q O z  i s  equal t o  zero 
and i n  t h e  second, t o  180°. 



If t h e  axial force p lays  t h e  major r o l e  i n  t h e  ex te rna l  load, then  t h e  
pressures  on t h e  b a l k  a r e  usua l ly  w r i t t e n  i n  t h e  form 

If t h e  moment predominates, it i s  g e n e r a w  acceptable t o  use t h e  form of 
notat ion given e a r l i e r :  

According t o  eqs .( 3 .a),we have 

As regards t h e  coe f f i c i en t s  ki‘) , k(:), kL’), and khA), these are equal t o  

KIM)=& 0.587 ” ( M ) .’ “ ( A ) *  w “(AI;  “ ( M ) = A  “ ( M ) ;  ~ ( d ) = w  02 
O1 01 2 0.587 0’ b’ 

2“ ( A ) .  

It should be noted that, between t h e  coe f f i c i en t s  kp) and dM), t h e r e  ex
ists t h e  following r e l a t ion :  

4.17 
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Fig .4.a Nomograms f o r  Approximate Calculations of Bearings 
Loaded by Axial and Radial  Forces and Moments. 

The so lu t ion  of t h e  system (3.25) can be represented i n  the  form of graphs 
shown i n  Fig.4.29. From these  graphs, knowing T and v, it i s  easy t o  f ind  t h e  
values of u and h l ,  from which we ca l cu la t e  t h e  roduct h cos ( t o z  and then  /375 
ca lcu la te  t h e  coe f f i c i en t s  kd\) , k i A ), k p i  , k iAP,  o r  kbI f9  k y ) ,  k&!) ,kiM). 
After this, it i s  not p a r t i c u l a r l y  d i f f i c u l t  t o  determine t h e  pressures  on t h e  
balls. 

The graphs i n  Fig.4.29 are i n t e r e s t i n g  i n  t h a t  ne i the r  t h e  angle fi nor 6 
f igures  i n  them. Thus, we have a r r ived  at  a r a t h e r  convenierrt approximate method 
of ca lcu la t ing  radial- thrust  ba l l  bearings wi th  l a rge  i n i t i a l  contact angles i n  
t h e  most common case of t h e i r  loading. The preloading, as already demonstrated 
by a study of bearing assemblies loaded by a Ilpurell moment, mainly has an  e f f e c t  
on t h e  s t i f f n e s s  of t h e  system but leaves t h e  calculated values of t h e  maximum 
and equivalent b a l l  pressures  p r a c t i c a l l y  unchanged. Thus, t he  presented approx
imate method of determining these  quant i t ies ,  based on the  a s s q t i o n  t h a t  t h e  
preloading i s  equal  t o  zero, can be used f o r  solving a r a t h e r  wide range of 
problems associated with t h e  ca lcu la t ion  of rad ia l - thrus t  b a l l  bearings wi th  
la rge  i n i t i a l  contact angles i n s t a l l e d  i n  bearing assemblies, with c lose ly  spaced 
supports and absorbing a n  a r b i t r a r y  combined load. I n  simpler loading cases, 
when examLning t h e  c r i t i c a l  d i s t r i b u t i o n  of forces  between balls correspondhg 
t o  s m a l l  loads, it i s  r e l a t i v e l y  easy t o  allow f o r  t h e  preloading i f  necessary. 



L e t  t h e  assembly be loaded only by t h e  moment and t h e  axial force.  I n  t h e  
absence of a r a d i a l  load, as follows from eqs.(3.23), we have j,, - xW2 
j,, cos JIo2 = 0. M a k i  use of this re l a t ion ,  we reduce t h e  expressions f o r  the  
coe f f i c i en t s  k(') and TA)t o  t h e  form 

Equations (3.32) are va l id  a l s o  i n  t h e  presence of preloading. 

The coe f f i c i en t s  kbr) , d:), ki ') ,  and k(Z') determined from eqs.(3.32) f o r  
zero preloading can be found from t h e  graphs i n  F'igs.4.30 and 4.31. Since, a t  

small val6es of t h e  r a t i o  1,t he  coeff ic ier . ts  kk') and kCM)f o r  t he  bearing 2 
7 

are subs t an t i a l ly  g rea t e r  t han  f o r  t h e  bearing 1, t h e  question na tu ra l ly  arises 
whether we can equate t h e i r  values by proper s e l ec t ion  of t h e  preloading. With
out dwelling on t h e  transformations r e l a t ed  with t h e  so lu t ion  of this problem, 
s ince  they are s u f f i c i e n t l y  obVious from the  foregoing, we w i l l  d i r e c t l y  give t h e  
t h e  f i na l  solut ion.  Figure 4.33 presents  curves giving t h e  values of t h e  r a t i o  -

A,, -s i n  Bo a t  which i d e n t i t y  of t h e  s t a t i c  and dynamic loads of t h e  bearings 1 
601 

and 2, <.e., equal i ty  of t h e  coe f f i c i en t s  kdy) and kiz) o r  ky) and kbM), can be 
theo re t i ca l ly  secured. The values of these  adjusted coe f f i c i en t s  a r e  shown i n  
Figs .4.30 and 4.31 as broken l i n e s .  

For assemblies which should have high r i g i d i t y ,  it i s  des i rab le  t h a t  a l l  
balls i n  both bearings be loaded. T h i s  problem i s  a l s o  e a s i l y  solved by proper

/376 
choice of t h e  preloading. Since, under t h e  combined a c t i o n  of moment and axial 
force,  t he  loading zone i n  t h e  bearing 1 i s  always g rea t e r  t han  i n  t h e  bearing 2, 
t h e  condi t ion of complete loading of t h e  balls of both bearings i s  t h e  inequal
i t y  h ,  2 1. The values of t h e  coef f ic ien t  G!), kb;) , k(lM) , and k(,M) and t h e  

r a t i o  
Epr-s i n  Bo , corresponding t o  the  case h,  = 1, are a l s o  given i n  F'igs.4.31 

601 
and 4.32. Figure 4.33 shows t h a t ,  wi th  a preloading which ensuresloading of a l l  
b a l h  of both bearings, t h e  angular s t i f f n e s s  of t h e  assembly increases  by a 
f a c t o r  of more than  2, which causes t h e  max5" and equivalerrb pressures  on t h e  
b a l k  t o  increase by about 10 - 15%. 

The l i m i t  dependences obtained f o r  t h e  case of small loads are r a t h e r  con
venient f o r  p r a c t i c a l  calculat ions,  s ince  they  s u b s t a n t i a l b  lessen  t h e  labor
iousness of determining t h e  pressures  on t h e  balk. It must only be remembered 
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F'ig.4.30 Values of t h e  Coef

f i c i e n t  kbM) = kp)(-$) f o r  

t he  Case of Simultaneous Action 
of Moment and M a l  Force. 

10.4 0.8 1.2 7 

Fig 4.32 Values of Preloading 
f o r  Ensuring t h e  Conditions 

1k(M)  = k2 , kby) = ko 2 and 
hz = 1. 

F'ig.4.31 Values of t h e  Coef

f i c i e n t  k(M)= k(M) 	(l?fop 
\I-/ 

t he  Case of Simultaneous Action 
of Moment and Axial Force. 

0 0.4 48 1.2 1.6 2.0 2.4 

Fig.4.33 Effect  of Preloading 
(Condition h 2  = 1)on Angular 

S t i f fnes s  of t he  Assembly. 

t h a t  t h e  use of these l i m i t  dependences leads t o  a c e r t a i n  overestimation of t h e  
ra ted  ball  pressures.  For contact stresses of t h e  order of 20,000 kg/cm", 
this amounts t o  15 - 25% f o r  t h e  angle Bo = 26' and t o  2 - 17% f o r  t h e  angle
B o  = 60'. Allowing f o r  this f a c t  i n  ca lcu la t ing  t h e  ra ted  loads of a given bear
i n g  assembly wi th  the  use of t h e  above c r i t i c a l  dependences, t h e  values of t h e  
sa fe ty  f a c t o r  can be reduced considerably. 

On t h e  basis of t h e  dependences presented above, we can determine the  pres
sures on t h e  b a l k  of eccent r ica l ly  loaded double-row t h r u s t  bal l  bearings. Here 
we must remember t h a t  f o r  an  i n i t i a l  contact angle of Bo = 90' a t  zpp = 0,
eqs.(3.32) y i e ld  t h e  Itexact11 values of t he  coe f f i c i en t s  enter ing e q ~ ~ ( 3 . 2 8 )and 
(3.29). We note t h a t  i n  this case t h e  quant i ty  T represents  t h e  r e l a t i v e  eccen

et r i c i t y  
r0 

(Fig -4=34) 



- -  

If a single-raw t h r u s t  ba l l  bearing t akes  a n  eccent r ica l ly  applied &a1 
force,  then  

where 

The values of t h e  coef f ic ien ts  k g )  and k ( A )  are found from the  curves 
p lo t t ed  i n  Fig.4.35. These curves are obtained from t h e  values of h correspond

jing t o  t h e  equation 4 = which, i n  turn,  i s  obtained d i r e c t l y  from t h e  con-
J i  

d i t ions  of s t a t i c  equilibrium 

e 

0 9 2  0.4 0.6 0.8 P 

Fig .4.34 Double-Row Thrust Ball F’ig.4.35 Values of t h e  Coef
as aBearing Loaded by M a l  Force and f i c i e n t  kp) and k C A )  

Moment (Eccentr ical ly  Applied Function of T .  

k a l  Force). 

-5. 	-Dis t r ibu t ion  of hag between Raws of Balls of Double-Row 
Radial-Thrust- B a l l  Bearings 

Radial-thrust ba l l  bearings wi th  i n i t i a l  contact angles of 26 and 3 6 O ,  
having a small preloading, are widely used i n  hel icopter  components designed f o r  
taking simultaneously ac t ing  radial and &a1 loads (Fig.4.36). 

We wi l l  attempt t o  e s t a b l i s h  the  manner i n  which t h e  load i s  d i s t r ibu ted  
over t h e  rows of balls of such bearings, working under conditions precluding t h e  
p o s s i b i l i t y  of a not iceable  misalignment of t h e i r  races.  

Keeping i n  mind t h a t  a small preloading has l i t t l e  e f f e c t  on t h e  b a l l  
pressures ,  we Will use t h e  limit dependences given i n  t h e  preceding Subsection 
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Fig .4 .36 Double-Row Radial-Thrust Fig.4.37 Values of and of t h e  
B a l l  Bearing Loaded by Radial  and Coeff ic ients  k g > a s  a Func-

Axial Forces. 1
I
t i o n  of -. 
7 

f o r  a n  approximate so lu t ion  of t h e  problem. 
-

Set t ing  G = o and Apr = 0 i n  t h e  equa l i t i e s  (3.4) and (5.7) and r eca l l i ng- 
60, and 5, = 

1+ A, cos J l O 2  , we f i n d  h 2  = hl. The index I ' l l 1  i sthat 6, = 
1 + h l  

6 02 

given t o  t h e  row of balls toward which t h e  axial fo rce  i s  directed.  Since, i f  
t h e  bearing i s  loaded by r a d i a l  and &a1 forces ,  t h e  angle will be J r O z  = 180' 
and thus cos J l O 2  = -1, s o  that eqs.(3.23) W i l l  yie ld ,  f o r  t h e  case under study, 

The dependences determining the ,  pressures  Po and Po, f o r  double-row radial-
th rus t  ball bearings can be wr i t t en  i n  t h e  following manner: 

where 
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The equivalent .pressures  f o r  both rows of b a l k  are, respectively,  equal  
t o  

The values of t h e  parameter A,  and of t h e  coeff ic ient  e;) as a funct ion of 

t h e  quarrtity -	1 - A  cot  B o  can be found from t he  graphs i n  Fig.4.37. 
T R 

Fig.4.38 P i t ch  Control  of Helicopter Rotor. 

A s  shown by calculat ions,  t h e  first row i s  always more loaded. For -	1 2 
r 

2 1.67 a t  h l  < 1, this row c a r r i e s  t h e  entire load applied t o  t h e  bearing. We 

note t h a t ,  f o r  T = 0.6, t h e  r a t i o  -	A 
= 1.67 t a n  Bo.R 

I n  t h e  presence of predominantly axial loads, when one row of bal ls  is 
operative,  more accurate r e s u l t s  are obtained by using t h e  dependences i n  Sec
t i o n  2 f o r  calculat ing double-row radial- thrust  ba l l  bearings of a l l  types, i r h  
cluding those examined i n  this Subsection. 

I 
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6. &wles  of Calculation 

Ekamle 1. Let us determine t h e  ra ted  l i f e  of t h e  bearings of t h e  s w a s k  
p l a t e  of t h e  p i t c h  con t ro l  (Fig.4.38) loaded by t h e  moments M = 150 kg-m and 
ro t a t ing  at 240 rpm. The bearings have t h e  following parameters: Bo = 3 6 O ,  
d b a  = 9.525 m, z = 4-2,ro = 79 ma 

Relative base 5 = 0.1, preloading A p r  = 0. m 
Since t h e  bearing has zero preloading, t h e  coe f f i c i en t s  kbM) and k(’) 

needed f o r  ca lcu la t ing  t h e  loads on t h e  balls are determined by means of Fig.4.21. 

We then  ca l cu la t e  t h e  quant i t ies  

- MM= 1 .-= 
rvd i *  s in  Bo (1 -!-C C O t B O )  to 

150-- 1 .- 0.744.
42*lr9.5252~0.588(1 + 0. l a  1.376) 0,079 

Since r l n  (out) 
= 0.515, t h e  coeff ic ient  v i s  taken as equal  t o  unity.

db* 
According to Fig.4.21, t h e  value kh‘) = 0.912 corresponds t o  t h e  obtained 

values of p and M. 

Thus, t h e  maxi” pressures  on t h e  b a l k  i n  both bearings W i n  be 

4 .37~0 .912~150-
~ 

2*0.079a42.0.588(1 + 0.1~1.376) -134.7 kg. 

I n  t h e  examined case, A l  = A 2  = a. Consequently, 

pT1=eF2=WA,,Po, =0.587* 134.7 =79.1 kg. 

The equivalent pressure Peg *, determining t h e  Life expectancy of t h e  as
sembly, can be found from eq.(2.&). Taking i n t o  considerat ion that, a t  A ,  = 
= A z  = CO, k,, = k,, = 1.2 ( see  Fig.4.5), this equation w i l l  y i e ld  

1-
p
T S

=23*33‘  I C , ~e’ 1.21x 1.2 79.1 =114.8 kg. 

Here, we assume t h a t  1 = -.	10 
9 



-- 
-- 

For bearings with the  ind ica ted  dimensions, according t o  eq.(2.42) t h e  co
e f f i c i e n t  of u t i l i z a t i o n  w i l l  be 

A s  a r e s u l t  of s tand tests, f o r  bearings of t h e  p i t c h  con t ro l  cam p l a t e  t h e  
product of t h e  coe f f i c i en t s  k,k,kw = 1.1. 

I n  conformity with this, eq.(2.43), considering t h a t  h = hlo, w i l l  fu rn i sh  

C -- 67,794 =40.5.
114.8~0.809

(nh)Oe3 
0.39x~b#&zPeg-~C O S  Bo 0.39%1 . 1 ~ 4 2 ~  

Hence, 

E x a l e  2. kt us ca lcu la te  t h e  maxi" and equivalent pressures  on b a l l s  
i n  bearings examined i n  example 1when they absorb a moment of M = 60 kg-m and 
an  axial force  of A = 500 kgf.  

Since t h e  r e l a t i v e  base 5 i s  small, Figs.4.26 - 4.28 w i l l  be used f o r  /381
determining the  indicated pressures .  

From t h e  quant i t ies  

M 60 
42x 1x9 S252 

=0.1993 kql" 
roz vd:, 0 ,079~  

and from 
A 500-

zvd ta  42h 1~9.5252
-0.1312 kq/" 2 

by means of Fig.4.26 we f i n d  Kol = 0.055 and A l  = 0.7. 

Furthermore, l e t  us ca l cu la t e  Pol and Peq1. Since A 1  = 0.7 corresponds t o  
t h e  value w = 0.678, t hen  according t o  eqs.(2.2) and (2.6) we have 

Po,=B , ~ d ~ 6 ~ ' ~ = 6 2 x l  k9 ;r9.5252~0.055~/2=72.5 
p =~P,-,l=49.2 kg.
CP' 

From t h e  graphs i n  Figs.4.27 and 4.28 we f i n d  t h e  values of Pes2/Pe, and 
PO2/Pol. Using these  %lues, we ob ta in  

Po2~1.085Pol=78.7 kq; 
eq2=o.875p091 =43 kcj. 
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Sect ion 4. Calculation of Tapered Roller  Bearings u_nder-Comgned Loads 

1. Calculation of Single-Row Tapered Roller  Bearings 

Methods were  presented above f o r  .calculat ing r a d i a l  and radial- thrust  ball 
bearings absorbing combined loads. &t us now examine t h e  p e c u l i a r i t i e s  of cal

c r o s s  s e c t i o n  a t  angle II 
to  p l a n e  o f  loading  

F'ig.4.39 Diagram of h a d i n g  
of Tapered Roller  Bearing by 

Radial  and Axial Forces. 

culating'  tapered r o l l e r  bearings working un
der  conditions of a complex load. 

First, l e t  us give t h e  so lu t ion  of t h e  
problem of determining t h e  forces  ac t ing  on 
t h e  r o l l e r s  of a single-row tapered r o l l e r  
bearing a t  given values of t h e  r a d i a l  and 
axial loads applied t o  it (Fig.4.39). 

The normal forces  PJ' and PIG exerted on 
t h e  r o l l e r  by t h e  outer  and inner  races  are 
correlated by t h e  r e l a t i o n  

cos (y - yr)
P;= 

cos r, p ,  . (4  1) 

For t h e  usua l  values of t h e  angles y 
and y t  , we can  consider f o r  a l l  p r a c t i c a l  
purposes t h a t  

Pi= P,. (4.2) 

I n  conformity wi th  t h e  Hertz theory, it i s  poss ib le  t o  s e t ,  f o r  t h e  case of 
l i n e a r  contact and with s u f f i c i e n t  accuracy, 

P, =B6,, ( 4031 
where 6 4  i s  the  convergence of t he  races  i n  t h e  cross  sec t ion  located at  a n  

angle J' t o  t h e  loading plane.
~ 

/382
I n  t h e  absence of rriisalignment of t h e  races  under load, t h e  convergence 6 4  

i s  determined by t h e  expression 

ba =s sin f3 +u cos p cos I). (4*4) 
Here, 

u and s = r a d i a l  and axial displacements of t he  inner  race r e l a t i v e  t o  
t h e  outer  race, reckoned from the  pos i t i on  a t  which t h e  clear
ances i n  t h e  bearing a r e  se lec ted ;  

p = angle of t ape r  of t h e  outer  race.  

Having put  
-U cot ? S A ,  (4.5)

S 
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we ob ta in  from eqs.(4.3) and (4.4) 

P + =  B s sin,@(1+h cos 9). (4.6) 

If t h e  d i r e c t i o n  of t h e  r a d i a l  load coincides wi th  the  pos i t i ve  d i r e c t i o n  
of t h e  z-axis ( R  > 0) , t hen  t h e  displacement Will. be u > 0 .  I n  t h i s  case, t h e  
center  of t h e  loading zone lies i n  t h e  cross sec t ion  Q = q 0  = 0. If t h e  r a d i a l  
load a c t s  i n  the  opposite d i r e c t i o n  ( R  < O), then  t h e  displacement Will be u < 0, 
i n  which case t h e  center  of t h e  loading zone i s  s i t u a t e d  i n  t h e  cross  sec t ion  
Q = $0 = U O O .  

According t o  eq.(4.6), t h e  maximum value of t h e  fo rce  PQ i s  equal  t o  

Po=B s sin @ (1+h cos $ 0 ) .  (4.7) 

Using t h e  equal i ty  (4.7),  we f i n a l l y  have 

P - (1 +A cos +). 
+ - l + A c o s $ o  

A s  follows f r o m t h e  conditions of s t a t i c  equilibrium, 

R = l + ) i c o s + o  cos p (1+k cos +) cos +; 1 
A= 

l + A c o s $ o  
sin (1+A cos +). I (4.9) 


For t h e  usual number of r o l l e r s ,  eqs.(4.9) can be replaced by t h e  r e l a t ions  

R =Poz cos f lj z  cos q0; 
A =Pozsin flj l .  I (4.10) 


Here, 

"=2n (1+ A  cos $0)  
J 
. 
(1 +Acos+ocosqJ)dqJ= 



, 


The boundaries of t h e  loading zone $;o and $ 'l o  are determined i n  t h e  same 

manner as f o r  t h e  r a d i a l  and radial- thrust  ball bearings [see eq.(1.20) and t h e  
explanation t o  it]. 

Equation (4.10) Will yield, if f o r  s impl ic i ty  we set  R > 0 and thus  Jlo = 0, 

1Po= --R 
1 2  r c o s p '  

The equivalent pressure '  P,, f o r  a tapered r o l l e r  bearing can be repre
sented i n  t h e  form 

PeP=wPo, (4.13) 

where 

The values of t h e  quant i t ies  j,, j,, and w as a func t ion  of h cos Q0 are 
given i n  Table 4.7. 

TABU 4.7 

A cos $0 1 2  W A cos $0 

0 1 0.5 1 2.000 0.405 0,268 0.698 
0.1 0.909 0.454 0.913 2.500 0.389 0.267 0,692 
0.2 0.833 0.417 0.853 3.333 0.371 0,264 0.686 
0.3 0.769 0.385 0.806 5.000 0.354 0.261 0,679 
0.4 0.714 0.357 0.773 10.000 0.336 0.256 0,670 
0.5 0.667 0.333 0.751 0.318 0.250 0.660 
0.6 0.625 0.312 0,738 -10.000 0.300 0.242 0.648 
0.7 0.588 0,294 0.729 -5.000 0.281 0.234 0.634 
0.8 0.555 0,278 0.725 -3,333 0.261 0.222 0.617 
0.9 0.526 0.263 0.722 -2.500 0.240 0.210 0.598 
1.o 0.500 0.250 0.720 -2.000 0.218 0.196 0,575 
1.111 0.479 0.258 0.718 -1.667 0.194 0.178 0.548 
1.250 0.460 0.264 0.714 -1.428 0,167 0.156 0.518 
1.428 0.440 0.266 0,708 -1.250 0.136 0.130 0.484 
1.667 0.424 0.268 0.704 -1.000 0.000 0.000 0.000 

Calculation f o r  tapered r o l l e r  bearings, j u s t  as f o r  radial- thrust  bal l  
bearings, is  usual ly  tal-ried out by means of reduced s t a t i c  and dynamic loads. 
These loads are found from t h e  condi t ion t h a t  
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A comparison of t h e  e q u a l i t i e s  ( 4 . a )  with eqs.(4.12) and (4.13) y i e lds  ,&& 

where 

I n  conformity wi th  eqs. &.lo),  t h e  values of t h e  parameter X needed f o r  de
termining t h e  coe f f i c i en t s  k6.l and k C R )should s a t i s f y  t h e  condition 

Since we have = 0.5 a t  h = 1, the  value of I- should not exceed 0.5 f o r  
J 2  

a l l  r o l l e r s  i n  a single-row tapered r o l l e r  bearing t o  be loaded. 

A t  I- 2 0.5, t he  values of t h e  coef f ic ien ts  kAR) and k ( R )  can be determined 
from the  graphs i n  Fig.4.40. These graphs were p lo t t ed  on the  basis of the  
equa l i t i e s  (4.16) and (4.17). 

If I- i 0.5 and thus X i 1, the  expressions f o r  t h e i n t e g r a l s  j, and j, t ake  
the  form 

1 . 
1

.J2"- l -h 
2 1 t A  

From eqs.(4.17) and (4.18), we f ind  

A =A; \ 
1 (4.19) 

J2  

Thus, f o r  T < 0.5 when a l l  r o l l e r s  share  t h e  load, we have 
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A s  follows from t h e  equal i ty  (4.20), for a l l  loaded rollers, 

Q0=0.5R+0.25A cot.8; 

Q=0.76~l?+0.38wAcot 8. 

The values of w as a funct ion of T are conveniently determined from the  
curves shown i n  Fig.4.41. 

These r e l a t ions  furn ish  an answer t o  a l l  bas ic  problems a r i s i n g  i n  calcu-. 
l a t i n g  tapered r o l l e r  bearings that  take  combined loads, provided t h e  misalign
ment of t h e i r  races  can be neglected. 

Fig.4.40 Values of t he  Coef- Fig.4.41 Values of w as a 
f i c i e n t s  kp) and k ( R )  as a Function of T .  

Function of T .  

A s  shown b Fig.4.40, i n  the  region T = 0.6 - 0.8 the curves of ke) = 
= khR)( T )  and kE) = k ( R )(7) have a r a t h e r  well-defined minimum. T h i s  i nd ica t e s  
t h a t  proper choice of t h e  contact angle B y  f o r  a given combination of r a d i a l  
and axial loads, w i l l  ensure maximum and equivalent pressures  on t h e  r o l l e r s  
having a minimum value. The optimal contact angles a t  which t h e  conditions Po = 
= Pgin and P,, = P::* a r e  s a t i s f i e d  are determined from t h e  graphs i n  Fig.4.42. 

--These graphs were p lo t t ed  on the  basis of inves t iga t ions  of t h e  r e l a t ions  -Rzpo 
zpe q= Fo (L)and -
R 

= F A\for a number of contact angles i n  the  range from
R i  (R/' 

0 t o  30'. 
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2. 	 Remazk-s on Calcul&ion of Bea r -m Assemblies of Two 
Taxered Rol le r  Bearirvrs 

If a bearing assembly consis t ing of two tapered r o l l e r  bearings i s  loaded 
by a moment act ing i n  combination with r a d i a l  and axial forces  (l”ig.4.43), t h e  
following system of equations can be used f o r  i t s  calculat ion:  

R=zPol cos B (izl- x j z 2  cos qO2); 
A =zPol sin p (ill-x i l 2 ) ;  i’ M =rozfolsin B (1+C cot p) ( j Z l+x j 2?cos +,& (4.23) 

which i s  analogous t o  the  system of equations (3.23) and (3.24) describing t h e  * 

conditions of s t a t i c  equilibrium of bearing assemblies with two rad ia l - thrus t  
b a l l  bearings,  on t h e  assumption t h a t  t he  contact angles of a l l  balls are ident i 
c a l  and equal t o  t h e  i n i t i a l  angle. 

It should be noted. t h a t  eqs.(l+..23) a re  I1exactl1since,  i n  tapered r o l l e r  
bearings, t h e  contact angles a r e  ac tua l ly  constant and do not change under load; 
these  equations are va l id  i n  both absence or presence of misalignment of t he  
races .  

I n  eqs.(4.23) t h e  quantity M. i s  used i n  p lace  of t h e  quantity T h i s i s  

explained by the  f a c t  t h a t ,  f o r  tapered r o l l e r  bearings, we have Po, -
Po1

602- = M.. 
601 


I n  t h e  case of zero preloading, t h e  values of h l  and M. sa t i s fy ing  J386 
eqs.(4.23) a r e  found from t h e  graphs i n  Fig.4.44.. The quant i t ies  T and v here 
have t h e  same meaning as f o r  t h e  rad ia l - thrus t  ba l l  bearings [see eqs.(3.26) and 
( 3  =27)I 

Fig.4.42 Values of t h e  Optimal Fig.4.43 Diagram of h a d i n g  of Two 
Contact Angle as a Function of Tapered Roller  Bearings by Radial  

t h e  Rat io  A/R. and Axial Forces and Moments. 



From t h e  found values of A l  and H, we then  ca l cu la t e  t h e  cpant i ty  A, 
cos $02.. 

The maximum and equivalerrt pressures  on t h e  r o l l e r s  i n  the  bearings 1and 
2 are determined from t h e  expressions 

Here, 

Se t t ing  B = 90’ i n  t he  system (4.23)> we arrive a t  t h e  following equations 
descr ibing t h e  conditions of s t a t i c  equilibrium of double-row t h r u s t  r o l l e r  
bearings : 

The methods of solving eqs.(4.26) a r e  obvious from the  preceding; 
quently, we need not f u r t h e r  discuss  these here. 

If we assume u = 0 i n  eqs.(4.26) they  Will t ake  t h e  form 

A =zPoj l ;  
M =rozP0j z .  

Equations (4.27) character ize  t h e  load d i s t r i b u t i o n  i n  single-row 
r o l l e r  bearings. 

conse

.Lis 

(4.27) 

t h r u s t  

The values of t h e  maximum Po = k p ’ A  and t h e  equivalent P,, = k ( A ) A  
Z z 

432 




- 

fig.&.& Nomograms f o r  Calculating Bearings h a d e d  
by Radial  and h a 1  Forces and Moments. 

pressures  on t h e  r o l l e r  s a t i s fy ing  eqs.(4.27) a re  conveniently found by means of 
t h e  curves kbA) = k(,A) ( T )  and k C A )= k ( A )( 7 )  given i n  fig.4.45. 

A t  A s 1, when a l l  r o l l e r s  are loaded i n  t h e  bearing, t h e  i n t e g r a l s  j ,  and 
j,  are determined from eqs.(L+..l$). 

It i s  easy t o  demonstrate t h a t  i n  this case which takes  p lace  when T = 

--M < 0.5, we have 
r0 A 

h = 2 q  
1KyA)=-= 1+ A =  1f2.r. 
h 

Sect ion 5 .  -Ca&uhtion-of Vibrating Ekariws 

In designing hel icopters ,  t h e  proper s e l ec t ion  of bearings f o r  t h e  hubs of 
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t h e  main and t a i l  r o t o r s  preserrts appreciable d i f f i c u l t i e s .  These bearings, as 
i s  known, operate under spec i f i c  conditions of v ibra t ion .  They do not f a i l  be
cause of contact f a t i g u e  but as a consequence of l o c a l  wear of t h e  race  t racks,  
which has come t o  be known as !*falsebrinell ingll .  It i s  understandable t h a t  t h e  

usual  ca lcu la t ion  methods f o r  such bearings are inap
p x c a b l e .

/(y,
p) 
5 The proper t ies  of t h e  lubr icant  have a subs t an t i a l  
4 e f f e c t  on t h e  performance of v ibra t ing  bearings. Prac

t i c e  has shown that reliable operat ion of many Soviet 
3 bearing assemblies f o r  he l icopters  i s  poss ib le  only 
2 when using s p e c i a l  o i l s  and lubr icants .  Therefore, i n  

hel icopter  engineering s p e c i a l  a t t e n t i o n  must be paid 
1 t o  problems of s e l ec t ing  t h e  lubr icants  f o r  a n t i f r i c 

t i o n  bearings. T h i s  r imar i ly  p e r t a i n s  t o  bearings f o r  
0 L?Z 0.4 0.6 0.8 T t h e  axial (feathering7 hinges of t h e  hubs of t he  main 

and t a i l  ro tors ,  which absorb appreciable axial loads 
Fig.4.45 Values of generated by t h e  cen t r i fuga l  forces  of t h e  blades. 
t h e  Coefficients k g )  
and k(*)  as a Func- The complexity of ca lcu la t ing  t h e  bearings of hubs 

t i o n  of T .  of t h e  main and t a i l  ro to r s  l i e s  i n  the  f a c t  t h a t  t h e  
r e l a t i v e l y  low r i g i d i t y  of t h e i r  basic  components, 
e spec ia l ly  on heavy hel icopters ,  may lead t o  not iceable  

deformation of t h e  races,  which i s  d i f f i c u l t  t o  t ake  i n t o  account when determin
ing  t h e  forces  ac t ing  on t h e  r o l l i n g  bodies. So far  it has been inposs ib le  t o  
develop general  ca l cu la t ion  methods t h a t  would allow f o r  t h e  e f f e c t  of a l l  fac
t o r s  determining t h e  load capaci ty  of bearings i n  t h e  hubs of t h e  main and t a i l  
ro tors  However, ava i lab le  experimental da t a  permit c e r t a i n  recommendations as 
t o  t h e  se l ec t ion  of permissible  loads and determination of t h e  l i f e  expectancy 
of t he  most common types of bearings used i n  these  complex and v i t a l  uni t s .  T h i s  
i s  the  same f o r  ca lcu la t ions  of t he  bearings i n  t h e  hinges of t h e  p i t c h  con t ro l  
and con t ro l  mechanisms of hel icopters  which, j u s t  as t h e  hub bearings, operate 
under v ibra t ions .  Here, it i s  merely necessary t o  take i n t o  account t h a t  t h e  
loads absorbed by most of these  bearings have a dynamic character .  

1. Character is t ics  of t h e  Mechanism of Wear of- & t i f r i c t i o n  Bearings 
under Vibration Conditions 

Let us examine t h e  cha rac t e r i s t i c s  of the  mechanism of wear of a n t i f r i c t i o n  
bearings i n  t h e  presence of vibrat ions.  

A t  s m a l l  v ibra t ion  amplitudes, when contact of t he  r o l l i n g  body with t h e  
races takes  place only a t  some spots  on t h e  t racks ,  dents  from t h e  balls o r  
grooves from the  r o l l e r s  W i l l  form i n  the  bearing which, as t h e i r  surfaces  chip, 
change t o  deep p i t t i n g  (Fig.4.4.6). Fa i lure  of t h e  r o l l i n g  bodies i n  most cases 
begins only after appreciable damage t o  t h e  races .  

An ana lys i s  of t e s t  r e s u l t s  shows t h a t ,  i n  t h e  presence of vibrat ion,  t he  
wear of bearings i s  l a rge ly  determined by o d d a t i o n  processes and spec ia l  lubri
ca t ion  conditions i n  the  zones of contact of t h e  r o l l i n g  bodies with t h e  races .  



Fig.4.46 Races of Thrust B a l l  and Roller Bearings 
af ter  M e n d e d  Service i n  t h e  Presence of Vibra

t i o n s  of Small Amplitude. 

I n  t h e  contact zones the re  i s  in tense  f r e t t i n g  corrosion. The oxidat ion 
products of i r o n  formed i n  this case mix with the  lubr icant  and produce a unique 
pol ishing compound which causes rapid wear of t h e  t r acks .  The r o l l i n g  motion 
of t he  r o l l i n g  bodies c rea t e s  l ub r i ca t ion  Ilbarriersll ahead of t h e  contact area, 
while jets of lubricant  a f t  of this area tend t o  fillt h e  space behind t h e  mov
i n g  body (Fig.4.47). If t h e  lubr icant  i s  too stiff and does not have t i m e  t o  
fill t h i s  space immediately, t h e  por t ion  of t he  t r ack  d i r e c t l y  adjacent t o  t h e  
contact area i s  coated only by a t h i n  f i lm  of lubr icant .  Naturally, a t  t h e  in
s t a n t  of change i n  d i rec t ion ,  the  r o l l i n g  body Will pass  this poorly lubricated 
po r t ion  sooner than the  lubricant  Will be able  t o  reach it. T h i s  causes t h e  ap
pearance of pressure peaks leading t o  acce lera t ion  of wear a t  the  periphery of 
t h e  contact area between r o l l i n g  elements and races ,  where t h e  change i n  direc
t i o n  takes  place.  A t  very low v ib ra t ion  amplitudes, when t h e  contact a reas  i n  
t h e  extreme pos i t i on  of the  r o l l i n g  body overlap, disturbance of t he  lubr icant  
l aye r  may be constant. 
t h e  l i f e  expectancy of t h e  beaTings decreases noticeably.  

I n  this case, t h e  pressure peaks increase  even more and 
An increase i n  mo- /390

b i l i t y  of t he  lubricant  w i l l  improve t h e  serv ice  Conditions of vibrat ing bear
ings .  Nevertheless, even when using highly f l u i d  o i l s ,  the  serv ice  conditions 
of such bearings subs t an t i a l ly  d i f f e r  from those of bearings ro t a t ing  i n  a s ing le  
d i rec t ion .  

It i s  obvious from t h e  aforesaid t h a t ,  i n  bearing assemblies operating i n  
t h e  presence of v i b r a t i o n , o i b  r a t h e r  than  grease should be used i n  a l l  cases 
where this i s  poss ib le  r e l a t i v e  t o  design considerations.  When grease is used, 
t h e  load capaci ty  of vibrat ing bearings drops s teeply.  

~2. 	-Lubrication of mghly Loaded Vibratiw Bearings i n  t h e  Presence 
of splall Vibration Amli tudes 

Since t h e  p rope r t i e s  of t h e  lubr icant  have a. considerable e f f e c t  on the  l i f e  
expectancy of v ibra t ing  bearings, one can discuss  the  permissible  loads f o r  such 
bearings only i n  conjunction wi th  t h e  lubr icants  used. 
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Helicopter bearings subject  t o  v ibra t ions  can be divided i n t o  two bas ic  
groups : 

1)Bearings i n  t h e  hubs of t h e  main and tail ro tors ,  p i t c h  controls ,  and 
c e r t a i n  con t ro l  elements operating at vi-bration amplitudes up t o  10'. 
For these  bearings, t h e  t o t a l  number of v ibra t ions  between two major 
overhauls, during which they  are replaced, usual ly  amounts t o  less 
than  10 mil l ion.  

2) 	Bearings of t h e  con t ro l  mechanisms which execute a l imited number of 
v ibra t ions  (up t o  100,000) with amplitudes of more than  20'. We 
s t i p u l a t e  t h a t  no overlap of adjacent contact areas exists i n  this 
case. 

Pract ice  has shown t h a t  bearings of t h e  second group Will operate satis
f a c t o r i l y  on high-quality greases. This i s  due t o  the  f a c t  t h a t  appreciable 

1	U b i  I c a t  Lon 
b a r r i e r  

Fig.4.47 Diagram of Lubrica
t i o n  i n  t h e  Presence of 

Vibration. 

grooving by t h e  r o l l i n g  bodies can be permitted 
on t h e  t r acks  of such bearings, s ince  t h e i r  
performance i s  usual ly  l imited t o  t h e  magnitude 
of t h e  permissible  moment of f r i c t i o n .  

I n  bearings of t h e  p i t c h  con t ro l  and con
t r o l  elements belonging t o  t h e  first group, 
t h e  use of grease r e s u l t s  i n  a noticeable drop
in load-carrying capacity;  however, because of 
design considerations this i s  an  unavoidable 
ev i l  and t h e  i n s u f f i c i e n t  lubr ica t ing  qua l i ty  
of t h e  grease must be compensated by some re
duct ion of t h e  permissible loads. Since t h e  
permissible  w e a r  of t h e  t r acks  of t h e  hub bear
ings of t h e  main and t a i l  ro to r s  i s  not grea t ,  
prolonged operat ion a t  high contact stresses i s  

poss ib le  only i f  o i l s  with a c e r t a i n  complex of physicochemical proper t ies  are 
used. 

The l i f e  expectancy of vibrat ing bearings depends l a rge ly  on t h e  qua l i ty  
of t h e  s e a l  of t he  bearing uni t s .  I n  t h e  presence of f a u l t y  seals t h a t  permit 
pene t ra t ion  of atmospheric oxygen i n t o  t h e  assemblies and a l s o  at  small lubri 
cant volume and la rge  a i r  volume, t h e  l i f e  expectancy of vibrat ing bearings de
creases  noticeably.  A r a t h e r  e f f ec t ive  means f o r  increasing t h e  serv ice  l i f e  of 
bearings subject  t o  v ibra t ions  i s  pressure feed of t h e  lubricant  and, especial
ly ,  use of o i l  c i r cu la t ion  which continuously suppl ies  f r e s h  unoxidized o i l  /391
t o  t h e  contact zones and c a r r i e s  off  products of wear .  

Let us discuss  i n  grea te r  d e t a i l  t h e  problems of s e l ec t ing  o i l s  f o r  t h e  hubs 
of t h e  main and t a i l  ro tors ,  s ince  these  problems are v i t a l  f o r  hel icopter  engi
neering. 

O i l s  f o r  the f e t - h e r L L . A s  shown 
i n  numerous experiments, t he  bearings- of t h e  fea ther ing  hinges, which absorb 
r a t h e r  l a rge  axial loads due t o  t h e  cen t r i fuga l  forces  of t h e  blades, are espe
c i a l l y  sens i t i ve  t o  t h e  physicochemical proper t ies  of t h e  lubricant .  The o i l s  
f o r  such assemblies, whose serv ice  l i f e  usua l ly  determines t h e  o v e r a l l  lifetime 
of t h e  main and t a i l  r o t o r  hubs, should meet t h e  following basic  requirements: 
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First, t h e  o i l s  shoiild not cause a step-up i n  t h e  o d d a t i v e  processes 
taking p lace  i n  t h e  contact zones. 
Second, t h e  o i l s  should r e t a i n  high f l u i d i t y  i n  t h e  e n t i r e  operating 
temperature range and should provide su f f i c i en t  oi l - f i lm s t rength  over 
t h e  whole of t h e  contact area. 

The permissible v i scos i ty  level of t h e  o i l  i s  l imited a l so  by t h e  permis
s ible  magnitude of t h e  f r i c t i o n  moment of t h e  feather ing hinge. Based on our 
experience wi th  operating t h e  M i - 1  and Mi-4 hel icopters ,  we can s t i p u l a t e  that 
- at minimum oDeratirvz tenmeratme - t h e  kinematic v i scos i ty  should not exceed 

90,000 cent is tokes.  Tests show t h a t ,  i n  this 
case, there  i s  no not iceable  increase i n  t h e  
moment of f r i c t i o n  and no decrease i n  service 

0.005 l i f e  of t h e  bearings due t o  decreased f l u i d i t y  
of t h e  oil. It should be noted t h a t  MS-& o i l  

0.004 which works s a t i s f a c t o r i l y  i n  t h e  feather ing 
0.003 hinges of t h e  main r o t o r  hubs of t h e  M i - 1  and 

Mi-4 hel icopters  a t  temperatures as low as 
0002 -25'C, reaches t h e  indicated kinematic vis
0.001 

cos i ty  a t  a temperature of -2.0'~. 

By v i r tue  of t h e  spec i f i c  operating con0 d i t ions  of vibrat ing bearings, s e l ec t ion  of 
t h e  o i l s  and greases f o r  these un i t s  should be 

Fig.4.4.8 F r i c t ion  Coefficient based exclusively on t e s t  r e s u l t s  during vi
of Thrust B a l l  Bearings as a brat ion.  The standard procedure of t e s t i n g  
Function of Brinel l ing Mark o i l s  and greases on a four-bal l  t e s t e r  i s  

Depth i n  Races. completely unsui table  here. The lubr ica t ing  
qua l i ty  of o i l s  and greases f o r  feather ing 
hinges of main and t a i l  ro to r  hubs i s  prefer

ably checked i n  t h r u s t  ba l l  bearings, s ince they operate a t  higher contact 
stresses. Experiments show t h a t  lubr ica t ing  materials wi th  optimum performance 
i n  such bearings are a l so  best  f o r  vibrat ing bearings of other  types, including 
t h r u s t  bearings with ~ ~ s l e w e d ~ ~r o l l e r s  which a r e  present ly  used with success i n  
t h e  main ro to r  hubs of a l l  series-produced Soviet hel icopters ,  and a l s o  f o r  
multi-row radial- thrust  b a l l  bearings used i n  t h e  main and t a i l  ro to r  hubs of a 
nmber of hel icopters  i n  o ther  countr ies .  Since t h e  load i n  t h r u s t  ba l l  bear
ings is d i s t r ibu ted  uniformly over t h e  balls, each contacting region of t h e  t r ack  
during v ibra t ion  can be regarded as an  iwiependent t e s t  object .  

An e s s e n t i a l  f a c t o r  i n  t e s t i n g  o i l s  and greases f o r  bearings of feather ing 
hinges of main and t a i l  r o t o r  hubs i s  a proper evaluat ion of t h e  condition of 
t h e  t racks .  Even at very moderate contact stresses, b r ine l l i ng  marks made by 
t h e  balls appear on t h e  t r ack  af ter  brief operat ing per iods.  If t h e  appearance 
of such dents ,  regardless  of t h e i r  depth, i s  considered as a s i g n  of i nc ip i en t  
failure of t h e  bearing, t hen  bearings which otherwise might s t i l l  operate reli
ably f o r  a long t h e  m u s t  be re jec ted .  The curves i n  Fig.4.48 ind ica t e  t h e  man
ner  i n  which t h e  depth of t h e  dent a f f e c t s  t h e  f r i c t i o n  coef f ic ien t  of a t h r u s t  
b a l l  bearing. A t  a b r ine l l i ng  depth of 7 - 10 p ,  the  f r i c t i o n  coef f ic ien t  irr
creases  by 30 - 40%. An increase  i n  f r i c t i o n  coe f f i c i en t  wi th in  such limits i s  
usual ly  not percept ib le  i n  service.  Therefore, t h e  condi t ion of t h r u s t  ba l l  
bear i rgs  at a depth of t h e  dent up t o  10 p should be r a t ed  as l ~ s a t i s f a c t o r y l ~ .  



Such a b r ine l l i ng  depth can be permitted a l s o  i n  rad ia l - thrus t  ba l l  bearings.  

Tests have es tab l i shed  t h a t  t h e  MS-20 o i l  i s  one of t h e  best for vibrat ing 
bearings.  I n  conformity wi th  this, this o i l  can be adopted as a standard f o r  
estimating t h e  lubr ica t ing  proper t ies  of o i l s  and greases  intended f o r  se rv ice  
i n  t h e  feather ing Mnges of main a d  t a i l  r o t o r  hubs. The r e s u l t s  of t e s t i n g  
th rus t  ball  bearings running on MS-20 o i l  are given i n  Fig.4.49 as a curve of 
t h e  l i f e  expectancy o = o(nh) es tab l i sh ing  t h e  r e l a t i o n  between t h e  contact 
stress o and t h e  product nh of the  number of v ibra t ions  p e r  minute and durat ion 
of operation i n  hours. The tests were car r ied  out a t  a v ibra t ion  amplitude of 
t h e  revolving race of 'go = 4.5', frequency of n = 240 cycle/min, and oil-bath 

' temperature of 20 - 40 C.  

Fig.4.49 Curve of Wfe  Eipectancy K g .4.50 Curve of X s t r i b u t i o n  
o = cr( nh) f o r  Thrust Ball 

of t h e  Ratio A:: ,"tBearings. 
A::: 8 t 

For t h e  values o f  t h e  contact stresses determined by t h e  curve of l i f e  ex
pectancy p lo t t ed  i n  Fig.4.49, ?% of t h e  b r ine l l i ng  marks on t h e  t r acks  have a 
depth not exceeding 10 p. 

It should be noted t h a t  a d e f i n i t e  s t a t i s t i c a l  r e l a t i o n  exists between t h e  
maximum Amtax and average A ?  depth of t h e  dents .  This r e l a t i o n  i s  establ ished 

AFa ATa
by t h e  experimental curve of t h e  d i s t r i b u t i o n  F av 0.f t h e  r a t i o  -,(. A t e s t )  A:: 8 t 
which, as 5s seen i n  Fig.4.50, i s  close t o  t h e  Maxwellian d i s t r i b u t i o n  o f t en  en
countered i n  engineering. 

A n  analysis  of t h e  l i f e  expectancy curve i n  Fig.4.49 permits proposing 092 
t he  following regime of accelerated se l ec t ion  tests of o i l s  and greases f o r  t h e  
feather ing hinges of t h e  main ro to r  hubs: dura t ion  100 hrs, number of v ibra t ions  
&O/mi n, v ib ra t ion  amplitude 4.5', contact s t r e s s e s  34,000 kg/cm2. T h i s  regime 
permits comparing t h e  lubr ica t ing  proper t ies  of t h e  t e s t e d  o i l  with those of t h e  
MS-20 o i l .  

One must remember that, wi th  a n  increase i n  t e s t i n g  time, t h e  r o l e  played 
by oxidative processes i n  t h e  contact zones increases  i n  importance. Neverthe
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less, prese lec t ion  tests of o i l s  and greases f o r  fea ther ing  hinge bearings can 
be car r ied  out by t h e  above accelerated program, s ince  accelerated tests fre
guently permit t h e  immediate r e j ec t ion  of many s q l e s . .  

Under conditions of vibrat ions,  t h e  MS-20 o i l  possesses excel lent  l ub r i c i ty .  
However, it can be used only i n  summer. During t h e  winter,  t h e  M S - 2 0  o i l  i s  
usual ly  replaced by MS-a o i l  whose lubr ica t ing  p rope r t i e s  are a l so  completely 
sa t i s f ac to ry .  Since t h e  MS-I& o i l  s o l i d i f i e s  a t  a temperature of -30°C, it can
not be used at  lower temperatures, which g r e a t l y  i n t e r f e r e s  with wintertime 
operation of hel icopters .  Replacemerrt of t he  MS-l.4 o i l  by general-purpose o i l s  
wi th  low pour po in t s  does not yield favorable results. Tests  have shown that 
t h e  feather ing hinges of main r o t o r  hubs f a i l  rap id ly  when operating on ordinary 
low-congealing o i l s ,  j u s t  as when operating on greases.  T h i s  problem must be 
discussed i n  some d e t a i l ,  s ince  t h e  r egu la r i ty  of this r e s u l t  has long been dis
puted by c e r t a i n  s p e c i a l i s t s  i n  t h e  f i e l d  of lubricants ,  which has handicapped 
so lu t ion  of t he  problem of lubr ica t ing  t h e  fea ther ing  hinges of main ro to r  hubs 
a t  low temperatures. 

Ekperhents  have establ ished t h a t  o i l s  used f o r  t h e  feather ing hinges of 
main and t a i l  ro to r  hubs, a t  a temperature of 100°C, should have a kinematic 
v i scos i ty  of not l e s s  than  9 - 10 c s t .  Increased wear of t r acks  as we l l  as chip
ping and des t ruc t ion  of t h e  r o l l i n g  bodies a r e  observed when working with low-
v i scos i ty  o i l s .  

Luw pour poin t  o i l s  of high Viscosity i n  the  pos i t i ve  temperature range 
general ly  consis t  of a low-viscosity mineral  o r  synthe t ic  base and a high-poly
mer thickening agent. I n  most cases, t h e  thickeners and t h e  base i t s e l f  have 
low lubr ica t ing  proper t ies .  Theref ore, spec ia l  antiwear addi t ives  containing 
su l fur ,  chlorine,  phosphorus, o r  c e r t a i n  combinations of these chemically ac t ive  
elements are added t o  such o i l s .  I n  zones of high contact temperatures, t he  
addi t ives  reac t  with the  surface of the  metal, forming films of su l f ides ,  chlor
ides ,  and phosphides of i r o n  which prevent a d i r e c t  contact of t h e  rubbing 
bodies and thus reduce w e a r .  

According t o  da t a  obtained with the  standard four-bal l  t e s t  device, t he  lu
b r i ca t ing  proper t ies  of low pour poin t  thickened o i l s  with antiwear addi t ives  by 
far exceed t h e  lub r i ca t ion  proper t ies  of t h e  MS-20 and MS-& o i l s .  Neverthe
less, they a r e  completely unsuitable f o r  working under v ib ra t ion  conditions. 
T h i s  i s  due t o  the  f a c t  that, under t h e  e f f e c t  of antiwear addi t ives ,  oxidat ive 
processes are stepped up i n  t h e  contact zones; these  p l ay  a decis ive r o l e  i n  
t h e  mechanism of w e a r  of Vibrating bearings. Here one must a l s o  consider t h a t  
most high-polymer compounds used i n  o i l s  of low pour po in t  readi ly  decompose un
der  mechanical action, wi th  t h e  formation of polymers of lower molecular weight. 
Decomposition of t h e  thickening agent leads t o  a decrease i n  v i scos i ty  of t h e  
o i l .  In bearing assemblies worldng i n  t h e  presence of vibrat ions,  the  average 
decomposition of t h e  o i l  usual ly  is  negl igible .  However, s ince  only small /394 
volumes of o i l  d i r e c t l y  adjacent t o  t h e  r o l l i n g  bodies are subject  t o  t h e  mechan
i c a l  action, l o c a l  decomposition wi th  a consequent drop i n  Viscosity i n  t h e  con
t a c t  zones may reach appreciable magnitudes and lead t o  noticeable lo s s  of 
s t rength  of t h e  o i l  f i lm.  

Contradictory r e s u l t s  are o f t en  obtained when t e s t i n g  o i l s  wi th  antiwear 
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addi t ives .  T h i s  shows t h a t  t e s t i n g  of such o i l s  should be car r ied  out on a suf
f i c i e n t l y  la rge  number of samples and t h a t  t h e i r  lubr ica t ing  proper t ies  cannot 
be judged by s o l i t a r y  favorable r e su l t s .  

It follows from the  aforesaid t h a t  t h e  o i l s  f o r  fea ther ing  hinges of main 
and t a i l  ro to r  hubs should contain no antiwear addi t ives  o r  degrading thick
eners. T h i s  explains the  unsa t i s fac tory  serv ice  of such assemblies with any of 
t he  conventional low pour poin t  o i l s ,  i n  whose development the  above f a c t s  w e r e  
not taken i n t o  account . 

Guided by t h e  above da ta  on t h e  performance of lubr ica t ing  materials under 
conditions of vibrat ion,  t h e  A,n-Union Research I n s t i t u t e  f o r  Petroleum and G a s  
Conversion arid Production of Syrrthetic Liquid Fuel (VNII NP) has proposed t h e  
low pour poin t  o i l  VNII "-25 f o r  t h e  feather ing hinge of main and t a i l  r o t o r  
hubs (Ref .28) . 

The o i l  VNII NP-25 contains a low-viscosity petroleum f r a c t i o n  with a pour 
point  of -67OC and a high-viscosity thickener dis t inguished by extremely high 
mechanical and thermal s t a b i l i t y .  Under t h e  e f f e c t  of high temperatures of 
f r i c t i o n ,  t he  petroleum f r a c t i o n  i n  the  contact zones may evaporate; however, 
contact of t h e  r o l l i n g  bodies with the  races cannot take  place because of t h e  
presence of a f i l m  of t h e  thickener which has r e l a t i v e l y  high adhesive proper
t i e s .  The high thermal arid mechanical s t a b i l i t y  of t h e  thickener and t h e  o ~ d a 
t i o n  i n h i b i t o r  only negl igibly changes t h e  p rope r t i e s  of t h e  oil VNII "-25 dur
ing  service.  

The basic proper t ies  of the  o i l  VNII "-25 are given i n  Table 4.8. 

Kinema t i c  

-Pour I V i s c o s i t y  , 
c a t  

P o i n t ,  
OC 

-56 I 10.2 I 23660 

TABLE 4.8 

Lubricating Capacity 
on Four-Ball 

C r i t i c a l  Width 
Load P,,, of Wear 

kg Spot, " 

64 1 0.85 

Extent of Corrosion 
i n  Pinkevich Device 
( a t  a Temperature of + 70°C 

for 50 hrs)  

S t e e l  *'lo' 1 Brass 
30KhGSA 

1 B$g;'."5"LS-59 

As t he  t e s t  r e s u l t s  ind ica te ,  t he  o i l  VNII NP-25 i s  close t o  t h e  MS-X) o i l  
with respect t o  lubr ica t ing  proper t ies  during v ibra t ion .  

Bearings of a l l  types working on t h e  o i l  VNII NP-25 show l i t t l e  wear both 
a t  pos i t i ve  and negative temperatures. 

An improvement i n  t h e  lubr ica t ing  proper t ies  of o i l s  may cons t i t u t e  an  im
por tan t  f a c t o r  promoting a pronounced increase i n  t h e  lifetime of main and t a i l  
ro to r  hubs of hel icopters .  Therefore, studies i n  this d i r ec t ion  w i l l  acquire an 

- .~ 



- -  

ever g rea t e r  scope. I n  such inves t iga t ions ,  considerat ion should be given t o  
t h e  above-described cha rac t e r i s t i c s  of t h e  mechanism of wear and lubr ica t ion  COG 
d i t i o n s  of highly loaded v ibra t ing  bearings. 

O i l s  for n e g s e  bearims of flappi-w a.nd drag hinges. These bearings, as 
a ru le ,  are less loaded than t h e  bearings of fea ther ing  hinges, so t h a t  they a r e  
not as sensitive t o  t h e  proper t ies  of t h e  lubricant .  The se l ec t ion  of lubri
ca t ing  materials f o r  needle bearings of t h e  f lapping and drag hinges of r o t o r  
hubs i s  f a c i l i t a t e d  by t h e  f a c t  that s o l i d i f i c a t i o n  of t he  lubricant  when t h e  
r o t o r  i s  inoperat ive leads  t o  no unfavorable consequences. I n  t h e  flapping and 
drag hinges ( i f  they  are present )  of t a i l  ro tors ,  t he  lubr icant  cannot be per
mitted t o  s o l i d i f y  s ince  increased moments of f r i c t i o n  i n  these  assemblies may 
r e s u l t  i n  shaking of t h e  hel icopter .  

A t  present ,  11hypoidll lubr icants  are used i n  t h e  f lapping and drag hinges of 
t h e  main and t a i l  r o t o r  hubs of Soviet hel icopters .  P r a c t i c a l  experience with 
he l icopter  operat ion has shown t h a t  hypoid o i l s ,  desp i te  t h e i r  content of f r e e  
sulfur a t  ordinary spec i f i c  pressures,  ensure a s u f f i c i e n t l y  long l i f e  for v i 
bra t ing  needle bearings. maid lubricants ,  just as other  o i l s  with antiwear 
addi t ives ,  are unsuitable f o r  fea ther ing  hinges. 

F’ig.4.51 Feathering Hinge of Rotor Hub. 

m o i d  o i l  has high tackiness  alad hence provides t h e  necessary lub r i ca t ion  
f o r  contact ing elements even i f  t h e  hubs are not completely t i g h t .  The replace
ment of hypoid oil by greases (which i s  sometimes resor ted  t o  i n  t a i l  ro to r s  of 
hel icopters  operating at  espec ia l ly  l o w  temperatures) greatly shortens t h e  
serv ice  l i f e  of needle bearings i n  f lapping a& drag hinges. 

3 ..- -_Calculation of- Hub Bearims i n  Main and T d l  Rotors 

Bearirgs of f e a t h e r i m  himes. Figure 4.51 shows a t y p i c a l  design of 
fea ther ing  hinges f o r  t h e  main r o t o r  hubs of Soviet hel icopters .  

I n  ca lcu la t ions  of bearings f o r  t h e  fea ther ing  hinges of r o t o r  hubs, it i s  
common t o  take in to  account t h e  cen t r i fuga l  fo rce  of t h e  blade N and t h e  moment 
i n  t h e  plane of r o t a t i o n  M, created by t h e  damper. 
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I n  fea ther ing  hinges manufactured according t o  t h e  scheme shown i n  F'ig.4.51, 
the  cen t r i fuga l  force  of t h e  blade i s  absorbed by t h e  t h r u s t  bearing (1). The 
moment of t h e  danper is absorbed i n  p a r t  by t h e  same bearing and i n  p a r t  by t h e  
radial bearings (2) and (3). 

The loads on t h e  r a d i a l  bearings (2) a d  ( 3 )  i n  f l i g h t  are comparatively
s m a l l ;  consequently, they are usually se lec ted  from s t a t i c  considerations based 
on the  weight moment of t he  blade t ransmit ted t o  them when the  hel icopter  i s  

As
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standing, t h e  r o t o r  i s  not ro ta t ing ,  and t h b  blades .abut t h e  coning stops.
shown i n  p r a c t i c a l  use, t h e  loads on t h e  r a d i a l  bearings of fea ther ing  hinges 
due t o  t h e  weight moment of t h e  blade may go as high as 100 - IlO% of t h e i r  
s t a t i c  load capaci ty  catalog ra t ing .  

hr 

Fig.4.52 Thrust Bearing with Slewed Fig.4.53 Curve of W f e  Ekpectancy 
Rollers ;  Recording of Motion of t he  o = o(nh) f o r  Thrust Bearings with 

Bearing Cage during Vibration. Slewed Rollers.  

The l i f e  expectancy of t h r u s t  bearings of fea ther ing  hinges i s  calculated 
on the  basis of t h e  experimental r e l a t i o n  CT = o(nh)  obtained from tests with t h e  
proper types of bearings under v ib ra t ion  conditions a t  purely axial load. For 
th rus t  ball  bearings,  t he  curve of l i f e  expectancy o = o(nh) is  p lo t t ed  i n  
Fig 04.49 

A s  mentioned before, thrust  bearings with slewed r o l l e r s  are being used i n  
t h e  feather ing hinges of r o t o r  hubs of a l l  series-produced Soviet hel icopters .  
The basic  diagram.of such bearings i s  shown i n  Fig.4.52. Thanks t o  arrangement
of  t h e  seats of the  cage a t  an  angle t o  t h e  r a d i a l  d i r e c t i o n  i n  bearings of this 
type, t he  cage not only vibrates together  with the  revolving race but a l s o  shifts 
continuously, although very slowly, i n  the  same di rec t ion .  T h i s  continuous dis
placement of t h e  cage preyents flbrinellingl'  of t h e  race t racks  and leads t o  a 
subs t an t i a l  increase  of t he  load-carrying capaci ty  of t h e  bearing. 

Tests have establ ished that t h e  l i f e  expectancy of t h r u s t  bearings w i t h  
slewed r o l l e r s  la rge ly  depends on the  rate of displacement of t he  r e t a ine r .  T h i s  
r a t e  is  commonly characterized by t h e  time T,, during which t h e  cage tu rns  
through an angle of 360'. The optimal values of t h e  time T, f o r  t h e  v ibra t ion  
amplitudes and frequencies a t  which the  t h r u s t  bearings of feather ing hinges 
operate are 4.0 - 80 min. When T, > 80 min, t he  p robab i l i t y  of failure of t h e  
bearing due t o  spa l l i ng  of t h e  metal on t h e  r o l l e r s  increases.  Despite continu
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ous displacement of t h e  cage, t h e  same surface areas of t h e  r o l l e r s  are i n  con
t a c t  wi th  t h e  races.  Therefore, failure of t h r u s t  bearings wi th  slaved r o l l e r s  
begins i n  most cases wi th  damage t o  the  r o l l e r s .  It should be mentioned that, 
at T, = 2.5 t o  6 hrs, the  d u r a b i l i t y  of t h e  r o l l e r s  drops by a f a c t o r  of about 2. 
When T, < 40 min, f r i c t i o n  losses  and w e a r  of t h e  t r acks  increase  noticeably.  

The curve of l i f e  expectancy u = ~ (nh )f o r  t h r u s t  bearings with slewed rol
lers having a n  optimal r a d i a l  displacement of t h e  cage of T, = 40 - 80 min i s  
shown i n  Fig.4.53. T h i s  curve has been p lo t t ed  from tes t  r e s u l t s  wi th  several 
batches of such bearings and MS-X) o i l  at a n  anpl i tude of t h e  revolving race  
cpo = 4.5’ and a frequency n = 240 cyc/min, i.e., under conditions analogous t o  
t h e  test conditions whose r e s u l t s  were  used i n  constructing t h e  r e l a t i o n  u = 
= o(nh) i n  Fig.4.49. 

Bench tests and operating experience ind ica t e  that t h e  curves of l i f e  ex
pectancy p lo t t ed  Yn Figs.4.49 and 4.53 can be used f o r  determining t h e  r a t ed  
serv ice  l i f e  of r o t o r  hub thrust bearings f o r  a l l  operating conditions these  units 
encounter under r e a l  conditions.  

A s  we see from figs.4.49 and 4.53, the  equation of t h e  l i f e  expectancy 
curves 0 = ~ ( n h )f o r  v ibra t ing  bearings has t h e  same form as f o r  bearings ro t a t ing  
i n  one direct ion:  

am* (n/z)=const, 

where we have d+= 10 f o r  t h e  case of po in t  contact and m” = 6.66 f o r  t h e  case of 
l i n e a r  contact.  

Let us t ake  f o r  t h e  base t h e  product nh = 120,000, which corresponds ap
proximately t o  a 50O-ho~r operating l i f e  of hel icopters  of t h e  M i - 1  type. A t  
nh = 120,000 t h e  permissible contact stresses are 29,000 kg/cm” f o r  t h r u s t  ba l l  
bearings and 18,800 kg/cm” f o r  t h r u s t  bearings wi th  slewed r o l l e r s .  Let A, de
note t h e  axial force  which, i n  a bearing with uniform d i s t r i b u t i o n  of forces  
over t h e  r o l l i n g  bodies, sets up contact stresses equal t o  those permissible a t  
nh = lX),OOO. 
b a l l  will be 

Then, i n  conformity wi th  eq.(3.l) t h e  permissible force  on t h e  

Here we have taken i n t o  accourrt that f o r  ball bearings t h e  contact stresses 
are propor t iona l  t o  the  cube root  and f o r  r o l l e r  bearings, t o  t he  square root  
of t h e  load. 

Special  experiments have establ ished that t h e  moment which m u s t  be taken 
i n t o  account i n  ca lcu la t ing  t h e  serv ice  l i f e  of a thrust bearing f o r  fea ther ing  
hinges i s  about 25 - 50% of t h e  mane& of t h e  damper, depending on t h e  design
features of t h e  assemb* and on t h e  clearances.  Here t h e  ca lcu la t ion  i s  per
formed i n  terms of t h e  instantaneous maximum pressure on t h e  r o l l i n g  body, 
meaning that t h e  moment ac t ing  on t h e  thrust bearing of t h e  feather ing hinge i s  
a r b i t r a r i l y  considered as constant i n  magnitude and d i rec t ion .  



The “ u m  pressure on t h e  r o l l i n g  body of a t h r u s t  bearing, loaded by a n  
axial force  and moment, can be represented i n  t h e  form 

Comparing this equa l i ty  wi th  eq.( 5.2), we obta in  t h e  following expression 
f o r  determining t h e  r a t ed  serv ice  l i f e  of t h r u s t  bearings of feather ing hinges 
f o r  r o t o r  hubs : 

As follows from Sections 3 and 4, t he  coe f f i c i en t  khA) depends on the  rela
t i v e  eccen t r i c i ty  of appl ica t ion  of t he  axial force,  which i n  this case i s  
equal  t o  

~=(0.25-0.5)-. Md 
r0N ( 5 *4) 

For t h e  usual  cor re la t ions  between t h e  moment of t he  damper and t h e  m 
cent r i fuga l  force,  T does not exceed 0.1; therefore ,  a l l  r o l l i n g  elements are 
always loaded i n  t h e  t h r u s t  bearings of fea ther ing  hinges$’. 

For thrust r o l l e r  bearings i n  which a l l  r o l l e r s  share t h e  load, we have 

K6A) =1+27. (5.5) 

)For small values of T, t h e  coef f ic ien ts  ~ A for t h r u s t  ball and r o l l e r  
bearings p r a c t i c a l l y  coincide. T h i s  permits use of eq.(5.5) even f o r  calcula
t i o n s  of t h r u s t  ball bearings. 

From eqs.(5.4.) and (5.5), we f i n a l l y  find 

It should be noted t h a t  t h e  c d c u l a t i o n  of rad ia l - thrus t  bearings of d i f 
f e ren t  types intended f o r  se rv ice  i n  feather ing hinges of main and t a i l  ro to r  
hubs can a l s o  be performed by means of eqs.(5.3) and (5.5) i f  t h e  permissible 
&a1 loads A, corresponding t o  t h e  value nh = 120,000 are predetermined f o r  
t hese  bearings. Here it i s  assumed that t h e  moments ac t ing  on t h e  bearings a r e  
known from ca lcu la t ions  o r  experiments. 

It must be remembered t h a t  t h e  values of A, which were not obtained from 

” It i s  known that t h e  r e l a t i v e  eccen t r i c i ty  at wbich unloaded r o l l i n g  elements 
occur is  0.5 f o r  thrust r o l l e r  bearings and 0.6 f o r  t h r u s t  ball bearings. 
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t h e  complete curve of l i f e  expectancy cr = o(nh) r e l a t i v e  t o  a c e r t a i n  probabil
i t y  of failure of t h e  bearings but from a recomputation based on r e s u l t s  of ex
periments car r ied  out a t  some value of nh f o r  an  i n s u f f i c i e n t l y  la rge  number of 
test specimens, may be incor rec t ;  apparently, this is  associated with an ap
prec iab le  d ispers ion  of t h e  l i f e  expectancy, which i s  d i f f i c u l t  t o  e l i c i t  a t  a 
s ing le  load level. 

Fig.4.54 Feathering Knge of Rotor Hub, on Multi-Row 
Radial-Thrust Bearing. 

Multi-raw radial- thrust  ba l l  bearings with contact angles of B o  = 4.5' and 
a reduced r a t i o  of t r a c k  radius  t o  ba l l  diameter a r e  being successful ly  used i n  
t h e  feather ing hinges of main and t a i l  ro to r  hubs of c e r t a i n  hel icopters  ( see  
Fig.4.54). T h i s  r a t i o  i s  usual ly  equal  t o  0.515 i n  a n t i f r i c t i o n  bearings. I n  
t h e  mentioned multi-row bearings it has been reduced t o  0.510, which leads t o  a 
decrease i n  contact s t r e s s e s  by about 7% and thus  t o  an  increase i n  t h e  ra ted  
serv ice  l i f e  of t he  bearings by a f a c t o r  of 2. It i s  l o g i c a l  t h a t  such a way of 
increasing t h e  load-carrying capaci ty  of rad ia l - thrus t  b a l l  bearings i s  usefu l  
mainly f o r  t h e  case of vibrat ions,  s ince  a reduction i n  t h e  r a t i o  of t r ack  radi
us t o  ba l l  diameter increases  t h e  length of t he  area of contact s t r a i n  due t o  
which t h e  f r i c t i o n  losses  increase noticeably. Test r e s u l t s  ind ica te  t h a t ,  i n  
t h e  case of high-quality manufacture ensuring a s u f f i c i e n t l y  uniform dis t r ibu
t i o n  of t h e  ex terna l  load over t h e  bearings of t h e  assembly, t he  permissible 
contact s t r e s s e s  on whose basis t h e  axial force must be calculated are here 
&,OOO kg/cm2 f o r  multi-row rad ia l - thrus t  ba l l  bearings.  

Available da t a  on t h e  permissible  contact s t r e s s e s  i n  radial- thrust  r o l l e r  
bearings f o r  se rv ice  under v ib ra t ion  conditions are s t i l l  i n s u f f i c i e n t l y  veri
f i e d .  

The above values of permissible  contact stresses p e r t a i n  t o  cases of t h e  
serv ice  of fea ther ing  hinges i n  main and t a i l  r o t o r  hubs wi th  o i l s  not i n f e r i o r  
i n  lubr ica t ing  p rope r t i e s  t o  t h e  o i l s  MS-20 and M S - z .  
no t  m e t ,  t he se  values must be reduced accordingly. 

If this requirement i s  
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The permissible  contact s t r e s s e s  are noticeably a f fec ted  by t h e  s i z e  of 
t h e  r o l l i n g  elements so  tha t ,  when using la rge  bearings, a c e r t a i n  cor rec t ion  
should be introduced f o r  t h e  scale f ac to r .  A s  shown by tes t  results, t h e  values 
of t he  p e m i k s i b l e  stresses given above can be considered binding f o r  bearings 
wi th  balls up t o  25 m i n  diameter and r o l l e r s  ug t o  15 m i n  diameter. On 
changing from r o l l e r s  wi th  a diameter of 15 m t o  r o l l e r s  wi th  a diameter of 
& mm, t h e  permissible  contact stresses f o r  t h r u s t  bearings with slewed r o l l e r s  
drop ‘by about 10%. 

_ _Needle Bearings of F lappiw. -a+ Drag Kng~.In most r o t o r  hubs, needle 
bearings a r e  used f o r  t h e  f lapping and drag hinges. 

The performance of needle bearings i s  usua l ly  estimated i n  terms of t he  
magnitude of spec i f i c  pressure pe r  un i t  area of p ro jec t ion  of t he  t r ack  of t h e  
inner  race.  

I n  ca lcu la t ions  of needle bearings f o r  drag hinges it i s  general ly  assumed 
t h a t  the  load i s  uniformly d i s t r ibu ted  over t h e  length  of t h e  needles ( see  
Fig.4.55,a). I n  conformity with this, t h e  spec i f ic  pressure  f o r  bearings i s  
taken as equal t o  

Nq=-
D l ,  ’ (5.7) 

where 
D = diameter of t h e  t r ack  of t h e  inner  race ;  

12 = t o t a l  working length  of t h e  needles. 

Needle bearings f o r  f lapping hinges, i n  addi t ion  t o  t h e  cen t r i fuga l  force 
of t h e  blade N, t ake  a c e r t a i n  moment M (Fig.4.55,b) whose constant component Ma 
is determined with s u f f i c i e n t  accuracy by t h e  expression 

Here, 
M r o t  = torque of t h e  ro to r ;  
z r O t  = number of blades of t he  ro to r ;  

a = lldriftll of t h e  middle of t h e  f lapping hinge from t h e  ax is  of ,/lJ)J
ro t a t ion ;  

1, = distance between f lapping and v e r t i c a l  hinges; 
t V e h  = IIoffsetII of drag hinge. 

The var iab le  component M, of t he  moment M y  when calculahing needle bearings 
of t he  f lapping hinges of rotor hubs, i s  disregarded s ince  it has l i t t l e  e f f e c t  
on t h e i r  l i f e  expectancy. It is customary t o  assume that t h e  load i n  f lapping 
hinges manufactured i n  conformity with t h e  scheme i n  Fig.4.55,b i s  d i s t r ibu ted  
over t h e  length of t h e  bearings according t o  t h e  t rapezoida l  ru l e .  I n  this case, 
t h e  loaded state of t h e  bearings i s  characterized by t h e  spec i f i c  pressures  q1
and 92 on t h e  outer  edges of t h e  races  caused by t h e  combined ac t ion  of t h e  
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fo rce  N and t h e  moment M a .  These pressures  are calculated by means of t h e  for
mula 

where B i s  t h e  working width of t h e  bearing assembly. 

Subs t i tu t ing  i n t o  eq.(5.9) t h e  value of M,, we reduce it t o  the  form 

A s  design da ta  ind ica te ,  proper choice of t h e  11driftIl a permits approach
ing  t h e  spec i f i c  pressures  q, and g, s u f f i c i e n t l y  close t o  t h e  average spec i f i c  

pressure  q, = -N i n  the  basic powered f l i g h t  regimes. We note t h a t  t h e  
DtC 

!*drift11 of t h e  middle of t h e  f lapping hinge from t h e  a x i s  of r o t a t i o n  by a dis
tance a i s  equivalent t o  r o t a t i o n  of tinis hinge through an  angle S h S h  = 

= tan-' -a (see ~ ig .4 .55 ) .  
t v .  h 

_--

/Fa 
Fig.4.55 For Calculation of Needle Bearings of Flapping 

and Drag Hinges of Rotor Hubs. 

According t o  eq.(5.10), t h e  spec i f i c  pressures  q1 and qa depend on t h e  cen
t r i f u g a l  force  N and on t h e  torque M r o t .  Therefore, t hese  can be regarded as /lLo1
c e r t a i n  funct ions of t h e  r o t o r  rpm and power. After using eq.(5.10) f o r  p lo t 
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t i n g  t h e  graphs of q, = ql(N,,, ) and q, and Q ( N r o t  ) f o r  t h e  most cha rac t e r i s t i c  
ro to r  rpm, as i s  done i n  Fig.4.56, it becomes easy t o  determine t h e  values of 
t h e  spec i f i c  pressures  q, and q, i n  t h e  main f l i g h t  regimes of a h e l i c m t e r  and 

a l s o  t o  estimate t h e  correctness of- selec
t i o n  of t h e  lldriftll a and, i f  necessary, 
t o  introduce .suitable correct ions i n t o  t h e  
r o t o r  hub design. 

If t h e  f lapping hinges are made i n  t h e  
form of two independent s q p o r t s  whose spac
ing L subs t an t i a l ly  exceeds the  diameter of 
t h e  t r a c k  D (Fig.4.57), it can be assumed 
that, wi th in  each support, t h e  spec i f i c  
pressures  i n  t h e  bearings are constant.  

I n  this case, t h e  r a t ed  spec i f i c  pres
sures determining t h e  l i f e  expectancy of t h e  
needle bearings i n  t h e  f lapping hinges are 
equal t o  

Fig.4.56 Specif ic  Pressures q, 
and q, as a Function of Rotor 

Rpm and Power. 
NC,ht = r o t o r  r p m  and power

i n  c ru is ing  regime; nLot ,  N:? = 
= ro to r  r p m  and power at c r u s 
i n g  speed; .,";;, N:;: = r o t o r  
rpm and power i n  takeoff regime; 

n;: t ,  N J , " ~  = r o t o r  rpm and 
power i n  au toro ta t ion  regime. 

Fig.4.57 For Calculation of 
Widely Spaced Needle Bearings 

of Flapping f inges.  

where tc i s  t h e  t o t a l  length of t h e  needles 

i n  both bearings.  

When using hSrpoid lubricants ,  t h e  per
missible  spec i f i c  pressures  i n  well-sealed 
needle bearings corresponding t o  a l i f e  ex
pectancy of 1000 hrs a t  24.0 cyc/min a r e  a t  
least 350 kg/cm2 f o r  t h e  flapping hinges and 
400 kg/cm" f o r  t he  drag hinges. The rela
t i v e l y  small value of t h e  permissible speci
f i c  pressures  i n  f lapping hinge bearings 
can be explained i n  p a r t  by t h e  f a c t  t h a t  
they  work at v ib ra t ion  amplitudes of 2 t o  6O, 
whereas t h e  v ib ra t ion  amplitude of t h e  drag 
hinge bearings usua l ly  does not exceed 1'. 
Although this cont rad ic t s  es tabl ished opin
ions,  p r a c t i c a l  use has shown t h a t ,  a t  v i 
bra t ion  amplitudes t o  lo, t he  l i f e  expect
ancy of needle bearings i s  higher than  a t  
amplitudes of 2 - 6'. The f a c t  t h a t ,  due t o  

deformation of t h e  p a r t s  under load, t h e  a c t u a l  spec i f ic  pressures  on t h e  edges 
of t h e  needle bearings of f lapping hinges may a t  times exceed t h e  ra ted  pres
su res  poss ib ly  plays a d e f i n i t e  r o l e  here. 

Many years of a c t u a l  se rv ice  experience confirm that, i n  se lec t ing  t h e  /4.02 
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s i z e  of needle bearings f o r  t h e  f lapping and drag hinges of r o t o r  hubs of l i g h t  
and medium hel icopters ,  t h e  above-indicated values of permissible spec i f i c  pres
sures can be used as a reliable guide. For heavy hel icopters  whose un i t s  gen
e r a l l y  have a r e l a t i v e l y  lower r i g i d i t y ,  these f igu res  can be used as guide only 

Fig .4.59 Failure  of Needle Bearing 
due t o  Insu f f i c i en t  Rig id i ty  of 

the  Structure .  

Fig 4..58 Effect  of S t i f f  ness 
of P in  and F l e x i b i l i t y  of Races 
on the  Dis t r ibu t ion  of Specif ic  
Pressures over t he  Length of 
Needle Bearings i n  a Flapping 

Hiwe.  
a - I n i t i a l  version; b - Effect 
of p i n  of increased s t i f f n e s s ;  
c - Effect  of ~ ~ f l e x i b l e l ~ends 

of bearing races .  

Fig .4.60 For Calculation 
of Needle Bearings i n  

T a i l  Rotor Hubs. 

i f  spec ia l  measures a r e  taken t o  ensure a uniform load d i s t r i b u t i o n  i n  the  drag 
hinge bearings and i f  t h e  diagram of t h e  load d i s t r i b u t i o n  i n  the  f lapping 
hinges approximates a t rapezoida l  diagram (see Fig.4.55,b). A s  a ru l e ,  a satis
fac to ry  load d i s t r i b u t i o n  over t h e  length  of needle bearings f o r  f lapping and 
drag hinges can be obtained by properly choosing t h e  s t i f f n e s s  of r ings  and p ins  
and a l so  by s u i t a b l y r a i s i n g  t h e  f l e x i b i l i t y  of t h e  ends of t h e  races .  T h i s  i s  
shown s p e c i f i c a l l y  i n  fig.4.58 which contains experimental diagrams of t h e  vari
a t i o n  i n  dis tance between t h e  genera t r ices  of t he  outer  and inner  races,  f o r  
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t h r e e  design versions of t h e  f lapping hinge i n  t h e  r o t o r  hub of a heavy heli
copter.  It should be noted that inadequate mechanical s t r eng th  of t h e  r ings  and 
p ins  i n  f lapping and drag hinges may not only result i n  l o c a l  increases  of t h e  
depth of b r ine l l i ng  marks a t  t h e  edges of t h e  t r acks  but a l s o  i n  spa l l i ng  of 
la rge  por t ions  of t h e i r  surface and sometimes even i n  breakage of t h e  needles 
(Fig.4.59) 

Calculation of needle bearings f o r  f lapping hinges of t a i l  r o t o r  hubs /4-03
(Fig.4.60) i s  appreciably more d i f f i c u l t  t han  ca lcu la t ion  of needle bearings f o r  
f lapping hinges of main r o t o r  hubs, s ince  they general ly  absorb a r a t h e r  la rge  
a l t e rna t ing  moment which cannot be disregarded i n  estimating t h e i r  performance. 
T h i s  moment i s  created by a l t e rna t ing  aerodynamic and i n e r t i a  (Cor io l i s )  forces  
ac t ing  on t h e  blades of t he  t a i l  ro to r  i n  the  plane of ro t a t ion .  In  rough cal
culat ions,  t h e  loaded state of needle bearings i n  t a i l  ro to r  flapping hinges i s  
usually characterized by the  instantaneous maximum spec i f i c  pressure s e t  up on 
t h e  edge of t h e  t rack .  On t h e  assumption t h a t  t h e  load i s  d i s t r ibu ted  over t h e  
length of t h e  -bearings i n  accordance with the  t rapezoida l  ru le ,  this pressure 
i s  equal t o  

L \ D l  I 

where 
M t , r  = torque of t a i l  ro to r ;  
z t S r  = blade number of t a i l  ro to r ;  
M, = amplitude of var iab le  moment loading t h e  f lapping hinge. 

The values of t he  spec i f i c  pressure g calculated from eq.(5.l2) f o r  t a i l  
ro to r s  of l i g h t  and medium hel icopters  a t  c ru is ing  speed should not exceed 
300 - 350 kg/cm". When hypoid lubr icants  a r e  used i n  t h e  f lapping hinges, it 
can be expected t h a t  the l i f e  expectancy of t h e  bearings w i l l  be a t  l e a s t  
1000 hrs. 

Finally,  t h e  l i f e  expectancy of needle bearings f o r  f lapping and drag 
hinges of main and t a i l  r o t o r  hubs i s  determined from tests of such un i t s  on 
spec ia l  r i g s .  

4. Calculation of Bear iws  f o r  t h e  P i t ch  Cont ro l  and 
Control Mechanisms 

The permissible loads on the  bearings of t he  pitch-control hinges and t h e i r  
connecting con t ro l  elements general ly  a r e  determined by experiment. For this, 
endurance t e s t s  a r e  performed on s p e c i a l  r a the r  complex i n s t a l l a t i o n s  which per
m i t  s imulating a l l  types of forces  act ing on t h e  p i t c h  con t ro l  i n  f l i g h t .  

The loads on t h e  p i t c h  con t ro l  a r e  of a dynamic nature. T h i s  i s  especial ly  
c l e a r  from the  osci l lograph i n  Fig.4.61, f o r  t he  blade hinge moment M, and t h e  
forces  P l o n g  and P l a t  i n  the  longi tudinal  and la teral  con t ro l  rods connecting 
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t h e  corresponding rockers of t h e  p i t c h  con t ro l  wi th  the  hydraulic boosters. 

It i s  l o g i c a l  t h a t ,  wi th  such a complex character  of loading, any recom
mendations as t o  t h e  design of bearings for p i t c h  cont ro l  hinges w i l l  of neces
s i t y  be only conditional.  Nevertheless, c e r t a i n  suggestions might guide the  
designer i n  problems of t he  se l ec t ion  of bearings f o r  these  v i t a l  un i t s ;  i n  this 
respect,  we w i l l  b r i e f l y  discuss  these.  

I 
~ t 

t 

Flig.4.61 Oscillograms f o r  Blade Fig.4.62 Load on Bearings 
Hinge Moment and Forces i n  of P i t ch  Control Hinges. 
Longitudinal and Latera l  

Control Rods. 

If we t ake  i n t o  considerat ion t h a t ,  i n  conventional ro to r  designs, only the  
absolute  magnitude of t h e  blade hinge moment changes and t h a t  t he  co r re l a t ion  
between t h e  amplitudes and phases of i t s  ind iv idua l  harmonics remains constant, 
then  t h e  se l ec t ion  of bearings f o r  such hinges of t he  p i t c h  cont ro l  based on the  
same design configuration can proceed from t h e  m a x i m u m  value of t h e  absorbed load 
P,a x  (Fig.4.62). 

For p i t c h  controls  c lose i n  design t o  t h e  p i t c h  controls  of M i - 1  and Mi-4 
hel icopters  ( see  Fig.4.38) wi th  all-metal  ro to r  blades of rectangular  planform 
and using greases of t he  type TsIATIM-201, t he  permissible load P",:, can be de
termined from Table 4.9. T h i s  table w a s  compiled from r e s u l t s  of stand t e s t s  
with considerat ion of p r a c t i c a l  experience i n  operating p i t c h  controls .  

The values of t h e  permissible loads P:zrm given i n  t h e  Table f o r  a r o t o r  & 
rpm of 24.0 correspond t o  a Life expectancy of 1000 - 1200 hrs. For other  r p m ,  
t h e  l i f e  expectancy i s  found from the  expression 

h=-, 240,000 (5.13)
n 

where n is  t h e  ra ted  r o t o r  r p m .  
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P e r m i s s i b l e  Values  P,"::, ( k g )  for 
Various  B e a r i n g s  

of 

Site 

B a l l .  I Rol l  er, HingeI n s  t a l  1a t i o n  of Type 

and T h r u s t  ShS 

-~ . .  . 

Hinges  of swashpla te ,  2 Dl 
t u r n  rod ,  and l e v e r s  
of blade  

B e a r i n g s  of u n i v e r s a l  
j o i n t  

0.8 Qst 

B e a r i n g s  o f  r o c k e r s  2 DI 
o f  l o n g i t u d i n a l  and 
l a t e r a l  c o n t r o l s  

B e a r i n g s  of l o n g i t u d i n a l  Db 
and l a t e r a l  c o n t r o l  rods  
connec t ing  t h e  r o c k e r s  
w i t h  o u t e r  r a c e  of Cardar 
j o i n t  

B e a r i n g s  of c o l l e c t i v e  Qst 1 Qst 2 DI 
p i t c h  l e v e r  

Qs, = 	p e r m i s s i b l e  s t a t i c  l o a d  on a n o n r o t a t i n g  b e a r i n g ,  g iven  i n  
c a t a l o g s  and manuals; 

D = diameter  of i n n e r  r a c e  t r a c k  of n e e d l e  b e a r i n g  or s p h e r e s  
of hinged  bear ing ,  i n  mm; 

b = width of o u t e r  r a c e  of hinged  bear ing ,  i n  nun; 
1 = working l e n g t h  of t h e  n e e d l e s ,  i n  nun. 

I f  t h e  nature  of t he  loads d i f f e r s  from t h a t  of t h e  p i t c h  controls  of t h e  
M i - 1  and Mi-4 hel icopters  with all-metal  r o t o r  blades, then  t h e  permissible 
values P;::, should be ref ined as a r e s u l t  of appropriate  stand and serv ice  
t e s t s .  

Above, we have examined vibrat ing bearings t h a t  execute a la rge  number of 
vibrat ions (more than  lo7) during t h e  ra ted  serv ice  l i f e .  

The permissible loads on the  bearings of t h e  con t ro l  mechanism of a i r c r a f t ,  
f o r  which the  t o t a l  number of vibrat ions does not exceed 100,000 and t h e  vibra
t i o n  amplitude i s  equal t o  20' and more, should be determined - according t o  
VNPP - by the  following experimental formuh?: 

2&Perm =awmzdh. ( 5  *a> 
The values of t he  coef f ic ien t  c y p e r m  f o r  c e r t a i n  types of bearings operating 

on greases a t  v ibra t ion  numbers 25,000 and 100,000 a r e  given i n  Table 4.10. 

% It i s  assumed t h a t  t he  contact areas of adjacent r o l l i n g  elements do not over
lap = 



- -  

TABLE: 4.10 

TvDe I I I n s i d e  ]Value  o f  C o e f f i c i e n t  ODerm,.
of  1 t:b:onsBearing { ~ b ~ ~ ~ n siI 7000::: 

200 5 l 2t o  50 

900000 


B a l l ,  radia l  - _ _  
1 ::"e 9 

4 I 1.6 

980000 5 2 


4 1 1.6 

2 
2


981000 
above 9 2'5 I 1.6 

I-

1000 I to 10 4 2.8 

B a l l ,  spherica l  1200 1 to50 4 2.8 
--. - _-

I
I 

4.7 3.3 
971000 
1300 i 

Section 6.  Theory and Select io-nof  Basic-Parsmeters of Thrust 
_ _ -Bearings with ltSlewed11 Rollers 

A s  indicated i n  previous Sections, t h rus t  bearings with cy l ind r i ca l  r o l l e r s  
arranged a t  an angle t o  the  r a d i a l  d i r e c t i o n  are being used with success i n  the  
feather ing hinges of r o t o r  hubs of Soviet hel icopters .  The high load-carrying 
capaci ty  of such bearings, known as t h r u s t  bearings with llslewedlf r o l l e r s ,  i s  ex
plained by t h e  f a c t  t h a t  the  cage, during vibrat ions,  not only v ibra tes  together  
wi th  the  revolving race but a l s o  shifts continuously i n  one d i rec t ion .  The time 
of r o t a t i o n  of t h e  cage T, through a n  angle of 360", character iz ing t h e  r a t e  of 
this displacement, i s  determined by a number of f ac to r s .  It i s  dependent on 
t h e  coef f ic ien t  of s l i d ing  f r i c t i o n  between r o l l e r  a& races,  v ibra t ion  ampli
tude and frequency of t h e  revolving race,  and on a number of geometric parame
ters of which t h e  angles of slope of the  cage seats p lay  a major ro l e .  It i s  
l o g i c a l  t h a t  these  angles should be se lec ted  such that t h e  t h e  T, dl1be with
i n  optimal limits ensuring a long l i f e  expectancy of t h e  r o l l e r s  a t  acceptable 
wear of t h e  t racks .  A theory i s  presented below by means of which this problem 
can be solved. 



1. Determination of t h e  Time T, 

In t h r u s t  bearings wi th  slewed ro l l e r s ,  t h e  r a t i o  of angular ve loc i ty  of 
w,t h e  cage t o  angular ve loc i ty  of t h e  revolving race A = -depends upon t h e  
w 

d i r e c t i o n  of ro ta t ion .  T h i s  causes a continuous displacement of t h e  cage, which 
i s  observed i n  such bearings during v ibra t ion .  

The values of t h e  r a t i o  A corresponding t o  counterclockwise and clockwise 
ro t a t ion  of t h e  bearing are found i n  t h e  following manner: 

The forces  of s l i d i n g  f r i c t i o n  a r i s i n g  a t  t h e  poin ts  of contact of t he  
r o l l e r  with t h e  races  a r e  reduced t o  t h e  r e su l t an t  forces  Fly,  F,, , Fzy< F Z x ,  
and t h e  moments MI,,M,, (Fig.4.63). A t  a constant coef f ic ien t  of s h d i n g  f r i c 
t i o n  p, between r o l l e r s  and races,  t he  magnitudes of these  forces  and moments can 
be calculated with s u f f i c i e n t  accuracy by t h e  formulas 

Here, 
P = force  absorbed by t h e  r o l l e r  i n  question; 

y1 and y, = coordinates of t h e  contact po in ts  a t  which the re  i s  no s l id ing  
i n  a d i r e c t i o n  perpendicular t o  the  r o l l e r  axis; 

d, = diameter of t h e  r o l l e r ;  
1 = working length of t h e  r o l l e r .  

I n  deriving eqs.(6.1), i t  was assumed t h a t  t he  normal loads q, and q2 L4.97 
are d i s t r ibu ted  over t h e  r o l l e r  length according t o  the  l a w  

q1=p(1 --K +); 
9 - - ;) I2 - P i  1 + K - ,  

where 
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Such a d i s t r i b u t i o n  of normal loads i s  due t o  t h e  ac t ion  of t h e  moment 
d

( F l y  + G;)2 which tends t o  turn t h e  r o l l e r  about t h e  axLs 0,x. Since t h e  

usual  b a d  concentration a t  t h e  edges of t h e  r o l l e r  has l i t t l e  e f f e c t  on t h e  
time T,, we will disregard it t o  s implify t h e  ca lcu la t ions .  I n  View of t h e  
smallness of t h e  f r i c t i o n  force  pc(Flx  - F Z x )  we consider that 

The coe f f i c i en t s  enter ing e q ~ ~ ( 6 . 1 )a r e  determined by t h e  equa l i t i e s  

1 
Mobile fG 


R o t o r\a; 

A l l  = 

1 

Fig.4.63 Forces and Moments where 
Acting on 11Slewedlt Rol lers .  p=- I 

r o s i n  y 

From t he  kinematic r e l a t i o n s  and t h e  equations of moments r e l a t i v e  t o  /ko8
t h e  a x i s  O,y, we can obta in  t h e  following expressions": 

1 A l l  

% It i s  assumed that t h e  quant i ty  pc(2A - 1) can be neglected f o r  Unity. 
i n e r t i a  momerrt of t h e  r o l l e r - i s  disregarded. 

The 
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(ZC? -1). 

I n  these  expressions, 

where 
f,, = coe f f i c i en t  of r o l l i n g  f r i c t i o n ;
M, = moment taking i n t o  account t h e  f r i c t i o n  a t  t h e  ends of t he  r o l l e r  

and t h e  f r i c t i o n  against  t he  lubr icant  ; 
p, = coe f f i c i en t  of f r i c t i o n  between t h e  ro l le rs  and cage. 

The upper s igns r e f e r  t o  t h e  case of F,, - F,, > 0, while t h e  lower s igns  
ind ica t e  t h e  case of F,, - F,, < 0. 

The angle of s lope y i s  considered pos i t i ve  i f  t h e  r o l l e r  can be placed i n  
a r a d i a l  pos i t i on  by turn ing  about t h e  point  0 ,  counterclockwise. Under this 
condition, t h e  d i r ec t ions  indicated i n  f i g  .4.63 correspond t o  pos i t i ve  values 
of t h e  forces  calculated by eqs.(6.1). The s igns of t h e  angles of slope of .  t h e  
r o l l e r s  and t h e  d i r e c t i o n  of r o t a t i o n  are determined when viewing the  r o l l e r  
from t h e  s ide  of t h e  movable race.  

A r o l l e r  with an  angle of s lope y generates t h e  following moment, r e l a t i v e  
t o  the  &s of r o t a t i o n  of t h e  cage: 

M-= ( F I X -F,,)r,cos y+(F1,- F 2 , ) r 0 s i ~~ ~ - ( h f , ~ - - M ~ ~ ) .  

AS Shawn by calculat ions,  t h e  res i s tance  t o  r o l l i n g  and t h e  f r i c t io r ;  of t h e  
r o l l e r  against  the  cage and lubr icant  have p r a c t i c a l l y  no e f f e c t  on t h e  magni
tude of this moment. I n  c o n f o r d t y  with this, taking f = p,, = 0 i n t o  account 
and considering that i n  real designs t h e  angle i s  y < 6' and hence cos y w 1, 
the  last equal i ty ,  by means of eqs.(6.1), (6.3), and (6.4), can be transformed 
such t h a t  

M =pPt,B, (6.5) 

where 
M = 2 p ~ ~ A , , - 2 A , , ~ ( 2 A -1).-

21 

Table 4.11 gives  t h e  values of t h e  coef f ic ien ts  A,, and All as a function 
of t h e  quant i ty  l/p. 
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1 Values o f  t h e  C o e f f i c i e n t .  A10 and A 1 1  a t  U p  

0 1 0 . 0 5  10.10 10.15 10.20 1 0 . 2 5  10.30 1 0 . 3 5  10.40 10 .45  10.50 
-

I n  t h e  case of negative values of p, t he  coe f f i c i en t s  A,, and A,, can be 
determined by me ns of t h e  r e l a t i o n  

AI0 (-PI= -AI0 (PI 
and (6=6)

& ( - P ) = A l l ( P ) .  

These r e l a t ions  follow d i r e c t l y  from eqs .(6.3). 

A t  small v ibra t ion  amplitudes, when t h e  i n e r t i a  forces  can be disregarded, 
t h e  equation of motion of t h e  cage of t h e  bearing wi th  11slewed" r o l l e r s  reduces 
t o  t h e  condition 

M,1 -Mf,= 0. (6* 7 )  

Here, 
M,i = CM = t o t a l  moment of t he  s l i d i n g  f r i c t i o n  forces  exerted on t h e  rol

lers by t h e  bearing races;  
M,, = moment of f r i c t i o n .  

L e t  us  assume t h a t  t h e  cage has z seats, i n  each of which a r e  s r o l l e r s .  
The angles of s lope of t h e  cage seats, a t  a n  average radius  r, a r e  denoted i n  
terms of y,, , and t h e  angles of s lope of t h e  r o l l e r s  i n  terms of yi, . The sub
s c r i p t  i denotes t h e  number of t he  cage seat, w h i l e  t h e  subscr ip t  k i nd ica t e s  
t h e  pos i t i on  of t h e  r o l l e r  i n  it. Usually, i n  each seat the re  are two r o l l e r s .  
The load on a r o l l e r  wi th  a w o r k i n g  length  l i k  i s  equal  t o  

where 
tc = t o t a l  working length  of t h e  r o l l e r s  i n  one seat; 

N = axial fo rce  applied t o  t h e  bearing. 

A change i n  d i r e c t i o n  of r o t a t i o n  of t h e  bearing i s  equivalent t o  a change 
i n  signs of t h e  angles of s lope of t h e  r o l l e r s .  Bearing i n  mind this f a c t ,  we 
ob ta in  t h e  fo l loh ing  expression from eqs.(6.5), (6.6), and (6.8): 
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where A,, (pik ) ard A,, (pik ) are t h e  values of t h e  coe f f i c i en t s  A,, and A,, f o r  

For def ini t iveness ,  we w i l l  consider that t h e  s igns  of t h e  angles of /k10
slope of t h e  r o l l e r s  are given f o r  t h e  case of counterclockwise r o t a t i o n  of t h e  
bearing. After subs t i t u t ing  eq.(6.9) i n t o  eq.(6.7), we obtain: 

f o r  counterclockwise r o t a t i o n  : 

1 1A- nt=l+l (6 .lo) 

f o r  clockwise r o t a t i o n  : 

Knowing t h e  quant i t ies  A '  and A", it i s  easy t o  ca l cu la t e  t h e  t i m e  T,. From 
Fig.4.52 it follows that, during each half-period of vibrat ions,  t h e  cage i s  
displaced by a n  angle Acp, = (A '  - AN)cpo. Consequently, t h e  t i m e  of r o t a t i o n  of 
t h e  cage through an  angle of 360' Will be 

360T ,  = 
2 I A' -A" I 'pori ' 

where n = -1 i s  t h e  number of v ibra t ions  of t h e  revolving race p e r  minute. 
TO 


Since t h e  moment of f r i c t i o n  Mi, of t h e  cage should be indepeladent of t he  
d i r e c t i o n  of ro ta t ion ,  we w i l l  have, i n  conformity wi th  t h e  above correlat ions,  
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T ,  =-	180 
, .~~ 

s - IV O W  I 2  (6.12)IEk i - 1  E12 ( p i k ) l  

+.(20-30) -(30-40) I. - (45-55) 	 of experiments set  up t o  determine t h e  time T, 
a t  low temperatures, when, owing t o  an  increase  

O i l  VNII NP-25 ( v  = 10 c e n t i s t o k e s  2. Se lec t ion  of Angles of Slope 
a t  t = + l O O O C  and u = 50,000 c e n t i - of Cage Seatss t o k e s  a t  t = -4OOC) 

A prescr ibed rate of displacement of t h e  
cage i s  ensured by proper s e l ec t ion  of t h e  

angles of s lope of i ts  sea t s .  In this case, not only t h e  ra ted  values of t h e  
angles but a l s o  t h e  allowances f o r  manufacture, which have a not iceable  e f f e c t  
on t h e  t i m e  T,, must be kept i n  mind. The remaining geometric.parameters of t h e  
bearing, inf luencing t h e  time T,, are se lec ted  on t h e  basis of design considera
t ions .  

Manufacturing deviations of t he  angles 
of s lope of t h e  cage seats, even with up-
to-date t e c h n o l o a  and rigorous qua l i ty  con
t r o l  of t h e  f in i shed  a r t i c l e s ,  go as high as 
7 - 10'. If no s p e c i a l  measures are taken 
i n  t h e  manufacture of bearings, such devia
t i o n s  may reach 20 - 30'. 

The time T, depends a l s o  on t h e  clear
ance between r o l l e r s  and cage. I n  t h e  pres
ence of clearance, t he  pos i t i on  of t h e  rol
lers i n  t h e  seats of t h e  cage and hence t h e  
a c t u a l  angles of slope of t h e  r o l l e r s  are 
determined by t h e  forces  of s l i d i n g  f r i c t i o n  
exerted on t h e  r o l l e r s  by t h e  races.  Since, 
i n  t h e  general  case, a determination of 
these  forces  i s  d i f f i c u l t ,  we w i l l  assume 

a that t h e  r o l l e r s ,  wi th  equal probabi l i ty ,  
can occupy any of two pos i t ions  shown i n  

Fig.4.64 D e t e k n a t i o n  of t h e  Fig .4 .64 : 
Values of p with  Clearance be- i n  pos i t i on  I: 

tween Rollers and Cage. 
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i n  p o s i t i o n  11: 

Iik z l ik  
P i ,  =-- ' 

e .  
rc  s i n  ye.- 2 rc s in  ( yci- 4)' 

' 2 2rC 

It i s  obvious from these  equa l i t i e s  t h a t  t h e  e f f e c t  of clearance on t h e  
t i m e  T, can be taken i n t o  account by increasing t h e  design deviat ions of t he  
angles of slope of t h e  cage seats t o  t h e  quant i ty  

where 5 ,  is half of t h e  manufacturing allowance, while e m a xi s  the maximum 
clearance.  

The most general  case of arrangement of t h e  cage seats of p r a c t i c a l  i n t e r 
e s t  i s  t h e  case where t h e  cage contains z1 seats wi th  a n  angle of slope y1 f 

5 (yl > 0)  and z 2  seats wi th  an  angle of s lope 0 f 5 .  

To s implify f u r t h e r  calculat ions,  l e t  us assume t h a t  1 ik = 1 = const. /k12
If t h e  quant i ty  5 i s  such t h a t  t he  difference A '  - A "  i s  pos i t ive ,  then, pro
vided t h a t  t i k  = 1 = const, t h e  time T, can change from a c e r t a i n  

t o  a c e r t a i n  

Here , 

x,3 and v =  k - 1  

21 
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The coef f ic ien t  v i s  usual ly  c lose  t o  unity (v  = 0.98 - 1). his ind ica t e s  
t h a t  t h e  time T, depends l i t t l e  on t h e  number of r o l l e r s  s i n  one seat. 

I n  t h e  expressions f o r  T i m a x )  and T L m i n ) ,  t he  minimum and maxi” values 
of t h e  coef f ic ien t  of s l i d i n g  f r i c t i o n  p are denoted by p’ and p ”  . With good 
lubricat ion,  we have p‘ x 0.05 and p ”  x 0.08. 

kt t h e  upper and lower Emits of t h e  range of optimal values of T, be 
equal  t o  T: and TZ respect ively.  As follows from tes t  r e s u l t s ,  t h rus t  bearings
with slewed r o l l e r s  operating i n  the  fea ther ing  hinges of r o t o r  hubs Will have 
a t i m e  T/, = 80 min and TZ = 40 min. It has been establ ished tha t ,  t o  determine 
t h e  maxi“ s t a b i l i t y  of t h e  rate of displacement of t h e  cage, t h e  quant i t ies  y1 
and x should be se lec ted  such that, at a given value of 5 ,  TLmaX)Willbe equal  
t o  TO. A t  T i m a x )  = TO, t he  quant i t ies  yl, x, and 5 are cor re la ted  by a d e f i n i t e  

~r e l a t i o n .  Se t t ing  T L ~ = T i  i n  eq.(6.13), this r e l a t i o n  can be graphical ly 

represented as a family of corresponding curves$:‘ Figure 4.65 which gives a 

family of such curves shows t h a t  t he  condition TLmax)  = TL imposes c e r t a i n  l i m i  

t a t i o n s  on t h e  se l ec t ion  of t h e  quant i t ies  y 1  and 5 .  Thus 

= 80 min, t he  r a t i o  x should not exceed 1.28 f o r  5 = 0 and 0. 

and t h e  angle y 1  should not be l e s s  than  some m i n i m u m  angle 1 + 5  

(where y i s  the  value of y P i  n ,  f o r  x = 0 and 5 = 0 ) .  The range of time r a t e  

of change of cage displacement i s  characterized by t h e  r a t i o  = T( ,min) /T(cmax)  . 


Fig.4.65 Curves of y 1  = y l (x )  f o r  Fig.4.66 Dependence of t h e  Ratio ll 

Different Values of t h e  Deviation on t h e  Deviation of 5 f o r  


of 5 .  Different  Angles of y 1. 

Figure 4.66 contains t h e  curves of r\ = r\(F) f o r  t h e  angles y 1  = 5’ and 
y 1  = 30‘, p lo t t ed  on t h e  assumption t h a t  TLmax = TL. J3gb-e 4.66 shows t h a t  
t h e  r a t i o  r\ depends mainly on t h e  quantity 5 .  The angle y 1  has a r a the r  minor 
e f f e c t  on 7 .  Thus, from t h e  viewpoint of s t a b i l i t y  of t h e  r a t e  of cage displace
ment, d i f f e ren t  combinations of t h e  angles of s lope of t h e  s e a t s  are approxi
mately equivalent,  provided they  s a t i s f y  t h e  condi t ions T(cmax) = T i .  According 

>c 
” Everywhere where no s p e c i a l  s t i pu la t ions  have been made, it i s  assumed t h a t  
T: = 80 min. Here, a l l  s p e c i f i c  numerical values p e r t a i n  t o  t h e  case d, = 9 mm, 
rc = 40 mm, 1 = 8 mm, v = 1, cp, = 4.5’, n = 24.0 cyc/min, p = 0.06. 
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t o  Fig.4.66, the  deviat ion of E at which T:min) = Tfl = 40 min and thus 1 = 

= &-= 0.5, i s  about 5'. Hence, even with t h e  most ca re fu l  manufacture of 
80 

cages, there  might be cases i n  which t h e  t i m e  T, w i l l  exceed t h e  limits of t h e  
optimal range. 

I n  pract ice ,  we encounter two variants of arranging t h e  cage seats. I n  the  
first, a l l  s ea t s  have an  iden t i ca l  angle of slope not exceeding 1' w h i l e  i n  t he  
second, several  seats are arranged at  an  angle of 3 - 6' with a l l  other  s ea t s  
being r ad ia l .  Let  us compare these var iants  f o r  t h e  following examples. 

kt us examine a bearing f o r  which y 1  = 45 ', x = 0, d, = 9 mm, r, = 40 mm, 
1 = 8 mm, emax= 0.2 nun, 5, = 7', and s = 2; t h e  bearing operates at 'po = 4.5' 
and n = &O cyc/min. 

If a l l  r o l l e r s  have an angle of slope equal t o  y, we have 

where 

Figure 4.67 gives the  curves of T, = T,(y), showing t h e  var ia t ion  i n  the  
time T, as a funct ion of t h e  angle y f o r  p = p '  = 0.05 and p = p "  = 0.08. We 
d i s t inguish  between the  curves of T, = T,(y) a region bounded by v e r t i c a l  

emaxs t r a igh t  l i n e s  y = y 1  -t 5 ,  + -= 60' and y = y 1  - 5 ,  em a x  = 30'. The 
3, 3, 

ac tua l  values of t h e  t i m e  T should l i e  within this region. It i s  easy t o  note 
tha t ,  f o r  such a bearing, TCmax) = 74 min and T L m i n )  = 31 min. These values are 
ra ther  close t o  optimal. Results of experiments set up t o  determine the  time T, 
f o r  several  hundreds of bearings with the  indicated parameters have shown t h a t  
t he  ac tua l  values of T, f o r  a l l  p r a c t i c a l  purposes do not extend beyond the  
limits of t he  indicated range, being grovqed about average values of T i a v )  = 
= 50 - 60 min. 

Now l e t  the  bearing have the  following parameters: y 1  = 5', x = 5, d, = 
= 5 ", r, = 28'm, 1 = 4.2 nun, emax= 0.2 mm, f ,  = 7', s = 2 and l e t  it oper
ate a t  rpo = 4.5 and n = 300 cyc/min. 

We assume t h a t  t h e  ac tua l  angles of slope of t h e  r a d i a l  seats a re  equal & 
t o  5 .  Then, 

(6.16) 
where 

I I
P1=-

rc sin Y1 
and pZ=-. 

rc sin E 
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Figure 4.68 which gives  t h e  curves of T, = T,(S) p lo t t ed  from eq.(6.16) 
shows t h a t ,  a t  5 = 0, t h e  time i s  T, = 163 - 261 m5.n depending on t h e  f r i c t i o n  
coeff ic ient  p .  If 5 NN - 5 ' ,  then  t h e  t h e  T, Will tend t o  i n f i n i t y .  I n  other  
words, at small negative deviat ions of t h e  angles of slope of t he  r a d i a l  seats, 
t h e  cage may s top moving. 
wi th  la rge  values of x. 

Such cases are o f t en  observed when t e s t i n g  bearings 

1,-min 

0 l"30' y 

Fig.b.67 The Time T, as a Func- Fig.4.68 The Time T, as a Function 
t i o n  of t he  Angle of Slope of of t he  Deviation of 5 .  

t h e  Cage Seats y . 
A t  IJ. = 0.08 and 5 = 5 ,  + emax 15', we have T, = 4.7 min. Consequently,

3, 
i n  t h e  case i n  question t h e  time T, may vary from T i m a x )  = OJ t o  TO"") = 47 rin. 

These examples ind ica t e  t h a t  on ly  t h e  first var iant  of pos i t ion ing  t h e  cage 
seats enables the  bearings t o  operate under conditions close t o  optimal. 

Posit ioning of t h e  seats of t h e  cage a t  i d e n t i c a l  angles W i l l  a l s o  reduce 
the  f r i c t i o n  losses  ard t h e  nonuniformity of d i s t r i b u t i o n  of t h e  normal load 
along t h e  contact l i n e s .  

F r i c t ion  Losses3. - . . .  

Fr ic t ion  losses  i n  t h r u s t  bearings wi th  ~lslewedllr o l l e r s  depend both on t h e  
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ra te  of t h e  displacement of t h e  cage and on t h e  mode of s e l ec t ion  of t h e  quanti
t i es  y and x which provide cage displacement at a given rate. 

The moment of f r i c t i o n  of t h e  bearing i s  usua l ly  w r i t t e n  as L& 

where f f ,  is  t h e  reduced f r i c t i o n  coef f ic ien t .  

Using t h e  r e l a t i o n s  obtained i n  t h e  preceding subsections, after a number 
of transformations we f ind  

(6.18) 

Here, 
f,, = coe f f i c i en t  of r o l l i n g  f r i c t i o n ;  

f , t  = coef f ic ien t  character iz ing losses  due t o  s l i d ing  f r i c t i o n .  

The coef f ic ien t  f ,  1 can be represented i n  t h e  form [see (Ref .27)1 

where 

On hand of Table 4.10 it i s  easy t o  demonstrate that, with an  increase  i n  

angle of s lope of t h e  r o l l e r s ,  t h e  r a t i o  ' first increases  rapidly,
A l l  (PI 

reaching, a t  y = sin-' 0.57 t/r,, a value equal  t o  unity.  Upon a fu r the r  in

crease i n  t h e  angle, t h e  r a t i o  'A1o(p)' W i l l  not  change. T h i s  means t h a t  t h e  
A,l(P) 

quantity T,(O) represents  t he  m i n i m u m  time obtainable a t  a given value of t h e  
f r i c t i o n  coef f ic ien t  p [see eq.( 6.15) 1. 

Figure 4.69 ind ica tes  t h a t ,  at t h e  same r a t e  of cage displacement, the  f r i c 
t i o n  losses  decrease with decreasing angle yl. Hence, t h e  minimum f r i c t i o n  
losses  ac tua l ly  occur when a l l  cage seats are posi t ioned a t  

t h e  r a d i a l  d i rec t ion .  A t  optimal rates o f  cage displacement 
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non-observance of this arrangement of seats may lead t o  an  increase i n  s l i d ing  
f r i c t i o n  losses  by a f a c t o r  of 1.5. 

4. 	Additional Consideratiog-of -Ct*-aL T h r x t  Bearing Design 
wi th  r1Slgwedtt Rol lers  

According t o  t h e  above formulas, t h e  coef f ic ien t  K character iz ing t h e  non
uniformity of b a d  d i s t r i b u t i o n  over t h e  r o l l e r  length, i s  equal t o  

Since 12BloI 2 1p -dr B, y1  - I, we can consider with su f f i c i en t  ac
2 21 1 

curacy t h a t  K = U p - Bl0. Thus, t h e  coef f ic ien t  K depends only on t h e  
21 

angle  y .  It follows from t h e  curve of K = K(y) p lo t t ed  i n  Fig.4.70 t h a t ,  on 
changing from an angle of 5' t o  an  angle of 45' which corresponds t o  the  posi
t ion ing  of a l l  seats a t  iderr t ical  angles, t h e  coef f ic ien t  K w i l l  decrease from 
0.35 t o  0.14.. 

The arrangement of a l l  cage s e a t s  a t  equal angles i s  preferable  a l s o  i n  
View of t h e  following considerations:  If t he  angle of s lope of t h e  seats i s  
iden t i ca l ,  t h e  forces  FIX - Fzx dr iv ing  the  r o l l e r s  against  t h e i r  la teral  
sur faces  are very small. If Mf, = 0 and s = 1, these  forces  a re  theo re t i ca l ly  
absent. 

k 

a 3  
0.2 

0. I 

0 1 2 J r' 
Fig.4.69 Losses Due t o  Sl iding Fig.4.70 Coefficient K as a Func-

Fr ic t ion .  t i o n  of t h e  Roller  Angle of Slope. 

A t  d i f f e ren t  angles of s lope of t h e  seats, when t h e  Ilslewedll r o l l e r s  must 
overcome t h e  res i s tance  of r a d i a l l y  arranged r o l l e r s ,  t h e  forces  Flx - Fzx may 
a t t a i n  s u b s t a n t i a l  magnitudes (up t o  0.1 pP) and cause wear of t h e  cage (espe
c i a l l y  a t  l a rge  x). 
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So far, it has been assumed that a l l  r o l l e r s  are of i d e n t i c a l  length. Now 
l e t  us see what happens a t  an  a l t e rna t ion  of long and shor t  r o l l e r s  i n  staggered 
sequence. 

Table 4.13 shows that, i n  t h e  l a t te r  case, t h e  t i m e  T, and t h e  reduced co
e f f i c i e n t  of f r i c t i o n  f f ,  vary negligibly,  whereas t h e  coe f f i c i en t  K f o r  sho r t  
r o l l e r s  increases  by a f a c t o r  of 3 .  T h i s  i nd ica t e s  t h a t  it i s  expedient t o  use 
r o l l e r s  of t h e  same length  i n  thrust  bearings wi th  slewed r o l l e r s .  

TABLE 4.13 
EFFECT OF DISTRIBUTION OF ROLLER LENGTH ON T,, f f ,  , AND K 

~- -

Rol lers  of i d e n t i c a l  length I 0.00616 0.14 
( l ,=f2=8 mm ) 

i 
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Long and short  r o l l e r s  a1 ternat ing  0.MI674 0.43 
i n  s taggered sequence ( f o r  shor t  

(l1=11 m m  , f2=5 mm ) 45*7 r o l l e r s )  

In estimating t h e  e f f e c t  of a nonuniform load d i s t r i b u t i o n  caused 'by t h e  
d 

ac t ion  of t h e  moment (Fly + FZy)  2 on t h e  l i f e  expectancy of a bearing, one 
2 

must not lose  s igh t  of t h e  f a c t  that t h e  load at  each contact po in t  does not re
main constant but changes with any change i n  d i r e c t i o n  of ro t a t ion .  I n  par t icu
lar, a t  t h e  ends of t h e  r o l l e r s  t h e  normal load var ies  i n  accordance with t h e  
l a w  

A s  a consequence, t h e  nonuniformity of load d i s t r i b u t i o n  caused by t h e  
e f f ec t  of t h e  a'bove moment should not excessively reduce t h e  serv ice  l i f e  of t h e

/4.17 
bearing. 

The usua l  concentration of load on t h e  ends of t h e  r o l l e r s ,  which we have 
disregarded assuming t h a t  q = const at  y = 0, i s  of importance. To lessen  the  
detr imental  e f f ec t  of t h e  la t ter ,  it i s  preferab le  t o  use r o l l e r s  with a camber. 

5 .  Ekaniple of Calculating a Thrust Bearing wi th  IISlewedIl Rol lers  

In conclusion, l e t  us give a n  example of ca lcu la t ing  a t h r u s t  bearing with 
I f  slewed 11 r o l l e r s  . 



--- 

Given: axial load N = x),OOO kg, v ib ra t ion  amplitude of revolving race cpo = 
= 4..5', frequency n = 180 cyc/min. 

For t h e  given conditions, we s e l e c t  a bearing wi th  t h e  following parame
ters: d, = 12 m, r, = 61mm, 1 = 10.5 mm ( t o t a l  length of r o l l e r s :  1 '  = 12 m), 
z = 20, and s = 2. 

Wanted: t o  determine t h e  angles of s lope of t h e  cage seats t h a t  w i l l  en
sure o p t h a 1  rate of displacement and maxi." se rv ice  l i f e  of t h e  bearings. 

We ca lcu la te  t h e  coef f ic ien t  v: 

Let us assume that a l l  s e a t s  have an  i d e n t i c a l  angle of slope.  After sub
s t i t u t i n g  i n t o  eq.(6.15) cpo = 4.5", n = 180 cyc/min, v = 0.99, and p = p '  = 
= 0.05, we will construct t h e  curve of T, = T.(y) by means of Table 4.11. From 
the  curve we f i n d  t h e  value y' of t h e  angle y at which T, = Ti = 80 min. I n  
our case, y' = 46'. Taking 5 ,  = 7' and emax= 0.18 mm, we determine the  devia
t i o n  of 5 :  

E=7+57.3~60 	 O*=12'.
2x61 

The normal value of t h e  angles of slope of t he  seats of t h e  cage i s  

y =y'f E =  4 64- 12 =58'. 

The contact s t r e s s e s  i n  t h e  bearing are 

a=860 1/"
zsxd, 1 

-860 / 2oJooo 
1.05 

=17 000 kq Jcm .
2 0 ~ 2 ~ 1 . 2 ~  

According t o  Fig.4.53, nh = 27 X 1O4 corresponds t o  this value of 0 .  Con
sequently, t h e  serv ice  l i f e  of t h e  bearing i s  

h=--27x lo4-1500 hr5. 
180 
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